9.54 Computational aspects of biological learning

Course Instructors

Tomaso A Poggio, Shimon Ullman, Daniel Harari, Daniel Zysman

Teaching Assistants: Chen Sun

Class Times: M, W 3:00-4:30 pm

Location: 46-5193

starts Wednesday, Sept 4th;

Prereq: 9.40

Synopsis

Takes a computational approach to learning in the brain by neurons and synapses. Examines supervised and unsupervised learning as well as possible biological substrates, including Hebb synapses and the related topics of Oja flow and principal components analysis. Discusses hypothetical computational primitives in the nervous system, and the implications for unsupervised learning algorithms underlying the development of tuning properties of cortical neurons. Also focuses on a broad class of biologically plausible learning strategies.

Syllabus

Class 01	Wed Sep 03	Levels of understanding		
Class 02	Mon Sep 08	Types of learning		
Class 03	Wed Sep 10	Biophysics of Computation		
Class 04 tion, linear	Mon Sep 15 and nonlinear, RBI	Supervised Learning: regression and classifica-Fs and MLPs		
Class 05 application	Wed Sep 17 s	Supervised Learning: local methods+kernels and		
Class 06	Mon Sep 22	Supervised Learning: regularization		
Class 07 propagatio	Wed Sep 24 n	Supervised Learning: online learning and back-		
Class 08	Mon Sep 29	Supervised Learning: associative memories		
Class 09	Wed Oct 01	Review		
Class 10 application	Mon Oct 06	Unsupervised Learning: PCA, background and		
	Wed Oct 08 and Oja's rule	Unsupervised Learning: PCA in neurons, Hebb		
Mon Oct 13 - Columbus Day				
Class 12	Wed Oct 15	Unsupervised Learning: Introduction to Indepen-		

dent Component Analysis (ICA)

Class 13 visual word	Mon Oct 20 ds	Unsupervised Learning: Clustering, k-means and		
Class 14	Wed Oct 22	Midterm Review		
Class 15	Mon Oct 27	Midterm Exam		
Class 16 tion	Wed Oct 29	Unsupervised Learning: Features for classifica-		
Class 17 based RL	Mon Nov 03	Reinforcement Learning: Introduction, model-		
Class 18	Wed Nov 05	Reinforcement Learning: Model-free RL I		
Mon Nov 10 - Veterans Day				
Class 19 cations	Wed Nov 12	Reinforcement Learning: Model-free RL II, appli-		
	Mon Nov 17 RL brain structure	Reinforcement Learning: Biology of RL:		
	Wed Nov 19 and Wiesel, Fukushir	Learning Invariant Representations: Object recogna, HMAX		
		Learning Invariant Representations: Unsupervised ariance and selectivity for compact groups		
Class 23 Wed Nov 26 Learning Invariant Representations: Invariance for locally compact groups and non-groups, clutter and hierarchies				
Class 24 ry, Hebb rule		Learning Invariant Representations: Spectral theomodels of simple and complex cells, learning the wiring		
	Wed Dec 03 itecture of retina, V1,	Learning Invariant Representations: From invari- V2, V4, IT		

Class 26 Mon Dec 08 Review for final exam

UNSUPERVISED LEARNING module

- PCA, background and applications
- PCA in neurons, Hebb synapses and Oja's rule
- Introduction to Independent Component Analysis (ICA)
- Clustering, k-means and visual words
- Features for classification

SUPERVISED LEARNING module

- Supervised learning: memory is trivial, generalization is key: from look-up tables to generalization, from memory to learning: memory-based learning algorithms, shannon, RF (Mallot)
- Gaussian-like tuning, memory-based intelligence and RBF in RKHS Neurons, synapses and supervised online learning algorithms
- Learning Hyperacuity+ learning to recognize
- Associative memories: Willshaw- Longuet-Higgins, Hopfield, Kanerva, Platt
- Deep learning in hierarchical networks, back propagation, Hilbert's problem

REINFORCEMENT LEARNING module

- Introduction, model-based RL
- Model-free RL I
- Model-free RL II, applications
- Biology of RL: dopamine, RL brain structures

INVARIANT REPRESENTATION LEARNING module

• Object recognition, Hubel and Wiesel, Fukushima, invariance

- Unsupervised learning in the ventral stream, invariance and selectivity for compact groups
- Invariance for locally compact groups and non-groups
- Clutter and hierarchies
- From invariance to architecture of retina, V1, V2, V4, IT
- Spectral theory, Hebb rule, simple cells tuning, models of simple and complex cells, learning the wiring