MIT 9.520/6.860, Fall 2018
 Statistical Learning Theory and Applications

Class 05: Logistic Regression and Support Vector Machines

Lorenzo Rosasco

Last class

Non linear functions using

- features

$$
f(x)=w^{\top} x \mapsto f(x)=w^{\top} x,
$$

- kernels

$$
f(x)=w^{\top} x \mapsto f(x)=\sum_{i=1}^{N} k\left(x, x_{i}\right) c_{i}
$$

More precisely

- A feature map Φ defines the space \mathcal{H}_{Φ} of functions

$$
f(x)=w^{\top} x
$$

and $k(x, \bar{x}):=\Phi(x) \Phi(\bar{x})$, is pos. def.

- A pos. def. kernels k defines space \mathcal{H}_{k} of functions

$$
f(x)=\sum_{i=1}^{N} k\left(x, x_{i}\right) c_{i}
$$

with the reproducing property

$$
f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{H}_{k}}
$$

- For every k there is $\mathrm{a}^{1} \Phi$ such that

$$
k(x, \bar{x})=\Phi(x) \Phi(\bar{x}),
$$

and

$$
\mathcal{H}_{k} \simeq \mathcal{H}_{\Phi}
$$

Today

Beyond least squares

$$
(y-f(x))^{2} \mapsto \ell(y, f(x))
$$

Today

- Logistic loss.
- Hinge loss.

ERM and penalization

$$
\min _{w \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} x_{i}\right)+\lambda\|w\|^{2}, \quad \lambda \geq 0
$$

- Logistic loss \mapsto logistic regression.
- Hinge \mapsto SVM.

Non linear extensions via features/kernels.

From regularization to optimization

Problem Solve

$$
\min _{w \in \mathbb{R}^{d}} \widehat{L}(w)+\lambda\|w\|^{2}
$$

where

$$
\widehat{L}(w)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} x_{i}\right)
$$

Minimization

Assume ℓ convex and continuous, let

$$
\widehat{L}_{\lambda}(w)=\widehat{L}(w)+\lambda\|w\|^{2} .
$$

- Coercive ${ }^{2}$, strongly convex functional \Rightarrow a minimizer exists and is unique.
- Computations depends on the considered loss.

$$
{ }^{2} \lim _{\|w\| \rightarrow \infty} \widehat{L}_{\lambda}(w)=\infty
$$

Logistic regression

$$
\widehat{L}_{\lambda}(w)=\frac{1}{n} \sum_{i=1}^{n} \log \left(1+e^{-y_{i} w^{\top} x_{i}}\right)+\lambda\|w\|^{2} .
$$

- \widehat{L}_{λ} is smooth

$$
\nabla \widehat{L}_{\lambda}(w)=-\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} y_{i}}{1+e^{y_{i} w^{\top} x_{i}}}+2 \lambda w .
$$

- Optimality condition gives a nonlinear equation

$$
\nabla \widehat{L_{\lambda}}(w)=0,
$$

so we use gradient methods.

Gradient descent

Let $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ differentiable, (strictly) convex and such that

$$
\left\|\nabla F(w)-\nabla F\left(w^{\prime}\right)\right\| \leq B\left\|w-w^{\prime}\right\|
$$

(e.g. $\left.\sup _{w}\|H(w)\| \leq B\right)$
hessian
Then

$$
w_{0}=0, \quad w_{t+1}=w_{t}-\frac{1}{B} \nabla F\left(w_{t}\right),
$$

converges to the minimizer of F.

Gradient descent for logistic regression

$$
\min _{w \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \log \left(1+e^{-y_{i} w^{\top} x_{i}}\right)+\lambda\|w\|^{2}
$$

Consider

$$
w_{t+1}=w_{t}-\frac{1}{B}\left(-\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} y_{i}}{1+e^{y_{i} w_{t}^{\top} x_{i}}}+2 \lambda w_{t}\right) .
$$

Complexity
Time: $O(n d T)$ for n examples, d dimension, T steps.

