Publication

Found 910 results
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Zhang, C., Evangelopoulos, G., Voinea, S., Rosasco, L. & Poggio, T. A Deep Representation for Invariance and Music Classification. ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2014). doi:10.1109/ICASSP.2014.6854954
Kuo, Y. - L., Barbu, A. & Katz, B. Deep sequential models for sampling-based planning. The IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018) (2018). doi:10.1109/IROS.2018.8593947PDF icon kuo2018planning.pdf (637.67 KB)
Barbu, A., Banda, D. & Katz, B. Deep video-to-video transformations for accessibility with an application to photosensitivity. Pattern Recognition Letters (2019). doi:10.1016/j.patrec.2019.01.019
Mhaskar, H. & Poggio, T. Deep vs. shallow networks: An approximation theory perspective. Analysis and Applications 14, 829 - 848 (2016).
Mhaskar, H. & Poggio, T. Deep vs. shallow networks : An approximation theory perspective. (2016).PDF icon Original submission, visit the link above for the updated version (960.27 KB)
Araya-Polo, M., Jennings, J., Adler, A. & Dahlke, T. Deep-learning tomography. The Leading Edge 37, 58 - 66 (2018).PDF icon TLE2018.pdf (1.9 MB)
Zhang, Z., Xie, C., Wang, J., Xie, L. & Yuille, A. DeepVoting: A Robust and Explainable Deep Network for Semantic Part Detection under Partial Occlusion. (2018).PDF icon CBMM-Memo-083.pdf (2.32 MB)
Zhang, Z., Xie, C., Wang, J., Xie, L. & Yuille, A. DeepVoting: An Explainable Framework for Semantic Part Detection under Partial Occlusion. Conference on Computer Vision and Pattern Recognition (CVPR) (2018). at <http://cvpr2018.thecvf.com/>
Dehghani, N. Design of the Artificial: lessons from the biological roots of general intelligence. (2017). at <https://arxiv.org/pdf/1703.02245>PDF icon DesignArtificial_Dehghani_arXiv.pdf (222.47 KB)
Chen, X. et al. Detect What You Can: Detecting and Representing Objects using Holistic Models and Body Parts. (2014).PDF icon CBMM-Memo-015.pdf (974.07 KB)
Wang, J. et al. Detecting Semantic Parts on Partially Occluded Objects. (2017).PDF icon CBMM-Memo-078.pdf (1.74 MB)
Wang, J. et al. Detecting Semantic Parts on Partially Occluded Objects. British Machine Vision Conference (BMVC) (2017). at <https://bmvc2017.london/proceedings/>
Palepu, A. & Kreiman, G. Development of automated interictal spike detector. 40th International Conference of the IEEE Engineering in Medicine and Biology Society - EMBC 2018 (2018). at <https://embc.embs.org/2018/>
Meyers, E., Riley, M., Qi, X. - L. & Constantinidis, C. Differences in dynamic and static coding within different subdivision of the prefrontal cortex. Society for Neuroscience's Annual Meeting - SfN 2017 (2017). at <http://www.abstractsonline.com/pp8/#!/4376/presentation/4782>
Toussaint, M., Allen, K., Smith, K. A. & Tenenbaum, J. B. Differentiable physics and stable modes for tool-use and manipulation planning. Robotics: Science and Systems 2018 (2018).PDF icon ToussaintEtAl_DiffPhysStable.pdf (1.97 MB)
Meyers, E., Liang, A., Katsuki, F. & Constantinidis, C. Differential Processing of Isolated Object and Multi-item Pop-Out Displays in LIP and PFC. Cerebral Cortex (2017). doi:10.1093/cercor/bhx243
Adler, A. & Wax, M. Direct Localization by Partly Calibrated Arrays: A Relaxed Maximum Likelihood Solution. 27th European Signal Processing Conference, EUSIPCO 2019 (2019). at <http://eusipco2019.org/technical-program>
Gershman, S. J., Tenenbaum, J. B. & Jaekel, F. Discovering hierarchical motion structure. Vision Research Available online 26 March 2015, (2015).PDF icon hierarchical_motion.pdf (582.01 KB)
Johnson, M. J., Linderman, S. W., Datta, S. R. & Adams, R. Discovering Switching Autoregressive Dynamics in Neural Spike Train Recordings. (2015).PDF icon cosyne2015b.pdf (7.27 MB)
Harari, D., Tenenbaum, J. B. & Ullman, S. Discovery and usage of joint attention in images. arXiv.org (2018). at <https://arxiv.org/abs/1804.04604>PDF icon 1804.04604v1.pdf (488.85 KB)
Tacchetti, A., Voinea, S. & Evangelopoulos, G. Discriminate-and-Rectify Encoders: Learning from Image Transformation Sets. (2017).PDF icon CBMM-Memo-062.pdf (9.37 MB)
Zhang, C., Voinea, S., Evangelopoulos, G., Rosasco, L. & Poggio, T. Discriminative Template Learning in Group-Convolutional Networks for Invariant Speech Representations. INTERSPEECH-2015 (International Speech Communication Association (ISCA), 2015). at <http://www.isca-speech.org/archive/interspeech_2015/i15_3229.html>
Becker, L. A., Penagos, H., Manoach, D. S., Wilson, M. A. & Varela, C. Disruption of CA1 Sharp-Wave Ripples by the nonbenzodiazepine hypnotic eszopiclone . Society for Neuroscience (2019).
Mendoza-Halliday, D., Xu, H., Azevedo, F. A. C. & Desimone, R. Dissociable neuronal substrates of visual feature attention and working memory. Neuron 112, 850 - 863.e6 (2024).
Mahowald, K. et al. Dissociating language and thought in large language models. Trends in Cognitive Sciences 28, 517 - 540 (2024).

Pages