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 1	
Chapter VIII.  Towards a biologically plausible 2	

computational model of ventral visual cortex  3	
 4	
	5	

We have now come a long way since our initial steps towards defining the 6	
proble of visual recognition. We started with characterizing the spatial and 7	
temporal statistics of natural images (Lecture 2). We explored how neurons along 8	
ventral visual cortex respond to a variet of different stimulus conditions (Lectures 9	
3, 5, 7, 8). We described the recognition impairments that arise through cortical 10	
lesions (Lecture 4) and the effect of applying currents to the neural circuitry 11	
(Lecture 9). We would like to put all of these separate bits and pieces of data into 12	
a coherent framework to rigorously understand how neuronal circuits help us 13	
recognize objecst. Here we summarize some of the initial steps towards a 14	
theoretical understanding of the computational principles behind transformation-15	
invariance visual recognition in the primate cortex. 16	
 17	
8.1. Defining the problem 18	
 19	
 We start by defining what needs to be explained and the necessary 20	
constraints to solve the problem. A theory of visual object recognition, 21	
implemented by a computational model, should be able to explain the following 22	
phenomena and have the following characteristics: 23	
1. Selectivity. The primate visual system shows a remarkable degree of 24	
selectivity and can differentiate among shapes that appear to be very similar at 25	
the pixel level (e.g. arbitrary 3D shapes created from paperclips, different faces, 26	
etc.). Critical to object recognition, a model should be able to discriminate among 27	
physically similar but distinct shapes. 28	
2. Transformation tolerance. A trivial solution to achieve high selectivity 29	
would be to memorize all the pixels in the object. The problem with this type of 30	
algorithm is that it would not tolerate any changes in the image. An object can 31	
cast an infinite number of projections onto the retina. These changes arise due to 32	
changes in object position with respect to fixation, object scale, plane or depth 33	
rotation, changes in contrast or illumination, color, occlusion and others. The 34	
importance of combining selectivity and tolerance has been emphasized by many 35	
investigators (e.g. (Rolls, 1991; Olshausen et al., 1993; Logothetis and 36	
Sheinberg, 1996; Riesenhuber and Poggio, 1999; Deco and Rolls, 2004b; Serre 37	
et al., 2007b) among others).  38	
3. Speed. Visual recognition is very fast, as emphasized by many 39	
psychophysical investigations (Potter and Levy, 1969; Kirchner and Thorpe, 40	
2006; Serre et al., 2007a), scalp EEG measurements (Thorpe et al., 1996) and 41	
neurophysiological recordings in humans (Liu et al., 2009) and monkeys (e.g. 42	
(Richmond et al., 1983; Keysers et al., 2001; Hung et al., 2005) among others). 43	
This speed imposes an important constraint to the number of computational 44	
steps that the visual system can use for pattern recognition (Rolls, 1991; Serre et 45	
al., 2007b).  46	
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4. Generic. We can recognize a large variety of objects and shapes. 47	
Estimates about the exact number of objects or object categories that primates 48	
can discriminate vary widely depending on several assumptions and 49	
extrapolations (e.g. (Standing, 1973; Biederman, 1987; Abbott et al., 1996; Brady 50	
et al., 2008)). Certain types of shapes may be particularly interesting, they may 51	
have more cortical real estate associated with them, they could be processed 52	
faster and could be independently impaired. For example, there has been 53	
extensive discussion in the literature about faces, their representation and how 54	
they can be different from other visual stimuli. Yet, independently of precise 55	
figures about the number of shapes that primates can discriminate and 56	
independently also of whether natural objects and faces are special or not, it is 57	
clear that there exists a generic system capable of discriminating among multiple 58	
arbitrary shapes. For simplicity and generality, we focus first on this generic 59	
shape recognition problem. Face recognition, or specialization for natural objects 60	
versus other shapes constitute interesting and important specific instantiations 61	
and sub problems of the general one that we try to address here. 62	
5. Implementable in a computational algorithm. A successful theory of visual 63	
object recognition needs to be described in sufficient detail to be implemented 64	
through computational algorithms. This requirement is important because the 65	
computational implementation allows us to run simulations and hence to 66	
quantitatively compare the performance of the model against behavioral metrics. 67	
The simulations also lend themselves to a direct comparison of the model’s 68	
computational steps and neurophysiological responses at different stages of the 69	
visual processing circuitry. The algorithmic implementation forces us to rigorously 70	
state the assumptions and formalize the computational steps; in this way, 71	
computational models can be more readily compared than “armchair” theories 72	
and models. The implementation can also help us debug the theory by 73	
