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Linear functions

LetHlin be the space of linear functions

f(x) = w>x .

I f ↔ w is one to one,
I inner product

〈
f , f̄

〉
H

:= w>w̄ ,

I norm/metric
∥∥∥f − f̄∥∥∥H := ‖w − w̄‖.
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An observation

Function norm controls point-wise convergence.

Since
|f(x)− f̄(x)| ≤ ‖x‖‖w − w̄‖ , ∀x ∈ X

then
wj → w ⇒ fj (x)→ f(x), ∀x ∈ X .
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ERM

min
w∈Rd

1
n

n∑
i=1

(yi −w>xi )2 +λ‖w‖2 , λ ≥ 0

I λ→ 0 ordinary least squares (bias to minimal norm),
I λ > 0 ridge regression (stable).
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Computations

Let Xn ∈Rnd and Ŷ ∈Rn .

The ridge regression solution is

ŵλ = (Xn>Xn+nλI)−1Xn>Ŷ time O(nd2∨d3) mem. O(nd∨d2),

but also

ŵλ = Xn>(XnXn>+nλI)−1Ŷ time O(dn2∨n3) mem. O(nd∨n2).
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Representer theorem in disguise

We noted that

ŵλ = Xn>c =
n∑

i=1

xici ⇔ f̂λ(x) =
n∑

i=1

x>xici ,

c = (XnXn>+nλI)−1Ŷ , (XnXn>)ij = x>i xj .
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Limits of linear functions

Regression
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Limits of linear functions

Classification
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Nonlinear functions

Two main possibilities:

f(x) = w>Φ(x), f(x) = Φ(w>x)

where Φ is a non linear map.

I The former choice leads to linear spaces of functions1.
I The latter choice can be iterated

f(x) = Φ(w>L Φ(w>L−1 . . .Φ(w>1 x))).

1The spaces are linear, NOT the functions! L.Rosasco, 9.520/6.860 2018



Features and feature maps

f(x) = w>Φ(x),

where Φ : X →R
p

Φ(x) = (ϕ1(x), . . . ,ϕp(x))>

and ϕj : X →R, for j = 1, . . . ,p .

I X need not be R
d .

I We can also write

f(x) =

p∑
i=1

w jϕj (x).
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Geometric view

f(x) = w>Φ(x)
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An example
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More examples

The equation

f(x) = w>Φ(x) =

p∑
i=1

w jϕj (x)

suggests to think of features as some form of basis.

Indeed we can consider
I Fourier basis,
I wave-lets + their variations,
I . . .
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And even more examples

Any set of functions

ϕj : X →R, j = 1, . . . ,p

can be considered.

Feature design/engineering

I vision: SIFT, HOG
I audio: MFCC
I . . .
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Nonlinear functions using features

LetHΦ be the space of linear functions

f(x) = w>Φ(x).

I f ↔ w is one to one, if (ϕj )j are lin. indip.

I inner product
〈
f , f̄

〉
HΦ

:= w>w̄ ,

I norm/metric
∥∥∥f − f̄∥∥∥HΦ

:= ‖w − w̄‖.

In this case

|f(x)− f̄(x)| ≤ ‖Φ(x)‖‖w − w̄‖ , ∀x ∈ X .
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Back to ERM

min
w∈Rp

1
n

n∑
i=1

(yi −w>Φ(xi ))2 +λ‖w‖2 , λ ≥ 0,

Equivalent to,

min
f∈HΦ

1
n

n∑
i=1

(yi − f(xi ))2 +λ‖f‖2HΦ
, λ ≥ 0.
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Computations using features

Let Φ̂ ∈Rnp with
(Φ̂)ij = ϕj (xi )

The ridge regression solution is

ŵλ = (Φ̂>Φ̂+nλI)−1Φ̂>Ŷ time O(np2∨p3) mem. O(np∨p2),

but also

ŵλ = Φ̂>(Φ̂Φ̂>+nλI)−1Ŷ time O(pn2∨n3) mem. O(np∨n2).
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Representer theorem a little less in disguise

Analogously to before

ŵλ = Φ̂>c =
n∑

i=1

Φ(xi )ci ⇔ f̂λ(x) =
n∑

i=1

Φ(x)>Φ(xi )ci

c = (Φ̂Φ̂>+λI)−1Ŷ , (Φ̂Φ̂>)ij = Φ(xi )
>Φ(xj )

Φ(x)>Φ(x̄) =

p∑
s=1

ϕs(x)ϕs(x̄).
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Unleash the features

I Can we consider linearly dependent features?

I Can we consider p =∞?
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An observation

For X = R consider

ϕj (x) = x j−1e−x
2γ

√
(2γ)(j−1)

(j −1)!
, j = 2, . . . ,∞

with ϕ1(x) = 1.

Then

∞∑
j=1

ϕj (x)ϕj (x̄) =
∞∑
j=1

x j−1e−x
2γ

√
(2γ)j−1

(j −1)!
x̄ j−1e−x̄

2γ

√
(2γ)j−1

(j −1)!