Non-linear features

$$
f(x)=w^{\top} x \quad \mapsto \quad f(x)=w^{\top} \Phi(x),
$$

$$
\Phi(x)=\left(\phi_{1}(x), \ldots, \phi_{p}(x)\right)
$$

Input Space
Feature Space

Gradient descent for non linear logistic regression

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \log \left(1+e^{-y_{i} w^{\top} \Phi\left(x_{i}\right)}\right)+\lambda\|w\|^{2}
$$

Consider

$$
w_{t+1}=w_{t}-\frac{1}{B}\left(-\frac{1}{n} \sum_{i=1}^{n} \frac{\Phi\left(x_{i}\right) y_{i}}{1+\mathrm{e}^{y_{i} w_{t}^{\top} \Phi\left(x_{i}\right)}}+2 \lambda w_{t}\right)
$$

Complexity
Time $O(n p T)$ for n examples, p features, T steps.

What about kernels?

Representer theorem for logistic regression?

As for least squares,
Show that $w=\sum_{i=1}^{n} x_{i} c_{i}$. i.e.

$$
f(x)=w^{\top} x=\sum_{i=1}^{n} x_{i}^{\top} x c_{i}, \quad c_{i} \in \mathbb{R}
$$

Compute $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{R}^{n}$ rather than $w \in \mathbb{R}^{d}$.

Representer theorem for GD \& logistic regression

By induction

$$
c_{t+1}=c_{t}-\frac{1}{B}\left[-\frac{1}{n} \sum_{i=1}^{n} \frac{e_{i} y_{i}}{1+e^{y_{i} f_{t}\left(x_{i}\right)}}+2 \lambda c_{t}\right]
$$

with e_{i} the i-th element of the canonical basis and

$$
f_{t}(x)=\sum_{i=1}^{n} x^{\top} x_{i}\left(c_{t}\right)_{i}
$$

Proof of the representer theorem for GD \& logistic regression

Assume

$$
\begin{aligned}
& w_{t}=\sum_{i=1}^{n} x_{i}\left(c_{t}\right)_{i} \\
& w_{t+1}=w_{t}-\frac{1}{B}\left(-\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} y_{i}}{1+e^{y_{i} w_{t}^{\top} x_{i}}}+2 \lambda w_{t}\right) \\
&=\sum_{i=1}^{n} x_{i}\left(c_{t}\right)_{i}-\frac{1}{B}\left(-\frac{1}{n} \sum_{i=1}^{n} x_{i} \frac{y_{i}}{1+e^{y_{i}\left(\sum_{j=1}^{n} x_{j}\left(c_{t}\right)_{j}\right)^{\top} x_{i}}}+2 \lambda\left(\sum_{i=1}^{n} x_{i}\left(c_{t}\right)_{i}\right)\right) \\
&=\sum_{i=1}^{n} x_{i}\left[\left(c_{t}\right)_{i}-\frac{1}{B}\left(-\frac{1}{n} \frac{y_{i}}{1+e^{y_{i}\left(\sum_{j=1}^{n} x_{j}\left(c_{t}\right)_{j}\right)^{\top} x_{i}}}+2 \lambda\left(c_{t}\right)_{i}\right)\right] .
\end{aligned}
$$

Then

$$
w_{t+1}=\sum_{i=1}^{n} x_{i}\left(c_{t+1}\right)_{i}
$$

Kernel logistic regression

Given a pos. def. kernel, consider

$$
c_{t+1}=c_{t}-\frac{1}{B}\left[-\frac{1}{n} \sum_{i=1}^{n} \frac{e_{i} y_{i}}{1+e^{y_{i} f_{t}\left(x_{i}\right)}}+2 \lambda c_{t}\right]
$$

with e_{i} the i-th element of the canonical basis and

$$
f_{t}(x)=\sum_{i=1}^{n} k\left(x, x_{i}\right)\left(c_{t}\right)_{i}
$$

Complexity
Time: $O\left(n^{2}\left(C_{k}+T\right)\right)$ for n examples, C_{k} kernel evaluation, T steps.