discovering hidden assumptions, bottlenecks and challenges that the algorithms 74	
cannot solve or where performance is poor. There are multiple fascinating ideas 75	
and theories about visual object recognition that have not been implemented 76	
through computational algorithms. These ideas can be extremely useful and 77	
helpful for the field and can inspire the development of computational models. 78	
Yet, we emphasize that we cannot easily compare theories that can be and have 79	
been implemented against other ones that have not.  80	
6. Restricted to primates. Here we restrict the discussion to object 81	
recognition in primates. There are strong similarities in visual object recognition 82	
at the behavioral and neurophysiological levels between macaque monkeys (one 83	
of the prime species for neurophysiological studies) and humans (e.g. (Myerson 84	
et al., 1981; Logothetis and Sheinberg, 1996; Orban, 2004; Nielsen et al., 2006; 85	
Kriegeskorte et al., 2008; Liu et al., 2009).  86	
7. Biophysically plausible. There are multiple computational approaches to 87	
visual object recognition. Here we restrict the discussion to models that are 88	
biophysically plausible. In doing so, we ignore a vast literature in Computer 89	
Vision where investigators are trying to solve similar problems without direct 90	
reference to the cortical circuitry. These engineering approaches are extremely 91	
interesting and useful from a practical viewpoint. Ultimately, in the same way that 92	
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computers can become quite successful at playing chess without any direct 93	
connection to the way humans play chess, computer vision approaches can 94	
achieve high performance without mimicking neuronal circuits. Here we restrict 95	
the discussion to biophysically plausible algorithms. 96	
8. Restricted to the visual system. The visual system is not isolated from the 97	
rest of the brain and there are plenty of connections between visual cortex and 98	
other sensory cortices, between visual cortex and memory systems in the medial 99	
temporal lobe and between the visual cortex and frontal cortex. It is likely that 100	
these connections also play an important role in the process of visual recognition, 101	
particularly through feedback signals that incorporate expectations (e.g. the 102	
probability that there is a lion in an office setting is very small), prior knowledge 103	
and experience (e.g. the object appears similar to another object that we are 104	
familiar with), cross-modal information (e.g. the object is likely to be a musical 105	
instrument because of the sound). To begin with and to simplify the problem, we 106	
restrict the discussion to the visual system.  107	
 108	
8.2. Visual recognition goes beyond identifying objects in single images 109	
 110	
 We emphasize that visual recognition is far more complex than the 111	
identification of specific objects. Under natural viewing conditions, objects are 112	
embedded in complex scenes and need to be separated from their background. 113	
How this segmentation occurs constitutes an important challenge in itself. 114	
Segmentation depends on a variety of cues including sharp edges, texture 115	
changes and object motion among others. Some object recognition models 116	
assume that segmentation must occur prior to recognition. There is no clear 117	
biological evidence for segmentation prior to recognition and therefore this 118	
constitutes a weakness in such approaches. We do not discuss segmentation 119	
here (see (Borenstein et al., 2004; Sharon et al., 2006) for recent examples of 120	
segmentation algorithms). 121	
 Most object recognition models are based on studying static images. 122	
Under natural viewing conditions, there are important cues that depend on the 123	
temporal integration of information. These dynamic cues can significantly 124	
enhance recognition. Yet, it is clear that we can recognize objects in static 125	
images and therefore many models focus on the reduced version the pattern 126	
recognition problem using static objects. Here we also focus on static images. 127	
 We can perform a variety of complex tasks that rely on visual information 128	
that are different from identification. For example, we can put together images of 129	
snakes, lions and dolphins and categorize them as animals. Categorization is a 130	
very important problem in vision research and it also constitutes a formidable 131	
challenge for computer-based approaches. Here we focus on the question of 132	
object identification. 133	
 134	
8.3. Modeling the ventral visual stream – Common themes 135	
 136	
 Several investigators have proposed computational models that aim to 137	
capture some of the essential principles behind the transformations along the 138	
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primate ventral visual stream. Before discussing some of those models in more 139	
detail, we start by providing some common themes that are shared by many of 140	
these models. 141	
 The input to the models is typically an image, defined by a matrix that 142	
contains the grayscale value of each pixel. Object shapes can be discriminated 143	
quite well in grayscale images and, therefore, most models ignore the added 144	
