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Linear functions

Let H,;, be the space of linear functions

f(x)=w'x.

> f < wisonetoone,

> inner product <f, ?)H =w'w,

» norm/metric Hf— ?“H =|lw—-w]||.
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An observation

Function norm controls point-wise convergence.

Since B
[FO) = FO < IxIlllw—w]|,  ¥YxeX

then

W;

= w = f(x) = f(x), Vx e X.

J
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ERM

n

1
min = Y (y;—w'x;)% + Allw|?, A>0
welRd N =

» )1 — 0 ordinary least squares (bias to minimal norm),

» 1> 0ridge regression (stable).
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Computations

Let Xn e R"¥ and Y € R".

The ridge regression solution is

Wt = (XnTXn+nA)"IXnTY time O(nd’vd3®) mem. O(ndvd?

but also

Wt = XnT(XnXnT+nAl)7YY time O(dn®vn3) mem. O(ndvn?)
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Representer theorem in disguise

We noted that

n n

wr=XnTc= Zx,ci S (x) = ZxTxici,

i=1 i=1

c=(XnXnT +nAN7Y, (XnXnT); = x" x;.
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Limits of linear functions

Regression

] —a -2 ()] 2 4 3
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Nonlinear functions

Two main possibilities:

f(x) = w'd(x), f(x) =P(w'x)

where @ is a non linear map.

» The former choice leads to linear spaces of functions!.

» The latter choice can be iterated

f(x) =D(w/ D(w,_;...0(w] x))).

1The spaces are linear, NOT the functions! LRosasco, 9.520/6.860 2018



Features and feature maps

f(x)=w'd(x),
where @ : X — RP

D(x) = (@r(x)-- pp(x))

andg;: X >R, forj=1,...,p.

> X need not be R9.

» We can also write

Fx) =) wej(x).
i=1
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Geometric view

f(x) = w'd(x)

Input Space Feature Space
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An example

d:R?— R?

(z1,T2) = (21, 22, 23) 1= (T}, /22122, 73)
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More examples

The equation

p
fx) = wT@(x) =) we(x)
i=1

suggests to think of features as some form of basis.

Indeed we can consider
» Fourier basis,
» wave-lets + their variations,
> ...
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And even more examples

Any set of functions
@i X >R, ji=1...,p

can be considered.

Feature design/engineering

» vision: SIFT, HOG
» audio: MFCC
> ..
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Nonlinear functions using features

Let Hg be the space of linear functions

> f < wisone toone, if (¢;); are lin. indip.
» inner product <f, ?)H =w'w,
D

> norm/metric Hf— r_‘”Hq> =|lw—w|.

In this case

() = FO < NP )IIw—wll,  YxeX.
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Back to ERM

n

1 . 5 5
min ~ ) (i=w O0)? AW, A=0,
i=

Equivalent to,

n

1 5 5
o 1(yf—f(xf)) +AIA,,  Az0.
£
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Computations using features

Let ® € R™ with

(@) = pi(xi)

The ridge regression solution is

Wt =(@TD+nA) DY time O(np?vp3) mem. O(npvp?),

but also

W =0T (DD T+nAN)LY time O(pn®vn3) mem. O(npvn?).
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Representer theorem a little less in disguise

Analogously to before

W =0Tc= icp(x,.)c,. s )= Z@(X)an(x,)c,.
i=1 i

c=(DPDT + ALY, (@DT); =D(x;) P (x)
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Unleash the features

» Can we consider linearly dependent features?

» Can we consider p = c0?
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An observation

For X =R consider

— 51 e X
#() QR (J_

with @1 (x) = 1.

Then

j;so,-(x)cp,-(x) ) N e ((fyl). Wl

—.

_ _xzyi(Zy)j‘l

j=1
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From features to kernels

) TO(X) = ) ¢;(x);(%) = k(x,%)
j=1

J

We might be able to compute the series in closed form.

The function k is called kernel.

Can we run ridge regression ?
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Kernel ridge regression

We have

k(xx)ci

-
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c= R+, (R)y =0(x) () = k(%)

K is the kernel matrix, the Gram (inner products) matrix of the data.

“The kernel trick”
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Kernels

» Can we start from kernels instead of features?

» Which functions k : X x X — IR define kernels we can use?

L.Rosasco, 9.520/6.860 2018



Positive definite kernels

A function k : X x X — R is called positive definite:

> if the matrix K is positive semidefinite for all choice of points

X1yeerXp, 1€,
a'Ka>0, VaeR".

» Equivalently
n

Z k(X,’,Xj)aiaj > O,

ij=1

for any ai,...,an €R, x1,...,x, € X.
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Inner product kernels are pos. def.

Assume @ : X > RP, p < 0o and

Note that

E k(xi,x;)ajaj = > @x, D(x;)a;a; =
ij=1

Clearly k is symmetric.

n

Z(D(Xi)ai

i=1

2
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But there are many pos. def. kernels

Classic examples
> linear k(x,x) = x"x
> polynomial k(x,x) =(x"x+1)°
> Gaussian k(x,X) = P i
But one can consider
> kernels on probability distributions
kernels on strings
kernels on functions

>
>
> kernels on groups
> kernels graphs

>

It is natural to think of a kernel as a measure of similarity.
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From pos. def. kernels to functions

Let X be any set/ Given a pos. def. kernel k.

> consider the space H, of functions

N

fx) =) k(ox)a

i=1

forany ay,...,a, €R, x1,...,x, € Xandany N € IN.

» Define an inner product on H

> H, can be completed to a Hilbert space.
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A key result

Functions defind by Gaussian kernels with large and small widths.
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An illustration

Theorem
Given a pos. def. k there exists  s.t. k(x,x) = (P(x), ®(X)), and

Ho = Hy

Roughly speaking

N
)=wid(x) = f(x)=) k(xx)a
i=1
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From features and kernels to RKHS and beyond

H, and Hg have many properties, characterizations, connections:

reproducing property

reproducing kernel Hilbert spaces (RKHS)

>
>
> Mercer theorem (Kar hunen Loéve expansion)
» Gaussian processes

>

Cameron-Martin spaces
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Reproducing property

Note that by definition of H
> k, =k(x,)is a function in H
> Forall feHy, xeX
f(x) = (f k),

called the reproducing property

» Note that

IFG) = O < klly [[F =7, - YxeX.

The above observations have a converse.
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RKHS

Definition
A RKHS H is a Hilbert with a function k : X x X = R s.t.
> ky= k(X,') € Hy,
> and
f(X) ={f, kx)Hk :

Theorem
If H is a RKHS then k is pos. def.
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Evaluation functionals in a RKHS

If H is a RKHS then the evaluation functionals
are continuous. i.e.

|ex(f)—ex(?)|$”f—?”Hk, ¥xeX

since
ex(f) = <f, kX)Hk .

Note that L?(IRY) or C(IR) don’t have this property!
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Alternative RKHS definition

Turns out the previous property also characterizes a RKHS.

Theorem
A Hilbert space with continuous evaluation functionals is a RKHS.
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Summing up

» From linear to non linear functions
> using features

> using kernels

plus
> pos. def. functions
» reproducing property
> RKHS
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