Publication

Found 904 results
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G
Galanti, T. & Poggio, T. SGD Noise and Implicit Low-Rank Bias in Deep Neural Networks. (2022).PDF icon Implicit Rank Minimization.pdf (1.76 MB)
Galanti, T., Xu, M., Galanti, L. & Poggio, T. Norm-based Generalization Bounds for Sparse Neural Networks. NeurIPS 2023 (2023). at <https://proceedings.neurips.cc/paper_files/paper/2023/file/8493e190ff1bbe3837eca821190b61ff-Paper-Conference.pdf>PDF icon NeurIPS-2023-norm-based-generalization-bounds-for-sparse-neural-networks-Paper-Conference.pdf (577.69 KB)
Galanti, T., Siegel, Z., Gupte, A. & Poggio, T. SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks. (2023).PDF icon Low-rank bias.pdf (2.38 MB)
Galanti, T. & Galanti, L. On the Implicit Bias Towards Minimal Depth of Deep Neural Networks. arXiv (2022). at <https://arxiv.org/abs/2202.09028>PDF icon 2202.09028.pdf (2 MB)
Galanti, T., Xu, M., Galanti, L. & Poggio, T. Norm-Based Generalization Bounds for Compositionally Sparse Neural Networks. (2023).PDF icon Norm-based bounds for convnets.pdf (1.2 MB)
Gan, Y. & Poggio, T. A Homogeneous Transformer Architecture. (2023).PDF icon CBMM Memo 143 v2 (1.1 MB)
Gan, Y., Galanti, T., Poggio, T. & Malach, E. On the Power of Decision Trees in Auto-Regressive Language Modeling. (2024).PDF icon CBMM-Memo-149.pdf (2.11 MB)
Gan, Y. & Poggio, T. For HyperBFs AGOP is a greedy approximation to gradient descent. (2024).PDF icon CBMM-Memo-148.pdf (1.06 MB)
Gant, J., Banburski, A., Deza, A. & Poggio, T. Evaluating the Adversarial Robustness of a Foveated Texture Transform Module in a CNN. NeurIPS 2021 (2021). at <https://nips.cc/Conferences/2021/Schedule?showEvent=21868>
Gao, T., Harari, D., Tenenbaum, J. B. & Ullman, S. When Computer Vision Gazes at Cognition. (2014).PDF icon CBMM-Memo-025.pdf (3.78 MB)
Garrote, E., Jhuang, H., Huehne, H., Poggio, T. & Serre, T. A Large Video Database for Human Motion Recognition. (2011).PDF icon Kuehne_etal_ICCV2011.pdf (433.27 KB)
Garrote, E. et al. System for Mouse Behavior Recognition. (2010).
Gartstein, M. A. et al. Using machine learning to understand age and gender classification based on infant temperament. PLOS ONE 17, e0266026 (2022).
Gaziv, G., Lee, M. J. & DiCarlo, J. J. Strong and Precise Modulation of Human Percepts via Robustified ANNs. NeurIPS 2023 (2023). at <https://proceedings.neurips.cc/paper_files/paper/2023/hash/d00904cebc0d5b69fada8ad33d0f1422-Abstract-Conference.html>
Gaziv, G., Lee, M. J. & DiCarlo, J. J. Robustified ANNs Reveal Wormholes Between Human Category Percepts. arXiv (2023). at <https://arxiv.org/abs/2308.06887>
Gen, C. et al. ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation. arXiv (2020). at <https://arxiv.org/abs/2007.04954>PDF icon 2007.04954.pdf (7.06 MB)
Gershman, S. J. & Cikara, M. Structure learning principles of stereotype change. Psychonomic Bulletin & Review 30, 1273 - 1293 (2023).
Gershman, S. J. & Daw, N. D. Reinforcement learning and episodic memory in humans and animals: an integrative framework. Annual Review of Psychology 68, (2017).PDF icon GershmanDaw17.pdf (422.11 KB)
Gershman, S. J. What have we learned about artificial intelligence from studying the brain?. Biological Cybernetics 118, 1 - 5 (2024).
Gershman, S. J. Origin of perseveration in the trade-off between reward and complexity. Cognition 204, 104394 (2020).
Gershman, S. J. & Ullman, T. D. Causal implicatures from correlational statements. PLOS ONE 18, e0286067 (2023).
Gershman, S. J., Horvitz, E. J. & Tenenbaum, J. B. Computational rationality: A converging paradigm for intelligence in brains, minds, and machines. Science 349, 273-278 (2015).
Gershman, S. J. How to never be wrong. Psychonomic Bulletin & Review 26, 13 - 28 (2019).
Gershman, S. J., Tenenbaum, J. B. & Jaekel, F. Discovering hierarchical motion structure. Vision Research Available online 26 March 2015, (2015).PDF icon hierarchical_motion.pdf (582.01 KB)
Gershman, S. J. & Burke, T. Mental control of uncertainty. Cognitive, Affective, & Behavioral Neuroscience 23, 465 - 475 (2022).

Pages