complexities of color processing (but eventually it will also be informative and 145	
important to add color to these models). Because the focus is often on the 146	
computational properties of ventral visual cortex, several investigators often 147	
ignore the complexities of modeling the computations in the retina and LGN; the 148	
pixels are meant to coarsely represent the output of retinal ganglion cells or LGN 149	
cells. This is of course one of the many oversimplifications in several 150	
computation models given that we know that images go through a number of 151	
transformations before retinal ganglion cells convey information to the LGN and 152	
on to cortex (Meister, 1996). 153	
 Most models have a hierarchical and deep structure that aims to mimic the 154	
approximately hierarchical architecture of ventral visual cortex (Felleman and 155	
Van Essen, 1991; Maunsell, 1995). The properties of deep networks has 156	
received considerable attention in the computational world, even if the 157	
mathematics of learning in deep networks that include non-linear responses is far 158	
less understood than shallow counterparts (Poggio and Smale, 2003). It seems 159	
that neocortex and computer modelers have adopted a Divide and Conquer 160	
strategy whereby a complex problem is divided into many simpler tasks.  161	
 Most computational models assume, explicitly or implicitly, that cortex is 162	
cortex, and hence that there exist canonical microcircuits and computations that 163	
are repeated over and over throughout the hierarchy (Riesenhuber and Poggio, 164	
1999; Douglas and Martin, 2004; Serre et al., 2007b). 165	
 As we ascend through the hierarchical structure of the model, units in 166	
higher levels typically have larger receptive fields, respond to more complex 167	
visual features and show an increased degree of tolerance to transformations of 168	
their preferred features. 169	
 170	
8.4. A panoply of models 171	
 172	
 We summarize here a few important ideas that have been developed to 173	
describe visual object recognition. The presentation here is neither an exhaustive 174	
list nor a thorough discussion of each of these approaches. For a more detailed 175	
discussion of several of these approaches, see (Ullman, 1996; LeCun et al., 176	
1998; Riesenhuber and Poggio, 2002; Deco and Rolls, 2004a; Serre et al., 177	
2005b). 178	
 Straightforward template matching does not work for pattern recognition. 179	
Even shifting a pattern by one pixel would pose significant challenges for an 180	
algorithm that merely compares the input with a stored pattern on a pixel-by-pixel 181	
fashion. As noted at the beginning of this chapter, a key challenge to recognition 182	
is that an object can lead to infinite number of retinal images depending on its 183	
size, position, illumination, etc. If all objects were always presented in a 184	
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standardized position, scale, rotation and illumination, recognition would be 185	
considerably easier (DiCarlo and Cox, 2007; Serre et al., 2007b). Based on this 186	
notion, several approaches are based on trying to transform an incoming object 187	
into a canonical prototypical format by shifting, scaling and rotating objects (e.g. 188	
(Ullman, 1996)). The type of transformations required is usually rather complex, 189	
particularly for non-affine transformations. While some of these problems can be 190	
overcome by ingenious computational strategies, it is not entirely clear (yet) how 191	
the brain would implement such complex calculations nor is there currently any 192	
clear link to the type of neurophysiological responses observed in ventral visual 193	
cortex. 194	
A number of approaches are based on decomposing an object into its 195	
component parts and their interactions. The idea behind this notion is that there 196	
could be a small dictionary of object parts and a small set of possible interactions 197	
that act as building blocks of all objects. Several of these ideas can be traced 198	
back to the prominent work of David Marr (Marr and Nishihara, 1978; Marr, 1982) 199	
where those constituent parts were based on generalized cone shapes. The 200	
artificial intelligence community also embraced the notion of structural 201	
descriptions (Winston, 1975). In the same way that a mathematical function can 202	
be decomposed into a sum over a certain basis set (e.g. polynomials or sine and 203	
cosine functions), the idea of thinking about objects as a sum over parts is 204	
attractive because it may be possible and easier to detect these parts in a 205	
transformation-invariant manner (Biederman, 1987; Mel, 1997). In the simplest 206	
instantiations, these models are based on merely detecting a conjunction of 207	
object parts, an approach that suffers from the fact that part rearrangements 208	
would not impair recognition but they should (e.g. a house with a garage on the 209	
roof and the chimney on the floor). More elaborate versions include part 210	
interactions and relative positions. Yet, this approach seems to convert the 211	
problem of object recognition to the problem of object part recognition plus the 212	
problem of object parts interaction recognition. It is not entirely obvious that 213	
