9.520/6.860: Statistical Learning Theory and Applications

- Class: Tue, Thu 11:00 am - 12:30 pm, 46-3002
- Office Hours: Wednesday 2:00 pm – 3:00 pm (in person), Friday 1:00 pm - 2:00 pm (Zoom link available on Canvas)
- Web: https://cbmm.mit.edu/9-520
- Contact: 9.520@mit.edu
- 9.520/6.860 will use Canvas: https://canvas.mit.edu/courses/11298
- Also check Canvas announcements for updates
- This year’s course will be in-person until MIT policy changes.
- Please fill out this registration form at https://forms.gle/UQQvNPPrNeHpxLtH6
Material

Slides— will be posted (for most lectures) on the website and Canvas

Videos— Recordings of lectures will be made available on Canvas

Notes—

L. Rosasco and T. Poggio, *Machine Learning: a Regularization Approach*, MIT-9.520 Lectures Notes, Manuscript, (will be provided)

For feedback on book (typos, errors, ...)
https://goo.gl/forms/pQcewnsAV3lCNoyr1
Faces

Instructors:
Faces

• Instructors:
 • Lorenzo Rosasco
Faces

• Instructors:
 • Lorenzo Rosasco
 • Tomaso Poggio
Faces

• Instructors:
 • Lorenzo Rosasco
 • Tomaso Poggio
 • Akshay Rangamani (head TA 1)
Faces

• Instructors:
 • Lorenzo Rosasco
 • Tomaso Poggio
 • Akshay Rangamani (also head TA 1)
 • Andy Banburski (also head TA 2)
Faces

• Instructors:
 • Lorenzo Rosasco
 • Tomaso Poggio
 • Akshay Rangamani (also head TA 1?)
 • Andy Banburski (also head TA 2?)

• TAs:
 • Michael Lee
Faces

• Instructors:
 • Lorenzo Rosasco
 • Tomaso Poggio
 • Akshay Rangamani (also head TA 1?)
 • Andy Banburski (also head TA 2?)

