MIT 9.520/6.860, Fall 2018
 Statistical Learning Theory and Applications

Class 03: Regularized Least Squares

Lorenzo Rosasco

Learning problem and algorithms

Solve

$$
\min _{f \in \mathcal{F}} L(f), \quad L(f)=\mathbb{E}_{(x, y) \sim \sim}[\ell(y, f(x))],
$$

given only

$$
S_{n}=\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \sim P^{n} .
$$

Learning algorithm

$$
S_{n} \rightarrow \widehat{f}=\widehat{f}_{S_{n}},
$$

\widehat{f} estimates f_{P} given the observed examples S_{n}.

Learning problem and algorithms

Solve

$$
\min _{f \in \mathcal{F}} L(f), \quad L(f)=\mathbb{E}_{(x, y) \sim \sim}[\ell(y, f(x))],
$$

given only

$$
S_{n}=\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \sim P^{n} .
$$

Learning algorithm

$$
S_{n} \rightarrow \widehat{f}=\widehat{f}_{S_{n}},
$$

\widehat{f} estimates f_{P} given the observed examples S_{n}.

How can we design a learning algorithm?

Algorithm design: complexity and regularization

The design of most algorithms proceed as follows:

- Pick a (possibly large) class of function \mathcal{H}, ideally

$$
\min _{f \in \mathcal{H}} L(f)=\min _{f \in \mathcal{F}} L(f) .
$$

- Define a procedure $A_{\gamma}\left(S_{n}\right)=\hat{f}_{\gamma} \in \mathcal{H}$ to explore the space \mathcal{H}.

Empirical risk minimization

A classical example (called M-estimation in statistics).

Consider $\left(\mathcal{H}_{\gamma}\right)_{\gamma}$ such that

$$
\mathcal{H}_{1} \subset \mathcal{H}_{2}, \ldots \mathcal{H}_{\gamma} \subset \ldots \mathcal{H}
$$

Then, let

$$
\hat{f}_{\gamma}=\min _{f \in \mathcal{H}_{\gamma}} \widehat{L}(f), \quad \widehat{L}(f)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right) .
$$

This is the idea we discuss next.

Linear functions

Let \mathcal{H} be the space of linear functions

$$
f(x)=w^{\top} x
$$

Then,

- $f \leftrightarrow w$ is one to one,
- inner product $\langle f, \bar{f}\rangle_{\mathcal{H}}:=w^{\top} \bar{w}$,
- norm/metric $\|f-\bar{f}\|_{\mathcal{H}}:=\|w-\bar{w}\|$.

Linear functions are the conceptual building block of most functions.

Linear least squares

ERM with least squares also called ordinary least squares (OLS)

$$
\min _{w \in \mathbb{R}^{d}} \underbrace{\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w^{\top} x_{i}\right)^{2}}_{\widehat{L}(w)} .
$$

- Statistics later...
- ...now computations.

Matrices and linear systems

Let $\widehat{X} \in \mathbb{R}^{n d}$ and $\widehat{Y} \in \mathbb{R}^{n}$. Then

$$
\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w^{\top} x_{i}\right)^{2}=\frac{1}{n}\|\widehat{Y}-\widehat{X} w\|^{2}
$$

This is the least squares problem associated to the linear system

$$
\widehat{X} w=\widehat{Y}
$$

Overdetermined lin. syst.

$$
n>d
$$

$\nexists \widehat{w}$ s.t. $\widehat{X} w=\widehat{Y}$

Least squares solutions

From the optimality conditions

$$
\nabla_{w} \frac{1}{n}\|\widehat{Y}-\widehat{X} w\|^{2}=0
$$

we can derive the normal equation

$$
\widehat{X}^{\top} \widehat{X} w=\widehat{X}^{\top} \widehat{Y} \quad \Leftrightarrow \quad \widehat{w}=\left(\widehat{X}^{\top} \widehat{X}\right)^{-1} \widehat{X}^{\top} \widehat{Y}
$$

Underdetermined lin. syst.

$$
n<d
$$

$$
\exists \widehat{w} \quad \text { s.t. } \quad \widehat{X} w=\widehat{Y}
$$

possibly not unique...