object part recognition would be a trivial problem in itself nor is it obvious that any 214	
object can be uniquely and succinctly described by a universal and small 215	
dictionary of simpler parts. It is not entirely trivial how recognition of complex 216	
shapes (e.g. consider discriminating between two faces) can be easily described 217	
in terms of a structural description of parts and their interactions. Computational 218	
implementations of these structural descriptions have been sparse (see however 219	
(Hummel and Biederman, 1992)). More importantly, it is not entirely apparent 220	
how these structural descriptions relate to the neurophysiology of the ventral 221	
visual cortex (see however (Vogels et al., 2001)). 222	
 A series of computational algorithms, typically rooted in the neural network 223	
literature (Hinton, 1992), attempt to build deep structures where inputs can be 224	
reconstructed (for a recent version of this, see e.g. (Hinton and Salakhutdinov, 225	
2006). In an extreme version of this approach, there is no information loss along 226	
the deep hierarchy and backward signals carry information capable of re-creating 227	
arbitrary inputs in lower visual areas. There are a number of interesting 228	
applications for such “auto-encoder” deep networks such as the possibility of 229	
performing dimensionality reduction. From a neurophysiological viewpoint, 230	
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however, it seems that the purpose of cortex is precisely the opposite, namely, to 231	
lose information in biologically interesting ways. It is not clear why one build an 232	
entire network to copy the input (possibly with fewer units). In other words, as 233	
emphasized at the beginning of this chapter, it seems that a key goal of ventral 234	
visual cortex is to be able to extract biologically relevant information (e.g. object 235	
identity) in spite of changes in the input at the pixel level.  236	
 Particularly within the neurophysiology community, there exist several 237	
“metric” approaches where investigators attempt to parametrically define a space 238	
of shapes and then record the activity of neurons along the ventral visual stream 239	
in response to these shapes (Tanaka, 1996; Brincat and Connor, 2004; Connor 240	
et al., 2007). This dictionary of shapes can be more or less quantitatively defined. 241	
For example, in some cases, investigators start by presenting different shapes in 242	
search of a stimulus that elicits strong responses. Subsequently, they manipulate 243	
the “preferred” stimulus by removing different parts and evaluating how the 244	
neuronal responses are modified by these transformations. While interesting, 245	
these approaches suffer from the difficulties inherent in considering arbitrary 246	
shapes that may or may not constitute truly “preferred” stimuli. Additionally, in 247	
some cases, the transformations examined only reveal anthropomorphic biases 248	
about what features could be relevant. Another approach is to define shapes 249	
parametrically. For example, Brincat and colleagues considered a family of 250	
curvatures and modeled responses in a six-dimensional space defined by a sum 251	
of Gaussians with parameters given by the curvature, orientation, relative 252	
position and absolute position of the contour elements in the display. This 253	
approach is intriguing because it has the attractive property of allowing 254	
investigators to plot “tuning curves” similar to the ones used to represent the 255	
activity of units in earlier visual areas. Yet, it also makes strong assumptions 256	
about the type of shapes preferred by the units. Expanding on these ideas, 257	
investigators have tried to start from generic shapes and use genetic algorithms 258	
whose trajectories are guided by the neuronal preferences (Yamane et al., 2008). 259	
What is particularly interesting about this approach is that it seems to be less 260	
biased than the former two. The key limitation here is the recording time and this 261	
type of algorithm, particularly with small data sets, may converge onto local 262	
minima or even not converge at all. Genetic algorithms can be more thoroughly 263	
examined in the computational domain. For example, investigators can examine 264	
a huge variety of computational models and let them “compete” with each other 265	
through evolutionary mechanisms (Pinto et al., 2009). To guide the evolutionary 266	
paths, it is necessary to define a cost function; for example, evolution can be 267	
constrained by rewarding models that achieve better performance in certain 268	
recognition tasks. This type of approach can lead to models with high 269	
performance (although it also suffers from difficulties related to local minima). 270	
Unfortunately, it is not obvious that better performance necessarily implies any 271	
better approximation to the way in which cortex solves the visual recognition 272	
problem. 273	
  274	
8.5. Bottom-up hierarchical models of the ventral visual stream 275	
 276	
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 A hierarchical network model can be described by a series of layers 277	
i = 0,1,...,N . Each layer contains n(i) × n(i)  units arranged in a matrix. The 278	
activity of each unit in each layer can be represented by the matrix xi 279	
( xi ∈

