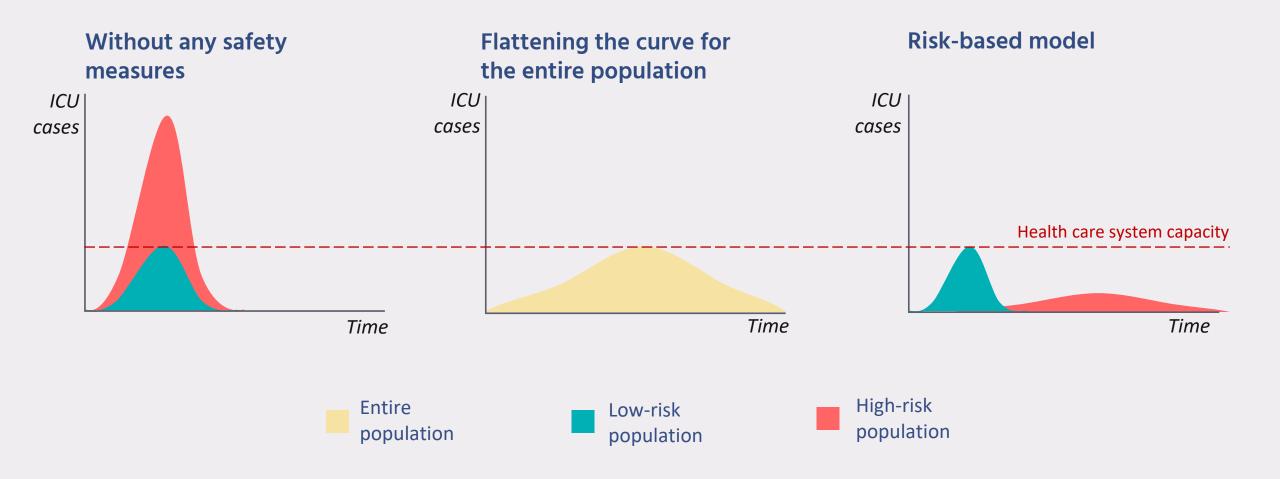
On Exit Strategy from Covid-19 Lockdown

Prof. Amnon Shashua, Prof. Shai Shalev-Shwartz March 2020

On Exit Strategy from Covid-19 Lockdown

Three main models for handling the Covid-19 outbreak:

- 1 Full lockdown
- ¬ Precision quarantine- Isolate positive cases and their immediate contacts using "contact tracing" technologies, until a vaccine/cure is available.
- **3 Herd-immunity:** No need to wait for a vaccine; but, high mortality and health system might not contain the outburst


We propose a combination of both models:

Managed herd-immunity with the RISK-BASED MODEL (1+2+3)

- High-risk group $\longrightarrow 1$ —

 Low-risk group $\longrightarrow 3$ — Second phase — High-risk group is gradually released 3+2

The Risk-based Model

Questions of Interest

- Define "high-risk" group: age and pre-existing conditions cut-off
 - + How to determine without overfitting

 Can the health system capacity (say, ICU beds) contain the number of severe cases among the low-risk group?

 Beyond obvious benefits to the economy, is the risk-based model safer in terms of overall mortality?

Worst-case Analysis

- The problem: Covid-19 dynamics (spread and duration) is too complicated at this stage
- The solution: adopting worst-case analysis under reasonable assumptions

Worst-case analysis under reasonable assumptions

- Assumptions:
 - + Upper-bound on the time from infection → ICU care-1 weeks*
 - + The probability of a low-risk person to be infected and need a critical-bed care is fixed.
 - → Why: low-risk group release can be done under social distancing restrictions (to avoid viral load)
- Worst-case:
 - + Infection rate among the low-risk group will be 100%
 - + All severe cases among the low-risk group will need ICU **simultaneously**

^{*}research shows the average time is 5-7 days

Analysis

- The analysis below focuses on the low-risk population.
- m = size of the low-risk population
- b = budget of ICUs

$$\mathbb{P}[\text{severe}] = \mathbb{P}[\text{severe} \land \text{infected}] = \underbrace{\mathbb{P}[\text{infected}]}_{\leq 1} \underbrace{\mathbb{P}[\text{severe} \mid \text{infected}]}_{:=\nu}$$

Therefore, we need:

$$b \geq m \nu$$
.