Minimal norm solution

There can be many solutions

$$
\widehat{X} \widehat{w}=\widehat{Y}, \quad \text { and } \quad \widehat{X} w_{0}=0 \Rightarrow \widehat{X}\left(\widehat{w}+w_{0}\right)=\widehat{Y} .
$$

Consider

$$
\min _{w \in \mathbb{R}^{d}}\|w\|^{2}, \quad \text { subj. to } \quad \widehat{X} w=\widehat{Y} .
$$

Using the method of Lagrange multipliers, the solution is

$$
\widehat{w}=\widehat{X}^{\top}\left(\widehat{X X} \widehat{X}^{\top}\right)^{-1} \widehat{Y} .
$$

Pseudoinverse

$$
\widehat{w}=\widehat{X}^{\dagger} \widehat{Y}
$$

For $n>d$, (independent columns)

$$
\widehat{X}^{+}=\left(\widehat{X}^{\top} \widehat{X}\right)^{-1} \widehat{X}^{\top} .
$$

For $n<d$, (independent rows)

$$
\widehat{X}^{\dagger}=\widehat{X}^{\top}\left(\widehat{X} \widehat{X}^{\top}\right)^{-1}
$$

Spectral view

Consider the SVD of \widehat{X}

$$
\widehat{X}=U S V^{\top} \quad \Leftrightarrow \quad \widehat{X} w=\sum_{j=1}^{r} s_{j}\left(v_{j}^{\top} w\right) u_{j},
$$

here $r \leq n \wedge d$ is the rank of \widehat{X}.

Then,

$$
\widehat{w}^{\dagger}=\widehat{X}^{\dagger} \widehat{Y}=\sum_{j=1}^{r} \frac{1}{s_{j}}\left(u_{j}^{\top} \widehat{Y}\right) v_{j} .
$$

Pseudoinverse and bias

$$
\widehat{w}^{+}=\widehat{X}^{+} \widehat{Y}=\sum_{j=1}^{r} \frac{1}{s_{j}}\left(u_{j}^{\top} \widehat{Y}\right) v_{j} .
$$

$\left(v_{j}\right)_{j}$ are principal components of \widehat{X} : OLS "likes" principal components.

Not all linear functions are the same for OLS!

The pseudoinverse introduces a bias towards certain solutions.

From OLS to ridge regression

Recall, it also holds,

$$
\widehat{X}^{+}=\lim _{\lambda \rightarrow 0_{+}}\left(\widehat{X}^{\top} \widehat{X}+\lambda I\right)^{-1} \widehat{X}^{\top}=\lim _{\lambda \rightarrow 0_{+}} \widehat{X}^{\top}\left(\widehat{X} \widehat{X}^{\top}+\lambda \prime\right)^{-1} .
$$

Consider for $\lambda>0$,

$$
\widehat{w}^{\lambda}=\left(\widehat{X}^{\top} \widehat{X}+\lambda I\right)^{-1} \widehat{X}^{\top} \widehat{Y} .
$$

This is called ridge regression.

Spectral view on ridge regression

$$
\widehat{w}^{\lambda}=\left(\widehat{X}^{\top} \widehat{X}+\lambda I\right)^{-1} \widehat{X}^{\top} \widehat{Y}
$$

Considering the SVD of \widehat{X},

$$
\widehat{w}^{\lambda}=\sum_{j=1}^{r} \frac{s_{j}}{s_{j}^{2}+\lambda}\left(u_{j}^{\top} \widehat{Y}\right) v_{j}
$$

Ridge regression as filtering

$$
\widehat{w}^{\lambda}=\sum_{j=1}^{r} \frac{s_{j}}{s_{j}^{2}+\lambda}\left(u_{j}^{\top} \widehat{Y}\right) v_{j}
$$

The function

$$
F(s)=\frac{s}{s^{2}+\lambda},
$$

acts as a low pass filter (low frequencies= principal components).

- For s small, $F(s) \approx 1 / \lambda$.
- For $s \operatorname{big}, F(s) \approx 1 / s$.