n(i )×n(i ) ). In several models, xi(j,k) (i.e., the activity of unit at position j,k in 280	
layer i) is a scalar value interpreted as the firing rate of the unit. The initial layer is 281	
defined as the input image; x0 represents the (grayscale) values of the pixels a 282	
given image. 283	
 Equations 1 and 2 above constitute the initial steps for many object 284	
recognition models and capitalize on the more studied parts of the visual system, 285	
the pathway from the retina to primary visual cortex. The output of Equation 2, 286	
after convolving the output of center-surround receptive fields with a Gabor 287	
function, can be thought of as a first order approximation to the edges in the 288	
image. As noted above, our understanding of ventral visual cortex beyond V1 is 289	
far more primitive and it is therefore not surprising that this is where most models 290	
diverge. In a first order simplification, we can generically describe the 291	
transformations along the ventral visual stream as: 292	
xi+1 = fi (xi )         Equation 11.1 293	
This assumes that the activity in a given layer only depends on the activity 294	
pattern in the previous layer. This assumption implies that at least three types of 295	
connections are ignored: (i) connections that “skip” a layer in the hierarchy (e.g. 296	
synapses from the LGN to V4 skipping V1); (ii) top-down connections (e.g. 297	
synapses from V2 to V1 (Virga, 1989)) and (iii) connections within a layer (e.g. 298	
horizontal connections between neurons with similar preferences in V1 (Callaway, 299	
1998)) are not included in Equation 11.1.  300	
The subindex i in the function f indicates that the transformation from one layer to 301	
another is not necessarily the same. A simple form that f could take is a linear 302	
function: 303	
xi+1 =Wixi         Equation 11.2 304	
where the matrix Wi represents the linear weights that transform activity in layer i 305	
into activity in layer i+1. Not all neurons in layer i need to be connected to all 306	
neurons in layer i+1; in other words, many entries in W can be 0. This simple 307	
formulation fins some empirical evidence; for example, Hubel and Wiesel 308	
proposed that the oriented filters in primary visual cortex could arise from a linear 309	
summation of the activity of neurons in the lateral geniculate nucleus with 310	
appropriately aligned center-surround receptive fields (Hubel and Wiesel, 1962). 311	
Unfortunately, neurons are far more intricate devices and non-linearities abound 312	
in their response properties. For example, Hubel and Wiesel also described the 313	
activity of so-called complex cells that are also orientation tuned but show a non-314	
linear response as a function of spatial frequency or bar length.  315	
It is tacitly assumed by most modelers that there exist general rules, often 316	
summarized in the epithet “cortex is cortex”, such that only a few such 317	
transformations are allowed. One of the early models that aimed to describe 318	
object recognition, inspired by the neurophysiological findings of Hubel and 319	
Wiesel, was the neocognitron (Fukushima, 1980) (see also earlier theoretical 320	
ideas in (Sutherland, 1968)). This model had two possible operations, a linear 321	
tuning function (performed by “simple” cells) and a non-linear OR operation 322	
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(performed by “complex” cells). These two operations were alternated and 323	
repeated through the multiple layers in the deep hierarchy. This model 324	
demonstrated the feasibility of such linear/non-linear cascades in achieving scale 325	
and position tolerance in a letter recognition task. Several subsequent efforts 326	
(Olshausen et al., 1993; Wallis and Rolls, 1997; LeCun et al., 1998; Riesenhuber 327	
and Poggio, 1999; Amit and Mascaro, 2003; Deco and Rolls, 2004b) were 328	
inspired by the Neocognitron architecture. 329	
 One such effort to expand on the computational abilities of the 330	
Neocognitron in the computational model developed in the Poggio group 331	
(Riesenhuber and Poggio, 1999; Serre et al., 2005b; Serre et al., 2007b). This 332	
model is characterized by a purely feed-forward and hierarchical architecture. An 333	
image, represented by grayscale values, is convolved with Gabor filters at 334	
multiple scales and positions to mimic the responses of simple cells in primary 335	
visual cortex. Like other efforts, the model consists of a cascade of linear and 336	
non-linear operations. These operations come in only two flavors in the model: a 337	
tuning operation and soft-max operation. Both operations can be expressed in 338	
the following form: 339	

