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Last class

Non linear functions using

I features
f(x) = w>x 7→ f(x) = w>x ,

I kernels

f(x) = w>x 7→ f(x) =
N∑
i=1

k(x ,xi )ci .
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More precisely

I A feature map Φ defines the spaceHΦ of functions

f(x) = w>x ,

and k(x , x̄) := Φ(x)Φ(x̄), is pos. def.
I A pos. def. kernels k defines spaceHk of functions

f(x) =
N∑
i=1

k(x ,xi )ci .

with the reproducing property

f(x) = 〈f ,k(x , ·)〉Hk

I For every k there is a1 Φ such that

k(x , x̄) = Φ(x)Φ(x̄),

and
Hk 'HΦ .

1Indeed, infinitely many. L.Rosasco, 9.520/6.860 2018



Today

Beyond least squares

(y − f(x))2 7→ `(y , f(x)).

Today
I Logistic loss.
I Hinge loss.
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ERM and penalization

min
w∈Rd

1
n

n∑
i=1

`(yi ,w
>xi ) +λ‖w‖2 , λ ≥ 0.

I Logistic loss 7→ logistic regression.
I Hinge 7→ SVM.

Non linear extensions via features/kernels.
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From regularization to optimization

Problem Solve
min
w∈Rd

L̂(w) +λ‖w‖2

where

L̂(w) =
1
n

n∑
i=1

`(yi ,w
>xi ).
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Minimization

Assume ` convex and continuous, let

L̂λ(w) = L̂(w) + λ‖w‖2.

I Coercive2, strongly convex functional
⇒ a minimizer exists and is unique.

I Computations depends on the considered loss.

2lim‖w‖→∞ L̂λ(w) =∞. L.Rosasco, 9.520/6.860 2018



Logistic regression

L̂λ(w) =
1
n

n∑
i=1

log(1 + e−yiw
>xi ) +λ‖w‖2.

I L̂λ is smooth

∇L̂λ(w) = −1
n

n∑
i=1

xiyi
1 + eyiw>xi

+ 2λw .

I Optimality condition gives a nonlinear equation

∇L̂λ(w) = 0,

so we use gradient methods.
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Gradient descent

Let F : Rd →R differentiable, (strictly) convex and such that

‖∇F(w)−∇F(w ′)‖ ≤ B‖w −w ′‖

(e.g. supw ‖H(w)︸︷︷︸
hessian

‖ ≤ B )

Then

w0 = 0, wt+1 = wt −
1
B
∇F(wt ),

converges to the minimizer of F .
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Gradient descent for logistic regression

min
w∈Rd

1
n

n∑
i=1

log(1 + e−yiw
>xi ) +λ‖w‖2

Consider

wt+1 = wt −
1
B

−1
n

n∑
i=1

xiyi
1 + eyiw

>
t xi

+ 2λwt

 .

Complexity
Time: O(ndT) for n examples, d dimension, T steps.
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Non-linear features

f(x) = w>x 7→ f(x) = w>Φ(x),

Φ(x) = (φ1(x), . . . ,φp(x)).
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Gradient descent for non linear logistic regression

min
w∈Rp

1
n

n∑
i=1

log(1 + e−yiw
>Φ(xi )) +λ‖w‖2

Consider

wt+1 = wt −
1
B

−1
n

n∑
i=1

Φ(xi )yi
1 + eyiw

>
t Φ(xi )

+ 2λwt

 .
Complexity
Time O(npT) for n examples, p features, T steps.

What about kernels?
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Representer theorem for logistic regression?

As for least squares,
Show that w =

∑n
i=1 xici . i.e.

f(x) = w>x =
n∑

i=1

x>i xci , ci ∈R.