Ridge regression as ERM

$$
\widehat{w}^{\lambda}=\left(\widehat{X}^{\top} \widehat{X}+\lambda I\right)^{-1} \widehat{X}^{\top} \widehat{Y}
$$

is the solution of

$$
\min _{w \in \mathbb{R}^{d}} \underbrace{\|\widehat{Y}-\widehat{X} w\|^{2}+\lambda\|w\|^{2}}_{\widehat{L}_{\lambda}(w)}
$$

It follows from,

$$
\Delta \widehat{L}_{\lambda}(w)=-\frac{2}{n} \widehat{X}^{\top}(\widehat{Y}-\widehat{X} w)+2 \lambda w=2\left(\frac{1}{n} \widehat{X}^{\top} \widehat{X}+\lambda I\right) w-\frac{2}{n} \widehat{X}^{\top} \widehat{Y} .
$$

Ridge regression as ERM

ERM interpretation suggests the rescaling

$$
\widehat{w}^{\lambda}=\left(\widehat{X}^{\top} \widehat{X}+n \lambda l\right)^{-1} \widehat{X}^{\top} \widehat{Y}
$$

since

$$
\min _{w \in \mathbb{R}^{d}} \underbrace{\frac{1}{n}\|\widehat{Y}-\widehat{X} w\|^{2}+\lambda\|w\|^{2}}_{\widehat{L}_{\lambda}(w)} .
$$

Related ideas

Tikhonov

$$
\min _{w \in \mathbb{R}^{d}} \frac{1}{n}\|\widehat{Y}-\widehat{X} w\|^{2}+\lambda\|w\|^{2}
$$

Morozov

$$
\min _{w \in \mathbb{R}^{d}}\|w\|^{2} \quad \text { subj. to } \quad \frac{1}{n}\|\widehat{Y}-\widehat{X} w\|^{2} \leq \delta
$$

Ivanov

$$
\min _{w \in \mathbb{R}^{d}} \frac{1}{n}\|\widehat{Y}-\widehat{X} w\|^{2}, \quad \text { subj. to } \quad\|w\|^{2} \leq R
$$

Ridge regression and SRM

The constraint

$$
\|w\|^{2} \leq R
$$

- restricts the search of solution,
- shrinks the solution coefficients.

Different views on regularization

$$
\begin{array}{cc}
\widehat{w}=\widehat{X}^{\dagger} \widehat{Y} & \widehat{w}_{\lambda}=\left(\widehat{X}^{\top} \widehat{X}+\lambda I\right)^{-1} \widehat{X}^{\top} \widehat{Y} \\
\min _{w \in \mathbb{R}^{d} \text { s.t. } \widehat{X} w=\widehat{Y}}\|w\|^{2} & \min _{w \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w^{\top} x_{i}\right)^{2}+\lambda\|w\|^{2}
\end{array}
$$

- Introduces a bias towards certain solutions: small norm/principal components,
- controls the stability of the solution .

Complexity of ridge regression

Back to computations.

Solving

$$
\widehat{w}^{\lambda}=\left(\widehat{X}^{\top} \widehat{X}+\lambda I\right)^{-1} \widehat{X}^{\top} \widehat{Y}
$$

requires essentially (using a direct solver)
\rightarrow time $O\left(n D^{2}+D^{3}\right)$,
\checkmark memory $O\left(n d \vee D^{2}\right)$.

What if $n \ll D$?

Representer theorem in disguise

A simple observation
Using SVD we can see that

$$
\left(\widehat{X}^{\top} \widehat{X}+\lambda I\right)^{-1} \widehat{X}^{\top}=\widehat{X}^{\top}\left(\widehat{X X}^{\top}+\lambda I\right)^{-1}
$$

More on complexity

Then

$$
\widehat{w}^{\lambda}=\widehat{X}^{\top}\left(\widehat{X X} \widehat{X}^{\top}+\lambda l\right)^{-1} \widehat{Y} .
$$

requires essentially (using a direct solver)

- time $O\left(n^{2} D+n^{3}\right)$,
- memory $O\left(n d \vee n^{2}\right)$.

Representer theorem

Note that

$$
\widehat{w}^{\lambda}=\widehat{X}^{\top} \underbrace{\left(\widehat{X X}^{\top}+\lambda I\right)^{-1} \widehat{Y}}_{c \in \mathbb{R}^{n}}=\sum_{i=1}^{n} x_{i} c_{i}
$$

The coefficients vector is a linear combination of the input points.

Then

$$
\hat{f}^{\lambda}(x)=x^{\top} \widehat{w}^{\lambda}=x^{\top} \widehat{X}^{\top} c=\sum_{i=1}^{n} x^{\top} x_{i} c_{i}
$$

The function we obtain is a linear combination of inner products.

This will be the key to nonparametric learning.

Summing up

- From OLS to ridge regression
- Different views: (spectral) filtering and ERM
- Regularization and bias.

TBD

- Beyond linear models.
- Optimization.
- Model selection.