xi+1[k] = g
w[ j,k] xi

p[ j]
j=1

n

∑
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n
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     Equation 11.3 340	

where xi+1[k]  represents the activity of unit k in layer i+1, w[ j,k]  represents the 341	
connection weight between unit j in layer i and unit k in layer b+1, p, q, r are 342	
integer constants, a is a normalization constant and g is a nonlinear function (e.g. 343	
sigmoid). Depending on the values of p, q and r different interesting behaviors 344	
can be obtained. In particular, taking r=1/2, p=1, q=2, leads to a tuning operation: 345	
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w[ j,k] xi [ j]
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The responses of the unit are controlled by the weights w. As emphasized above, 347	
tuning is a central aspect of any computational model of visual recognition, 348	
allowing units along the hierarchy to respond to increasingly more elaborate 349	
features.  Taking w=1, p=q+1, r=1, leads to a softmax operation, particularly for 350	
large values of q: 351	

xi+1[k] = g
xi
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      Equation 11.3’’ 352	

Of note, the unit with response xi+1[k]  shows similar response tuning to the units 353	
with response xi[ j]  for j = 1,...,n . Yet, the higher-level unit shows a stronger 354	
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degree of tolerance to those aspects of the response that differentiate the 355	
responses of different units with similar tuning in layer i. For example, different 356	
units in layer i may show identical feature preferences but have slightly different 357	
receptive fields. A winner-take-all unit in layer i+1 that takes as input the 358	
responses of those units would inherit the same feature preferences but would 359	
reveal a larger receptive and tolerate changes in the position of the feature within 360	
the larger receptive field. Both operations can be implemented through relatively 361	
simple biophysical circuits (Kouh and Poggio, 2004). 362	
 This and similar architectures have been subjected to several tests 363	
including comparison with psychophysical measurements (e.g. (Serre et al., 364	
2007a)), comparison with neurophysiological responses (e.g. (Deco and Rolls, 365	
2004b; Lampl et al., 2004; Hung et al., 2005; Serre et al., 2005b; Cadieu et al., 366	
2007) and quantitative evaluation of performance in computer vision recognition 367	
tasks (e.g. (LeCun et al., 1998; Serre et al., 2005a; Mutch and Lowe, 2006)).  368	
 369	
8.6. Top-down signals in visual recognition 370	
 371	
 In spite of the multiple simplifications, the success of bottom-up 372	
architecture in describing a large number of visual recognition phenomena 373	
suggest that they may not be a bad first cut. As emphasized above, bottom-up 374	
architectures constitute only an approximation to the complexities and wonders 375	
of neocortical computation. One of the several simplifications in bottom-up 376	
models is the lack of top-down signals. We know that there are abundant back-377	
projections in neocortex (e.g. (Felleman and Van Essen, 1991; Callaway, 2004; 378	
Douglas and Martin, 2004)). The functions of top-down connections have been 379	
less studied at the neurophysiological level but there is no shortage of 380	
computational models illustrating the rich array of computations that emerge with 381	
such connectivity. Several models have used top-down connections to guide 382	
attention to specific locations or specific features within the image (e.g. 383	
(Olshausen et al., 1993; Itti and Koch, 2001))(Tsotsos, 1990; Deco and Rolls, 384	
2005; Rao, 2005; Compte and Wang, 2006; Chikkerur et al., 2009). The 385	
allocation of attention to specific parts of an image can significantly enhance 386	
recognition performance by alleviating the problems associated with image 387	
segmentation and with clutter.   388	
 Top-down signals can also play an important role in recognition of 389	
occluded objects. When only partial object information is available, the system 390	
must be able to perform object completion and interpret the image based on prior 391	
knowledge. Attractor networks have been shown to be able to retrieve the 392	
identity of stored memories from partial information (e.g. (Hopfield, 1982)). Some 393	
computational models have combined bottom-up architectures with attractor 394	
networks at the top of the hierarchy (e.g. (Deco and Rolls, 2004b)).  395	
During object completion, top-down signals could play an important role by 396	
providing prior stored information that influences the bottom-up sensory 397	
responses. Several proposals have argued that visual recognition can be 398	
formulated as a Bayesian inference problem (Mumford, 1992; Rao et al., 2002; 399	
Lee and Mumford, 2003; Rao, 2004; Yuille and Kersten, 2006; Chikkerur et al., 400	
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2009). Considering three layers of the visual cascade (e.g. LGN, V1 and higher 401	
areas), and denoting activity in those layers as x0, x1 and xh respectively, then 402	
the probability of obtaining a given response pattern in V1 depends both on the 403	
sensory input as well as feedback from higher areas:  404	

P(x1 x0 ) =
P(x0 x1)P(x1 xh )

P(x0 xh )
      Equation 11.8 405	

where P(x1 xh ) represents the feedback biases conveying prior information. An 406	
intriguing idea proposed by Rao and Ballard argues that top-down connections 407	
provide predictive signals whereas bottom-up signals convey the difference 408	
between the sensory input and the top-down predictions (Rao and Ballard, 1999). 409	
 410	
8.7. Applications 411	
 412	
 There is no shortage of applications where automatic or semi-automatic 413	
algorithms are being explored in computer vision. Here are a few examples: 414	