• TAs:
 • Michael Lee
 • Suleman Zaidi
<table>
<thead>
<tr>
<th>Class</th>
<th>Date</th>
<th>Title</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 01</td>
<td>Thu Sep 09</td>
<td>The Course at a Glance</td>
<td>TP</td>
</tr>
<tr>
<td>Class 02</td>
<td>Tue Sep 14</td>
<td>Statistical Learning Setting</td>
<td>LR</td>
</tr>
<tr>
<td>Class 03</td>
<td>Thu Sep 16</td>
<td>Regularized Least Squares</td>
<td>LR</td>
</tr>
<tr>
<td>Class 04</td>
<td>Tue Sep 21</td>
<td>Features and Kernels</td>
<td>LR</td>
</tr>
<tr>
<td>Class 05</td>
<td>Thu Sep 23</td>
<td>Logistic Regression and Support Vector Machines</td>
<td>LR</td>
</tr>
<tr>
<td>Class 06</td>
<td>Tue Sep 28</td>
<td>Learning with Stochastic Gradients</td>
<td>LR</td>
</tr>
<tr>
<td>Class 07</td>
<td>Thu Sep 30</td>
<td>Implicit Regularization with linear networks</td>
<td>LR</td>
</tr>
<tr>
<td>Class 08</td>
<td>Tue Oct 05</td>
<td>Learning with Random Features</td>
<td>LR</td>
</tr>
<tr>
<td>Class 09</td>
<td>Thu Oct 07</td>
<td>Approximation and Estimation Error</td>
<td>LR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monday 11th October - Indigenous People’s Day</td>
<td></td>
</tr>
<tr>
<td>Class 10</td>
<td>Tue Oct 12</td>
<td>Stability of Ridge Regression</td>
<td>LR</td>
</tr>
<tr>
<td>Class 11</td>
<td>Thu Oct 14</td>
<td>Condition Number, Overparameterization Puzzles,</td>
<td>TP + AR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stability of Ridgeless Regression</td>
<td></td>
</tr>
<tr>
<td>Class 12</td>
<td>Tue Oct 19</td>
<td>Introduction to Deep Networks</td>
<td>LR</td>
</tr>
<tr>
<td>Class 13</td>
<td>Thu Oct 21</td>
<td>Deep Learning Theory: Approximation</td>
<td>TP</td>
</tr>
<tr>
<td>Class 14</td>
<td>Tue Oct 26</td>
<td>Deep Learning: Optimization and Dynamics</td>
<td>TP + AB</td>
</tr>
<tr>
<td>Class 15</td>
<td>Thu Oct 28</td>
<td>Deep Learning: Optimization and Generalization</td>
<td>TP</td>
</tr>
<tr>
<td>Class 16</td>
<td>Tue Nov 02</td>
<td>Group Invariants in Vision</td>
<td>TP + Fabio Anselmi</td>
</tr>
<tr>
<td>Class 17</td>
<td>Thu Nov 04</td>
<td>Invariance, Neurons, Synaptic Plasticity, Development</td>
<td>TP + Fabio Anselmi</td>
</tr>
<tr>
<td>Class 18</td>
<td>Tue Nov 09</td>
<td>Neural Networks and the Ventral Stream</td>
<td>TP + Thomas Serre + Gabriel Kreiman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thursday 11th November - Veteran's Day</td>
<td></td>
</tr>
<tr>
<td>Class 19</td>
<td>Tue Nov 16</td>
<td>Neural Networks and the Ventral Stream</td>
<td>TP + Thomas Serre + Gabriel Kreiman</td>
</tr>
<tr>
<td>Class 20</td>
<td>Thu Nov 18</td>
<td>Loose Ends</td>
<td>Staff</td>
</tr>
<tr>
<td>Class 21</td>
<td>Tue Nov 23</td>
<td>Graph networks</td>
<td>Stephanie Jegelka</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thursday 25th November - Thanksgiving</td>
<td></td>
</tr>
<tr>
<td>Class 22</td>
<td>Tue Nov 30</td>
<td>Statistical inference from dependent samples</td>
<td>Costis Daskalakis</td>
</tr>
<tr>
<td>Class 23</td>
<td>Thu Dec 02</td>
<td>Neural Assemblies</td>
<td>Christos Papadiimitriou + Santosh Vempala</td>
</tr>
<tr>
<td>Class 24</td>
<td>Tue Dec 07</td>
<td>Adversarial examples</td>
<td>Alexander Madry</td>
</tr>
<tr>
<td>Class 25</td>
<td>Thu Dec 09</td>
<td>Sample and computational complexity of deep networks</td>
<td>Eran Malach</td>
</tr>
</tbody>
</table>
Grading policies

Problem sets (0.45)
- 3 problem sets (0.15 each)
 - 3 - 4 questions (exercises and/or MATLAB)
 - Due in 10 days (out on a Thursday, and due on Sunday)
 - Late policy on next slide
- typeset in LaTeX (template will be provided)
- Online submission on Canvas by due date

Project (0.45)
- See later

Class Participation (0.10)
- Attending class lectures is required!
- Discussions during class - ask questions!
- Discussions on Canvas
Problem sets

- Problem sets (0.45)
 - 3 problem sets (0.15 each)
 - 3 - 4 questions (demonstrations/exercises + short MATLAB)
 - 10 days due!
 - typeset in LaTeX (template provided)
 - online submission on Canvas by due date

Late policy

- All students have 6 free late days (to be used on psets and project proposal)
- You may use them as you see fit
- Beyond this, we will not accept assignments

Dates (due times are 11:59 pm). Submission online (on Canvas).

- Problem Set 1, out: Tue. Sep. 21, due: Sun. Oct. 3
- Problem Set 2, out: Tue. Oct. 12, due: Sun., Oct. 24
- Problem Set 3, out: Tue. Nov. 2, due: Sun., Nov. 14

Collaboration policy: You may discuss with others but need to work out your own solution.
This is not a data science course, so we will not consider data preparation as contributing to the grade.

Final Evaluation: project report (5 pages for individuals, 8 pages for teams, NeurIPS style)

Dates
- Abstract and title: Oct. 28
- Feedback and approval: Nov. 4
- Final Report due: Dec. 9