Compute c = (c1, . . . ,cn) ∈Rn rather than w ∈Rd .
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Representer theorem for GD & logistic regression

By induction

ct+1 = ct −
1
B

−1
n

n∑
i=1

eiyi
1 + eyi ft (xi )

+ 2λct


with ei the i-th element of the canonical basis and

ft (x) =
n∑

i=1

x>xi (ct )i
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Proof of the representer theorem for GD & logistic

regression

Assume

wt =
n∑

i=1

xi (ct )i

wt+1 = wt −
1
B

−1
n

n∑
i=1

xiyi
1 + eyiw

>
t xi

+ 2λwt


=

n∑
i=1

xi (ct )i −
1
B

−1
n

n∑
i=1

xi
yi

1 + eyi (
∑n

j=1 xj (ct )j )
>xi

+ 2λ(
n∑

i=1

xi (ct )i )


=

n∑
i=1

xi

[
(ct )i −

1
B

(
−1
n

yi

1 + eyi (
∑n

j=1 xj (ct )j )
>xi

+ 2λ(ct )i

)]
.

Then

wt+1 =
n∑

i=1

xi (ct+1)i
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Kernel logistic regression

Given a pos. def. kernel, consider

ct+1 = ct −
1
B

−1
n

n∑
i=1

eiyi
1 + eyi ft (xi )

+ 2λct


with ei the i-th element of the canonical basis and

ft (x) =
n∑

i=1

k(x ,xi )(ct )i

Complexity
Time: O(n2(Ck +T)) for n examples, Ck kernel evaluation, T steps.
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Hinge loss and support vector machines

L̂λ(w) =
1
n

n∑
i=1

|1− yiw>xi |+ + λ‖w‖2︸                                ︷︷                                ︸
non-smooth & strongly-convex

Consider “left” derivative

wt+1 = wt −
1

B
√
t

1
n

n∑
i=1

Si (wt ) + 2λwt


Si (w) =

−yixi if yiw>xi ≤ 1
0 otherwise

, B = sup
x∈X
‖x‖+ 2λ.

B
√
t is a bound on the subgradient.

L.Rosasco, 9.520/6.860 2018



Subgradient

Let F : Rp →R convex,
Subgradient
∂F(w0) set of vectors v ∈Rp such that, for every w ∈Rp

F(w)− F(w0) ≥ (w −w0)>v

In one dimension ∂F(w0) = [F ′−(w0),F ′+(w0)].
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Subgradient method

Let F : Rp →R convex, with subdifferential bounded by B , and
γt = 1

B
√
t

then,
wt+1 = wt −γtvt

with vt ∈ ∂F(wt ) converges to the minimizer of F .

Note: it is not a descent method.
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Subgradient method for SVM

min
w∈Rp

1
n

n∑
i=1

|1− yiw>xi |+ + λ‖w‖2

Consider

wt+1 = wt −
1

B
√
t

1
n

n∑
i=1

Si (wt ) + 2λwt


Si (wt ) =

−yixi if yiw>xi ≤ 1
0 otherwise

Complexity
Time: O(ndT) for n examples, d dimensions, T steps.
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Connection to the perceptron

I Replace the hinge loss with

`(y , f(x)) = | − yf(x)|+.

I Set λ= 0.

Reasoning as above we can solve ERM by

wt+1 = wt−
1

B
√
t

1
n

n∑
i=1

Si (wt ) + 2λwt

 , Si (wt ) =

−yixi if yiw>xi ≤ 1
0 otherwise

This is a “batch” version of the perceptron of the algorithm,

wt+1 = wt −γ (St (wt )) , Si (wt ) =

−ytxt if ytw>xt ≤ 0
0 otherwise
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Nonlinear SVM using features and subgradients

min
w∈Rp

1
n

n∑
i=1

|1− yiw>Φ(xi )|+ + λ‖w‖2

Consider

wt+1 = wt −
1

B
√
t

1
n

n∑
i=1

Si (wt ) + 2λwt


Si (wt ) =

−yiΦ(xi ) if yiw>xi ≤ 1
0 otherwise

Complexity
Time O(npT) for n examples, p features, T steps.