= e−x
2γe−x̄

2γ
∞∑
j=1

(2γ)j−1

(j −1)!
(xx̄)j−1 = e−x

2γe−x̄
2γe2xx̄2γ

= e−|x−x̄ |
2γ
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From features to kernels

Φ(x)>Φ(x̄) =
∞∑
j=1

ϕj (x)ϕj (x̄) = k(x , x̄)

We might be able to compute the series in closed form.

The function k is called kernel.

Can we run ridge regression ?
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Kernel ridge regression

We have

f̂λ(x) =
n∑

i=1

Φ(x)>Φ(xi )ci =
n∑

i=1

k(x ,xi )ci

c = (K̂ +λI)−1Ŷ , (K̂)ij = Φ(xi )
>Φ(xj ) = k(xi ,xj )

K̂ is the kernel matrix, the Gram (inner products) matrix of the data.

“The kernel trick”
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Kernels

I Can we start from kernels instead of features?

I Which functions k : X ×X →R define kernels we can use?
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Positive definite kernels

A function k : X ×X →R is called positive definite:

I if the matrix K̂ is positive semidefinite for all choice of points
x1, . . . ,xn , i.e.

a>K̂a ≥ 0, ∀a ∈Rn .

I Equivalently
n∑

i ,j=1

k(xi ,xj )aiaj ≥ 0,

for any a1, . . . ,an ∈R, x1, . . . ,xn ∈ X .
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Inner product kernels are pos. def.

Assume Φ : X →R
p , p ≤∞ and

k(x , x̄) = Φ(x)>Φ(x̄)

Note that

n∑
i ,j=1

k(xi ,xj )aiaj =
n∑

i ,j=1

Φ(xi )
>Φ(xj )aiaj =

∥∥∥∥∥∥∥
n∑

i=1

Φ(xi )ai

∥∥∥∥∥∥∥
2

.

Clearly k is symmetric.
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But there are many pos. def. kernels

Classic examples
I linear k(x , x̄) = x>x̄
I polynomial k(x , x̄) = (x>x̄ + 1)s

I Gaussian k(x , x̄) = e−‖x−x̄‖
2γ

But one can consider
I kernels on probability distributions
I kernels on strings
I kernels on functions
I kernels on groups
I kernels graphs
I ...

It is natural to think of a kernel as a measure of similarity.
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From pos. def. kernels to functions

Let X be any set/ Given a pos. def. kernel k .
I consider the spaceHk of functions

f(x) =
N∑
i=1

k(x ,xi )ai

for any a1, . . . ,an ∈R, x1, . . . ,xn ∈ X and any N ∈N.

I Define an inner product onHk

〈
f , f̄

〉
Hk

=
N∑
i=1

N̄∑
j=1

k(xi , x̄j )ai āj .

I Hk can be completed to a Hilbert space.
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A key result

Functions defind by Gaussian kernels with large and small widths.
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An illustration

Theorem
Given a pos. def. k there exists Φ s.t. k(x , x̄) = 〈Φ(x),Φ(x̄)〉Hk

and

HΦ 'Hk

Roughly speaking

f(x) = w>Φ(x) ' f(x) =
N∑
i=1

k(x ,xi )ai
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From features and kernels to RKHS and beyond

Hk andHΦ have many properties, characterizations, connections:

I reproducing property
I reproducing kernel Hilbert spaces (RKHS)
I Mercer theorem (Kar hunen Loéve expansion)
I Gaussian processes
I Cameron-Martin spaces
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Reproducing property

Note that by definition ofHk

I kx = k(x , ·) is a function inHk

I For all f ∈ Hk , x ∈ X
f(x) = 〈f ,kx〉Hk

called the reproducing property

I Note that

|f(x)− f̄(x)| ≤ ‖kx‖Hk

∥∥∥f − f̄∥∥∥Hk
, ∀x ∈ X .

The above observations have a converse.
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RKHS

Definition
A RKHSH is a Hilbert with a function k : X ×X →R s.t.
I kx = k(x , ·) ∈ Hk ,
I and

f(x) = 〈f ,kx〉Hk
.

Theorem
IfH is a RKHS then k is pos. def.
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Evaluation functionals in a RKHS

IfH is a RKHS then the evaluation functionals

ex(f) = f(x)

are continuous. i.e.

|ex(f)− ex(f̄)| .
∥∥∥f − f̄∥∥∥Hk

, ∀x ∈ X

since
ex(f) = 〈f ,kx〉Hk

.

Note that L2(Rd ) or C(Rd ) don’t have this property!
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Alternative RKHS definition

Turns out the previous property also characterizes a RKHS.

Theorem
A Hilbert space with continuous evaluation functionals is a RKHS.
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Summing up

I From linear to non linear functions
I using features
I using kernels

plus
I pos. def. functions
I reproducing property
I RKHS
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