COVID-19, exit strategy

• Our goal is to derive an upper bound on ν

2 / 6

Upper bounding ν

$$\nu := \mathbb{P}[\text{severe } | \text{ infected}] \approx \frac{\# \text{ severe today}}{\# \text{ infected today}}$$

- We know k := # severe today (and to be on the safe size, "today" should be in the time interval [0, one week])
- We don't know # infected today
- Let $p^* =$ probability to be infected *today*, then

$$\nu \approx \frac{k}{\# \text{ infected today}} = \frac{k}{p^* m}$$

• So, to prove $b \ge m \nu$ we need

$$b \ge m \, \nu \approx \frac{k}{p^*}$$

• We now need a lower bound on p^*

Lower bounding p^*

- By sampling n i.i.d. persons from the low-risk population and finding S_n cases, we have $p^* \approx \frac{S_n}{n}$
- Overall:

$$b \ge m \, \nu \; \approx \; \frac{k}{p^*} \; \approx \; \frac{k}{S_n/n}$$

- ullet Example: in Israel, we have k=15 and we estimate $p^*=0.02$ so we need $b\geq 750$
- But, all of the above involved approximations. We need bounds that hold with sufficient probability!

Tail bounds

We derive concrete bounds based on the following techniques (and some tricks):

• Bernstein's inequality: If $S_n \sim \operatorname{Binom}(p, n)$ then

$$\mathbb{P}[S_n - np > t] \le e^{-\frac{t^2/2}{np(1-p)+t/3}}$$

Zubkov and Serov 2013:

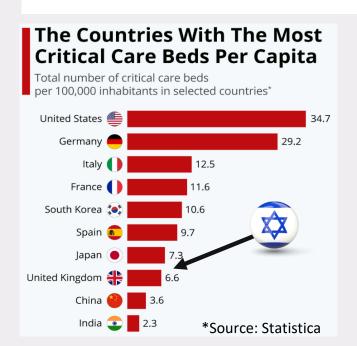
$$\mathbb{P}[S_n \le k] \le \Phi\left(-\sqrt{2nD_{KL}(p,(k+1)/n)}\right)$$

where Φ is the cumulative distribution function of a standard normal variable and D_{KL} is the KL-divergence

Results

Recall, we need

$$b \geq m \nu$$


For sufficiently large sample size n, with high probability we have

$$m \nu \ge 1.92 \frac{k}{S_n/n} .$$

Israel as a Case Study

As of 3/29/20:

- *k* ≤ 15
- p^* indications
 - **1%-** pre-outburst situation in Iceland
 - 1.8%- medical crew sampling in Jerusalem
 - 8%- Partners Health, Boston
 - We assume 2%
- p* can be estimated with a relatively small i.i.d. sampling

Required # of ICU beds

 $b > \frac{1.6k}{p^*}$

 $1.6 \cdot 15$

Low-risk group severe cases that require ICU

Current % of positive cases among the low-risk population

12 ICU beds per 100K population

Should be manageable

Summary

Risk-based model	Precision quarantine
 High infection rate among low-risk group → low mortality Low infection rate among the high-risk group thanks to herd-immunity of the rest 	 Unified infection rate among the entire population → high mortality among high- risk group
Minor negative effect on the economy	Extensive negative effect on the economy
Clear exit point- result in economic stability and higher civilian cooperation	 Lack of visibility- result in economic instability and civilian despair
Short duration and controlled effect on the health care system	Devastating and prolonged effect on the health care system