Publication

Export 652 results:
2018
Mlynarski, W. & Hermundstad, A. M. Adaptive Coding for Dynamic Sensory Inference. eLife (2018).
Mhaskar, H. & Poggio, T. An analysis of training and generalization errors in shallow and deep networks. (2018).PDF icon CBMM-Memo-076.pdf (772.61 KB)PDF icon CBMM-Memo-076v2.pdf (2.67 MB)
Berzak, Y., Katz, B. & Levy, R. Assessing Language Proficiency from Eye Movements in Reading. 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (2018). at <http://naacl2018.org/>PDF icon 1804.07329.pdf (350.43 KB)
Spokes, A. C. & Spelke, E. S. At 4.5 but not 5.5 years, children favor kin when the stakes are moderately high. PLOS ONE 13, (2018).
Xiao, W., Chen, H., Liao, Q. & Poggio, T. Biologically-plausible learning algorithms can scale to large datasets. (2018).PDF icon CBMM-Memo-092.pdf (1.31 MB)
Muir, D., Fang, X. & Meyers, E. Brain-Observatory-Toolbox. (2018).
Schrimpf, M. & Kubilius, J. Brain-Score: Which Artificial Neural Network for Object Recognition is most Brain-Like?. bioRxiv preprint (2018). doi:10.1101/407007PDF icon Brain-Score bioRxiv.pdf (789.83 KB)
Villalobos, K. M. et al. Can Deep Neural Networks Do Image Segmentation by Understanding Insideness?. (2018).PDF icon CBMM-Memo-095.pdf (1.96 MB)
Liao, Q., Miranda, B., Hidary, J. & Poggio, T. Classical generalization bounds are surprisingly tight for Deep Networks. (2018).PDF icon CBMM-Memo-091.pdf (1.43 MB)PDF icon CBMM-Memo-091-v2.pdf (1.88 MB)
Sliwa, J., Marvel, S. R., Ianni, G. A. & Freiwald, W. A. Comparing human and monkey neural circuits for processing social scenes. Société Francophone de Primatologie (SFDP) Annual Meeting, Paris, France (2018).
Sliwa, J., Marvel, S. R., Ianni, G. A. & Freiwald, W. A. Comparing human and monkey neural circuits for processing social scenes. Cognitive Neuroscience Society Annual Meeting (CNS), Boston, MA (2018).
Sliwa, J., Marvel, S. R., Ianni, G. A. & Freiwald, W. A. Comparing human and monkey neural circuits for processing social scenes. Social & Affective Neuroscience Society (SANS) (2018). at <http://www.socialaffectiveneuro.org/conferences.html>
Sliwa, J., Marvel, S. R., Ianni, G. A. & Freiwald, W. A. Comparing human and monkey neural circuits for processing social scenes. Organization for Computational Neurosciences - CNS 2018 (2018). at <http://www.cnsorg.org/cns-2018>
Zisselman, E., Adler, A. & Elad, M. Handbook of Numerical Analysis 19, 3 - 17 (Elsevier, 2018).
Dehghani, N. & Wimmer, R. A computational perspective of the role of Thalamus in cognition. arxiv (2018). at <https://arxiv.org/abs/1803.00997>PDF icon ThalamusComputationArxiv.pdf (5.12 MB)
Adler, A. & Wax, M. Constant Modulus Algorithms via Low-Rank Approximation. (2018).PDF icon CBMM-Memo-077.pdf (795.61 KB)
Adler, A. & Wax, M. Constant Modulus Beamforming Via Low-Rank Approximation. 2018 IEEE Statistical Signal Processing Workshop (SSP) (2018). doi:10.1109/SSP.2018.8450799
Mlynarski, W. & McDermott, J. H. Co-occurrence statistics of natural sound features predict perceptual grouping. Computational and Systems Neuroscience (COSYNE) (2018). at <http://www.cosyne.org/c/index.php?title=Cosyne_18>
Mlynarski, W. & McDermott, J. H. Co-occurrence statistics of natural sound features predict perceptual grouping. Computational and Systems Neuroscience (Cosyne) 2018 (2018).

Pages