Publication

Found 910 results
Author Title [ Type(Desc)] Year
CBMM Memos
Ben-Yosef, G., Kreiman, G. & Ullman, S. Spatiotemporal interpretation features in the recognition of dynamic images. (2018).PDF icon CBMM-Memo-094.pdf (1.21 MB)Package icon CBMM-Memo-094-dynamic-figures.zip (1.8 MB)File fig1.ppsx (147.67 KB)File fig2.ppsx (419.72 KB)File fig4.ppsx (673.41 KB)File figS1.ppsx (587.88 KB)File figS2.ppsx (281.56 KB)
Palmer, I., Rouditchenko, A., Barbu, A., Katz, B. & Glass, J. Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset. (2021).PDF icon CBMM-Memo-128.pdf (2.91 MB)
Poggio, T. Stable Foundations for Learning: a framework for learning theory (in both the classical and modern regime). (2020).PDF icon Original file (584.54 KB)PDF icon Corrected typos and details of "equivalence" CV stability and expected error for interpolating machines. Added Appendix on SGD.  (905.29 KB)PDF icon Edited Appendix on SGD. (909.19 KB)PDF icon Deleted Appendix. Corrected typos etc (880.27 KB)PDF icon Added result about square loss and min norm (898.03 KB)
Liao, Q., Kawaguchi, K. & Poggio, T. Streaming Normalization: Towards Simpler and More Biologically-plausible Normalizations for Online and Recurrent Learning. (2016).PDF icon CBMM-Memo-057.pdf (1.27 MB)
Anselmi, F., Evangelopoulos, G., Rosasco, L. & Poggio, T. Symmetry Regularization. (2017).PDF icon CBMM-Memo-063.pdf (6.1 MB)
Han, Y., Poggio, T. & Cheung, B. System identification of neural systems: If we got it right, would we know?. (2022).PDF icon CBMM-Memo-136.pdf (1.75 MB)
Poggio, T., Banburski, A. & Liao, Q. Theoretical Issues in Deep Networks. (2019).PDF icon CBMM Memo 100 v1 (1.71 MB)PDF icon CBMM Memo 100 v3 (8/25/2019) (1.31 MB)PDF icon CBMM Memo 100 v4 (11/19/2019) (1008.23 KB)
Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B. & Liao, Q. Theory I: Why and When Can Deep Networks Avoid the Curse of Dimensionality?. (2016).PDF icon CBMM-Memo-058v1.pdf (2.42 MB)PDF icon CBMM-Memo-058v5.pdf (2.45 MB)PDF icon CBMM-Memo-058-v6.pdf (2.74 MB)PDF icon Proposition 4 has been deleted (2.75 MB)
Poggio, T. & Liao, Q. Theory II: Landscape of the Empirical Risk in Deep Learning. (2017).PDF icon CBMM Memo 066_1703.09833v2.pdf (5.56 MB)
Banburski, A. et al. Theory III: Dynamics and Generalization in Deep Networks. (2018).PDF icon Original, intermediate versions are available under request (2.67 MB)PDF icon CBMM Memo 90 v12.pdf (4.74 MB)PDF icon Theory_III_ver44.pdf Update Hessian (4.12 MB)PDF icon Theory_III_ver48 (Updated discussion of convergence to max margin) (2.56 MB)PDF icon fixing errors and sharpening some proofs (2.45 MB)
Zhang, C. et al. Theory of Deep Learning IIb: Optimization Properties of SGD. (2017).PDF icon CBMM-Memo-072.pdf (3.66 MB)
Poggio, T. et al. Theory of Deep Learning III: explaining the non-overfitting puzzle. (2017).PDF icon CBMM-Memo-073.pdf (2.65 MB)PDF icon CBMM Memo 073 v2 (revised 1/15/2018) (2.81 MB)PDF icon CBMM Memo 073 v3 (revised 1/30/2018) (2.72 MB)PDF icon CBMM Memo 073 v4 (revised 12/30/2018) (575.72 KB)
Cano-Córdoba, F., Sarma, S. & Subirana, B. Theory of Intelligence with Forgetting: Mathematical Theorems Explaining Human Universal Forgetting using “Forgetting Neural Networks”. (2017).PDF icon CBMM-Memo-071.pdf (2.54 MB)
Sakai, A. et al. Three approaches to facilitate DNN generalization to objects in out-of-distribution orientations and illuminations. (2022).PDF icon CBMM-Memo-119.pdf (31.08 MB)
Shrobe, H., Katz, B. & Davis, R. Towards a Programmer's Apprentice (Again). (2015).PDF icon CBMM-memo-030.pdf (294.27 KB)
Kuo, Y. - L. et al. Trajectory Prediction with Linguistic Representations. (2022).PDF icon CBMM-Memo-132.pdf (1.15 MB)
Yamada, M., D'Amario, V., Takemoto, K., Boix, X. & Sasaki, T. Transformer Module Networks for Systematic Generalization in Visual Question Answering. (2022).PDF icon CBMM-Memo-121.pdf (1.06 MB)PDF icon version 2 (3/22/2023) (1.33 MB)
Rangamani, A. & Xie, Y. Understanding the Role of Recurrent Connections in Assembly Calculus. (2022).PDF icon CBMM-Memo-137.pdf (1.49 MB)
Berzak, Y. et al. Universal Dependencies for Learner English. (2016).PDF icon memo-52_rev1.pdf (472.67 KB)
Liao, Q., Leibo, J. Z. & Poggio, T. Unsupervised learning of clutter-resistant visual representations from natural videos. (2014).PDF icon 1409.3879v2.pdf (3.64 MB)
Anselmi, F. et al. Unsupervised learning of invariant representations with low sample complexity: the magic of sensory cortex or a new framework for machine learning?. (2014).PDF icon CBMM Memo No. 001 (940.36 KB)
Lotter, W., Kreiman, G. & Cox, D. UNSUPERVISED LEARNING OF VISUAL STRUCTURE USING PREDICTIVE GENERATIVE NETWORKS. (2015).PDF icon CBMM Memo 040_rev1.pdf (1.92 MB)
Leibo, J. Z., Liao, Q., Freiwald, W. A., Anselmi, F. & Poggio, T. View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation. (2016).PDF icon faceMirrorSymmetry_memo_ver01.pdf (3.93 MB)
Wang, J. et al. Visual concepts and compositional voting. (2018).PDF icon CBMM-Memo-087.pdf (3.37 MB)
Zhang, M., Feng, J., Lim, J. Hwee, Zhao, Q. & Kreiman, G. What am I searching for?. (2018).PDF icon CBMM-Memo-096.pdf (1.74 MB)

Pages