What about kernels?
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Representer theorem of SVM

By induction

ct+1 = ct −
1

B
√
t

1
n

n∑
i=1

Si (ct ) + 2λct


with ei the i-th element of the canonical basis,

ft (x) =
n∑

i=1

x>xi (ct )i

and

Si (ct ) =

−yiei if yi ft (xi ) < 1
0 otherwise

.
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Kernel SVM using subgradient

By induction

ct+1 = ct −
1

B
√
t

1
n

n∑
i=1

Si (ct ) + 2λct


with ei the i-th element of the canonical basis,

ft (x) =
n∑

i=1

k(x ,xi )(ct )i

and

Si (ct ) =

−yiei if yi ft (xi ) < 1
0 otherwise

.

Complexity
Time: O(n2(Ck +T)) for n examples, Ck kernel evaluation, T steps.
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What else

I Why are they called support vector machines?

I And what about the margin and all that?
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Optimality condition for SVM

Smooth Convex

∇F(w∗) = 0

Non-smooth Convex

0 ∈ ∂F(w)

0 ∈ ∂F(w∗) ⇔ 0 ∈ ∂|1− yiw>xi |+ +λ2w

⇔ w ∈ ∂ 1
2λ
|1− yiw>xi |+.
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Optimality condition for SVM (cont.)

The optimality condition can be rewritten as

0 =
1
n

n∑
i=1

(−yixici ) + 2λw ⇒ w =
n∑

i=1

xi (
yici
2λn

).

where
ci = ci (w) ∈ [`−(−yiw>xi ), `+(−yiw>xi )]

with `−, `+ left, right derivatives of | · |+.

A direct computation gives

ci = 1 if yf(xi ) < 1

0 ≤ ci ≤ 1 if yf(xi ) = 1

ci = 0 if yf(xi ) > 1
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Support vectors

ci = 1 if yf(xi ) < 1

0 ≤ ci ≤ 1 if yf(xi ) = 1

ci = 0 if yf(xi ) > 1
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Sparsity and SVM solvers

The conditions

ci = 1 if yf(xi ) < 1

0 ≤ ci ≤ 1 if yf(xi ) = 1

ci = 0 if yf(xi ) > 1

show that the SVM solution is sparse wrt the training points.

I Classical Quadratic Programming solvers for SVM exploit
sparsity.

I Subgradient methods require only matrix vector multiplications,
hence are preferable for large scale problems.
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And now the margin

min
w∈Rp

1
n

n∑
i=1

|1− yiw>xi |+ + λ‖w‖2.

For C = 1
2nλ , consider the following equivalent formulation

min
w∈Rp

C
n∑

i=1

ξi +
1
2
‖w‖2,

subj. to for all i = 1, . . . ,n ,

ξi ≥ 0, yiw
>xi ≥ 1− ξi

The slack variables ξi ’s quantify how much constraints are violated.
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Soft and hard margin SVM

This is the classical soft margin SVM formulation

min
w∈Rp

C
n∑

i=1

ξi +
1
2
‖w‖2, subj. to ξi ≥ 0, yiw

>xi ≥ 1−ξi , ∀ i = 1, . . . ,n .

The name comes from considering the limit case C → 0

min
w∈Rp

1
2
‖w‖2, subj. to yiw

>xi ≥ 1, ∀ i = 1, . . . ,n ,

called hard margin SVM.
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Max margin

min
w∈Rp

‖w‖2, subj. to yiw
>xi ≥ 1, ∀ i = 1, . . . ,n .

The above problem has a geometric interpretation.

For linearly separable data
I 2/ ‖w‖ is the margin: smallest distance of each class to w>x .
I The constraint select functions linearly separating the data.

Hard margin SVM: find the max margin solution separating the data.
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Summary

I Logistic regression and SVM are instances of penalized ERM.

I Optimization by gradient descent/subgradient method.

I Nonlinear extension using features/kernels.

I Optimality conditions and support vectors.

I Margin .
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	Logistic regression

