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Learning problem and algorithms

Solve

minL(f), L(f) =E(xy)~prlt(y, f(x))],

given only
Sp= (Xlryl)""’(xn:)/n) ~P".

Learning algorithm

f estimates fp given the observed examples S,,.
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Learning problem and algorithms

Solve

minL(f), L(f) =E(xy)~prlt(y, f(x))],

given only
Sp= (Xlr.yl)""’(xmyn) ~P".

Learning algorithm

f estimates fp given the observed examples S,,.

How can we design a learning algorithm?
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Algorithm design: complexity and regularization

The design of most algorithms proceed as follows:

> Pick a (possibly large) class of function H, ideally

inL(f)=minL(f).
min L(f) = min L(f)

» Define a procedure Ay(Sn) = ?), € H to explore the space H.
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Empirical risk minimization

A classical example (called M-estimation in statistics).

Consider (H,,), such that
H1 CH2,...HV c...H.

Then, let

This is the idea we discuss next.
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Linear functions

Let H be the space of linear functions

f(x)=w'x.

Then,
> f < wisonetoone,
» inner product <f, ?>H =w'w,
> norm/metric Hf— F”H =||lw—w|.

Linear functions are the conceptual building block of most functions.
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Linear least squares

ERM with least squares also called ordinary least squares (OLS)

n
1 T2
min — ) (yi—w'x;).
weRd N =

T(w)

» Statistics later...

> ...now computations.
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Matrices and linear systems

Let X e R" and Y € R". Then

n
2N -T2 = [V X
i=1

This is the least squares problem associated to the linear system
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Overdetermined lin. syst.

n>d

w st Xw=Y
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Least squares solutions

From the optimality conditions
lyy= < |2
Vo= [Y-Xw| =0
n
we can derive the normal equation

XXw=XTY o  w=(XTX)XTY.
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Underdetermined lin. syst.

n<d

AW st Xw=Y

possibly not unique...
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Minimal norm solution

There can be many solutions

—

X’VV:’Y\, and ’)?WOZO :)Y(W—F Wo):?

Consider

min [lwl|?, subj. to Xw=Y.
welRd

Using the method of Lagrange multipliers, the solution is

w=XT(XXT)1Y.
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Pseudoinverse

—~

w=xy

For n > d, (independent columns)

Rt = (RTR)IXT.

For n < d, (independent rows)

Xt = XT(RXT)
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Spectral view

Consider the SVD of X

X=USVT o Xw= Zsj(vj-'—w)uj,

here r < n Adistherank of X.

Then,

wh =Xty = —(uY)y;.
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Pseudoinverse and bias

— oo 1 =

wh =Xy = Z—(UJ»TY)Vj.
(vj); are principal components of X: OLS “likes” principal
components.
Not all linear functions are the same for OLS!

The pseudoinverse introduces a bias towards certain solutions.
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From OLS to ridge regression

Recall, it also holds,

X = lim XTX+ANXT = lim XT(XXT+ A7
A—0, A—04

Consider for A >0,

W= (XTX 4+ ANIXTY.

This is called ridge regression.
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Spectral view on ridge regression

W= (XTX+ANIXTY

Considering the SVD of 5(\,

r

s; —~
wh = Z ] (ujT Y)v;.

j=1 S‘j2 +4
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Ridge regression as filtering

2
j=1 S +A
The function s
F(s)=———7,
(s) s24+ A

acts as a low pass filter (low frequencies= principal components).

> For s small, F(s) =~ 1/A.
> For s big, F(s) ~ 1/s.
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Ridge regression as ERM

W= (XTX+ANIXTY

is the solution of 2
min ”Y—Xw” +/\||W||2-
weRd

La(w)

It follows from,

_ 2~ = loro 2 1o
ALy(w) ===XT(Y=Xw)+ 2w = 2(=X X + A)w - =XTY.
n n n
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Ridge regression as ERM

ERM interpretation suggests the rescaling
W =(XTX+nA)IXTY
since

min — [V = Xw|[” + Allwli?.
weRd N

La(w)

L.Rosasco, 9.520/6.860 2018



Related ideas

Tikhonov 1
min — ”?—YW“Z + Allwl?
weRd N
Morozov 1
min ||w||? subj. to — H?—YW”Z <6
welRd n
lvanov
min Z[[V-Xw|?,  subito WP <R

welRd N
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Ridge regression and SRM

The constraint
Iwll® <R

» restricts the search of solution,

» shrinks the solution coefficients.
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Different views on regularization

w=xY Wy = (XTX+ANIXTY
1 n
min__[lw]]® min =} (y;—w )%+ A[lw]®
weRY s.t. Xw=Y weRd N

» Introduces a bias towards certain solutions: small
norm/principal components,

» controls the stability of the solution .
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Complexity of ridge regression

Back to computations.

Solving s L
W= (XTX+AI)IXTY
requires essentially (using a direct solver)
> time O(nD? 4 D3),
» memory O(nd V D?).

Whatif n < D?
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Representer theorem in disguise

A simple observation
Using SVD we can see that

XTX 4+ ANIXT =XT(XXT 4+ A
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More on complexity

Then L .
W =XT(XXT +A1)7LY.

requires essentially (using a direct solver)
> time O(n?D +n3),
» memory O(nd V n?).
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Representer theorem

Note that

n
VV\A :5<\T (WT +/\l)_1/Y\: XiCj.
celR"

The coefficients vector is a linear combination of the input points.

Then

n
) =x"Tw'=xTXTc= ZXTX,C,
i=1

The function we obtain is a linear combination of inner products.
This will be the key to nonparametric learning.
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Summing up

» From OLS to ridge regression
> Different views: (spectral) filtering and ERM
» Regularization and bias.

TBD
» Beyond linear models.
» Optimization.

» Model selection.
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