(A) Intelligent content-based search. Searching for images in the web by 415	
content will open the doors to a large number of applications. Facebook 416	
users can already experiment with prototypes that let them search for 417	
people. One may be able to look for images that are similar to a search 418	
query in terms of content. Blind people may be able to point their phones 419	
and find out where they are and how to navigate.  420	

(B) Prototype cars that can navigate automatically rely heavily on algorithms 421	
to detect pedestrians, other cars, other objects and road conditions.  422	

(C) ATM machines may be able to recognize their customers. Cars and 423	
houses may recognize their owners.  424	

(D) Security screening in places like airports may benefit from automatic 425	
recognition systems.  426	

(E)  Several clinical problems are based on pattern recognition and 427	
computers may soon help doctors to make informed decisions based on 428	
their understanding of patterns. 429	
 430	

8.8. Computer vision tasks 431	
 432	
 Algorithms have been developed to address several interrelated problems 433	
in machine vision. While some of the boundaries are blurred in several 434	
applications, it is useful to think about the following tasks: 435	

(A) Object detection. For example, a digital camera may require detecting the 436	
presence and location of a face in an image for focusing. Face detection 437	
may thrive without solving the problem of recognition.  438	

(B)  Object segmentation. In natural images, it may be of interest to separate 439	
an object from the background. For example, it may be important to 440	
detect the location of a tumor in an image. Or to detect the presence of a 441	
tank in a camouflaged image. 442	

(C) Object recognition. Recognizing objects can often be thought of as 443	
associating the image with labels. These labels may refer to the identity of 444	
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the object (e.g. given a face, who is it?) or the object’s category (e.g. is 445	
there an animal in this image?).  446	

(D) Object verification. In some cases, it may be of interest to evaluate 447	
whether two images are the same or not.  448	

 449	
8.9. Object segmentation 450	
 451	
 Given a natural scene, humans (and other species) are quite good at 452	
being able to characterize and localize different objects embedded in complex 453	
backgrounds. The fact that this is not a trivial problem is highlighted by the 454	
ubiquitous use of camouflage in the animal world. Particularly for objects that are 455	
not moving, matching colors, contrast and textures can help animals avoid 456	
predators or at least buy sufficient time for escape. Basic aspects of 457	
segmentation may depend on adequately detecting edges. However, more 458	
complex problems often involve a deeper understanding of the interrelationships 459	
among different object parts. A typical case involves recognizing a zebra as a 460	
whole animal as opposed to thinking of each stripe as a separate object.  461	
 Some algorithms require recognition prior to segmentation while other 462	
algorithms use segmentation to guide recognition in complex scenes. To avoid 463	
this chicken-and-egg dilemma, it is tempting to speculate that certain aspects of 464	
bottom-up recognition and segmentation could occur (or at least) start 465	
independently of each other, using overlapping neuronal circuits. Top-down 466	
signals may then combine segmentation and recognition in synergistic fashion. 467	
For examples of object segmentation algorithms see (Borenstein et al., 2004). 468	

 469	
8.10. A general scheme for object recognition 470	

 471	
Figure 12.1 illustrates a typical approach in computer vision efforts. 472	

Consider a series of N labeled images (xi,yi) where i=1,…,N, x is a matrix 473	
representing the image and y is a label (e.g. face present or not). A set of 474	
features f is extracted from the images: fi=g(xi). Those features may include 475	
properties such as edges, principal components, etc. How those features are 476	
chosen is one of the key aspects that differentiates computer vision algorithms. A 477	
supervised learning scheme is then used to learn the map between those 478	
features and labels (Poggio and Smale, 2003; Meyers and Kreiman, 2011; 479	
Singer and Kreiman, 2011). For example, a support vector machine (SVM) 480	
classifier with a linear kernel may be used to learn the structure of the data and 481	
labels. A cross-validation procedure is followed by separating the data into a 482	
training set and a test set to avoid overfitting. After training, the algorithm is 483	
evaluated with the images in the test set. By using different algorithms applied to 484	
the same data, the merits of alternative approaches can be quantitatively 485	
compared. 486	
 487	

8.11. A successful example: digit recognition 488	
 489	
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 490	
 Recognizing hand-written digits constitutes an example where computers 491	
have reached high accuracy, almost comparable to human levels (e.g. (LeCun et 492	
al., 1998)). Figure 12.2 shows an example of the errors made by an early attempt 493	
at recognizing hand-written digits. The overall error rate of this algorithm was 494	
<2%. Several of those errors are not trivial to recognize and humans could make 495	
mistakes as well.  496	
  497	

