Publication

Found 910 results
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Banburski, A., De La Torre, F., Pant, N., Shastri, I. & Poggio, T. Distribution of Classification Margins: Are All Data Equal?. (2021).PDF icon CBMM Memo 115.pdf (9.56 MB)PDF icon arXiv version (23.05 MB)
Norman-Haignere, S. V., Kanwisher, N., McDermott, J. H. & Conway, B. R. Divergence in the functional organization of human and macaque auditory cortex revealed by fMRI responses to harmonic tones. Nature Neuroscience (2019). doi:10.1038/s41593-019-0410-7
Armendariz, M., Xiao, W., Vinken, K. & Kreiman, G. Do computational models of vision need shape-based representations? Evidence from an individual with intriguing visual perceptions. Cognitive Neuropsychology 1 - 3 (2022). doi:10.1080/02643294.2022.2041588
Volokitin, A., Roig, G. & Poggio, T. Do Deep Neural Networks Suffer from Crowding?. (2017).PDF icon CBMM-Memo-069.pdf (6.47 MB)
Volokitin, A. & Roig, G. Do Deep Neural Networks Suffer from Crowding? [code]. (2017).
Villalobos, K. M. et al. Do Neural Networks for Segmentation Understand Insideness?. (2020).PDF icon CBMM-Memo-105.pdf (4.63 MB)PDF icon CBMM Memo 105 v2 (July 2, 2020) (3.2 MB)PDF icon CBMM Memo 105 v3 (January 25, 2022) (8.33 MB)
Berzak, Y., Barbu, A., Harari, D., Katz, B. & Ullman, S. Do You See What I Mean? Visual Resolution of Linguistic Ambiguities. (2016).PDF icon memo-51.pdf (2.74 MB)
Berzak, Y., Barbu, A., Harari, D., Katz, B. & Ullman, S. Do You See What I Mean? Visual Resolution of Linguistic Ambiguities. Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal. (2015).
Wang, P. & Yuille, A. DOC: Deep OCclusion Recovering From A Single Image. ECCV (2016).
Kryven, M., Scholl, B. & Tenenbaum, J. B. Does intuitive inference of physical stability interruptattention?. Cognitive Sciences Society (2019).
Poggio, T., Kur, G. & Banburski, A. Double descent in the condition number. (2019).PDF icon Fixing typos, clarifying error in y, best approach is crossvalidation (837.18 KB)PDF icon Incorporated footnote in text plus other edits (854.05 KB)PDF icon Deleted previous discussion on kernel regression and deep nets: it will appear, extended, in a separate paper (795.28 KB)PDF icon correcting a bad typo (261.24 KB)PDF icon Deleted plot of condition number of kernel matrix: we cannot get a double descent curve  (769.32 KB)
Ullman, T. D. et al. Draping an Elephant: Uncovering Children's Reasoning About Cloth-Covered Objects. Cognitive Science Society (2019). at <https://mindmodeling.org/cogsci2019/papers/0506/index.html>PDF icon Draping an Elephant: Uncovering Children's Reasoning About Cloth-Covered Objects.pdf (2.62 MB)
Banburski, A. et al. Dreaming with ARC. Learning Meets Combinatorial Algorithms workshop at NeurIPS 2020 (2020).PDF icon CBMM Memo 113.pdf (1019.64 KB)
Dehghani, N. Dynamic balance of excitation and inhibition in human and monkey neocortex. Nature Scientific Reports (2016). doi:10.1038/srep23176PDF icon BalanceExcitationInhibition.pdf (2.1 MB)
Meyers, E. Dynamic population coding and its relationship to working memory. Journal of Neurophysiology 120, 2260 - 2268 (2018).
Xu, M. et al. Dynamics and Neural Collapse in Deep Classifiers trained with the Square Loss. (2021).PDF icon v1.0 (4.61 MB)PDF icon v1.4corrections to generalization section (5.85 MB)PDF icon v1.7Small edits (22.65 MB)
Banburski, A. et al. Dynamics & Generalization in Deep Networks -Minimizing the Norm. NAS Sackler Colloquium on Science of Deep Learning (2019).
Xu, M., Rangamani, A., Liao, Q., Galanti, T. & Poggio, T. Dynamics in Deep Classifiers trained with the Square Loss: normalization, low rank, neural collapse and generalization bounds. Research (2023). doi:10.34133/research.0024PDF icon research.0024.pdf (4.05 MB)
N. Murty, A. Ratan & Arun, S. P. Dynamics of 3D view invariance in monkey inferotemporal cortex. Journal of Neurophysiology 11319212373232821, 2180 - 2194 (2015).
Isik, L., Meyers, E., Leibo, J. Z. & Poggio, T. The dynamics of invariant object recognition in the human visual system. J Neurophysiol 111, 91-102 (2014).
Isik, L., Meyers, E., Leibo, J. Z. & Poggio, T. The dynamics of invariant object recognition in the human visual system. (2014). doi:http://dx.doi.org/10.7910/DVN/KRUPXZ
Stern, M., Sompolinsky, H. & Abbott, L. F. Dynamics of random neural networks with bistable units. Phys Rev E Stat Nonlin Soft Matter Phys 90, (2014).

Pages