8.12. Image recognition competitions 498	
 499	

There are several computer vision competitions with large data sets 500	
consisting of labeled images. One such competition is called the Imagenet Large 501	
Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2014). The 502	
2014 instantiation of the object classification part of this challenge included 1000 503	
object classes, 1,281,413 images for training (732-1300 images per class) and 504	
100,000 images for testing (100 images per class). This competition also 505	
includes other tasks beyond classification including object detection and 506	
localization. To give an idea of performance, the winning team in the object 507	
classification part of the challenge achieved an error rate slightly above 6%. This 508	

is quite impressive considering that 509	
there were 1000 classes. It should 510	
be noted, though, that the results of 511	
these competitions are often 512	
reported in a somewhat strange 513	
way by allowing the models 5 514	
changes to get it right and reporting 515	
the results as correct if any of 516	
those 5 predictions are correct. 517	
This makes it a bit more difficult to 518	
directly compare against human 519	
performance (Borji and Itti, 2014). 520	
Another aspect of machine vision 521	
that has also been highlighted is 522	
the difficulty in interpreting how the 523	
machine classifies objects and 524	

Figure	12.1.	A	general	scheme	for	object	recognition.	Features	are	extracted	from	an	image	(or	
video).	Those	features	are	used	to	train	a	classifier	via	supervised	learning.	The	resulting	
classification	boundary	is	used	with	novel	images	(different	from	the	ones	used	during	
training)	to	assign	object	labels	to	images.	
	

	

Figure	12.2.	Example	of	digit	recognition	
mistakes	by	the	algorithm	in	LeCun	et	al	
1988.	Below	each	digit,	the	image	shows	the	
true	label	and	the	computer	label.	
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investigators have reported puzzling examples where minimal changes to an 525	
image drastically change the predicted class (Szegedy et al., 2014). With that 526	
said, the results are still quite remarkable and they show rapid progress in 527	
teaching machines to recognize objects. 528	
 529	
8.7. The road ahead 530	

If you can do it, a computer can do it too. Significant progress has been made 531	
over the last decade in teaching computers to perform multiple tasks that were 532	
traditionally thought to be the domain of humans. Any desktop computer can play 533	
chess competitively and the best computers can beat the world’s chess 534	
champion. IBM’s Watson has thrived in the trivia-like game of Jeopardy. And 535	
while imperfect, Siri and related systems are making enormous strides in 536	
becoming the world’s best assistants.  537	
 538	

In the domain of vision, computational algorithms are already able to perform 539	
certain tasks such as recognizing digits in a fully automatic fashion at human 540	
performance level and demonstrate reasonable performance in other tasks such 541	
as detecting faces for focusing on in digital cameras. In several other tasks, 542	
humans still outperform the most sophisticated current algorithms but the gap 543	
between machines and humans in vision tasks is closing rapidly. Here we 544	
provide an overview of several computer vision systems, particularly in the 545	
context of pattern recognition problems and describe what machine vision 546	
systems can and cannot do,  547	
 548	
 Significant progress has been made towards describing visual object 549	
recognition in a principled and theoretically sound fashion. Yet, the lacunas in our 550	
understanding of the functional and computational architecture of ventral visual 551	
cortex are not small. The preliminary steps have distilled important principles of 552	
neocortical computation including deep networks that can divide and conquer 553	
complex tasks, bottom-up circuits that perform rapid computations, gradual 554	
increases in selectivity and tolerance to object transformation. 555	
 556	
 In stark contrast with the pathway from the retina to primary visual cortex, 557	
we do not have a quantitative description of the feature preferences of neurons 558	
along the ventral visual pathway. And several computational models do not make 559	
clear, concrete and testable predictions towards systematically characterizing 560	
ventral visual cortex at the physiological levels. Computational models can 561	
perform several complex recognition tasks and compete against non-biological 562	
computer vision approaches. Yet, for the vast majority of recognition tasks, they 563	
still fall significantly below human performance.  564	
 565	
 The next several years are likely to bring many new surprises in the field. 566	
We will be able to characterize the system at unprecedented resolution at the 567	
experimental level and we will be able to evaluate sophisticated and 568	
computationally intensive theories in realistic times. In the same way that the 569	
younger generations are not surprised by machines that can play chess quite 570	
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competitively, the next generation 571	
may not be surprised by intelligent 572	
devices that can “see” like we do.   573	
 574	
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