Hinge loss and support vector machines

$$
\widehat{L}_{\lambda}(w)=\underbrace{\frac{1}{n} \sum_{i=1}^{n}\left|1-y_{i} w^{\top} x_{i}\right|_{+}+\lambda\|w\|^{2}}_{\text {non-smooth \& strongly-convex }}
$$

Consider "left" derivative

$$
\begin{gathered}
w_{t+1}=w_{t}-\frac{1}{B \sqrt{t}}\left(\frac{1}{n} \sum_{i=1}^{n} S_{i}\left(w_{t}\right)+2 \lambda w_{t}\right) \\
S_{i}(w)=\left\{\begin{array}{ll}
-y_{i} x_{i} & \text { if } y_{i} w^{\top} x_{i} \leq 1 \\
0 & \text { otherwise }
\end{array}, \quad B=\sup _{x \in X}\|x\|+2 \lambda .\right.
\end{gathered}
$$

$B \sqrt{t}$ is a bound on the subgradient.

Subgradient

Let $F: \mathbb{R}^{p} \rightarrow \mathbb{R}$ convex, Subgradient $\partial F\left(w_{0}\right)$ set of vectors $v \in \mathbb{R}^{p}$ such that, for every $w \in \mathbb{R}^{p}$

$$
F(w)-F\left(w_{0}\right) \geq\left(w-w_{0}\right)^{\top} v
$$

In one dimension $\partial F\left(w_{0}\right)=\left[F_{-}^{\prime}\left(w_{0}\right), F_{+}^{\prime}\left(w_{0}\right)\right]$.

Subgradient method

Let $F: \mathbb{R}^{p} \rightarrow \mathbb{R}$ convex, with subdifferential bounded by B, and $\gamma_{t}=\frac{1}{B \sqrt{t}}$ then,

$$
w_{t+1}=w_{t}-\gamma_{t} v_{t}
$$

with $v_{t} \in \partial F\left(w_{t}\right)$ converges to the minimizer of F.

Note: it is not a descent method.

Subgradient method for SVM

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n}\left|1-y_{i} w^{\top} x_{i}\right|_{+}+\lambda\|w\|^{2}
$$

Consider

$$
\begin{gathered}
w_{t+1}=w_{t}-\frac{1}{B \sqrt{t}}\left(\frac{1}{n} \sum_{i=1}^{n} S_{i}\left(w_{t}\right)+2 \lambda w_{t}\right) \\
S_{i}\left(w_{t}\right)= \begin{cases}-y_{i} x_{i} & \text { if } y_{i} w^{\top} x_{i} \leq 1 \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Complexity
Time: $O(n d T)$ for n examples, d dimensions, T steps.

Connection to the perceptron

- Replace the hinge loss with

$$
\ell(y, f(x))=|-y f(x)|_{+} .
$$

- Set $\lambda=0$.

Reasoning as above we can solve ERM by
$w_{t+1}=w_{t}-\frac{1}{B \sqrt{t}}\left(\frac{1}{n} \sum_{i=1}^{n} S_{i}\left(w_{t}\right)+2 \lambda w_{t}\right), \quad S_{i}\left(w_{t}\right)= \begin{cases}-y_{i} x_{i} & \text { if } y_{i} w^{\top} x_{i} \leq 1 \\ 0 & \text { otherwise }\end{cases}$

This is a "batch" version of the perceptron of the algorithm,

$$
w_{t+1}=w_{t}-\gamma\left(S_{t}\left(w_{t}\right)\right), \quad S_{i}\left(w_{t}\right)= \begin{cases}-y_{t} x_{t} & \text { if } y_{t} w^{\top} x_{t} \leq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Nonlinear SVM using features and subgradients

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n}\left|1-y_{i} w^{\top} \Phi\left(x_{i}\right)\right|_{+}+\lambda\|w\|^{2}
$$

Consider

$$
\begin{gathered}
w_{t+1}=w_{t}-\frac{1}{B \sqrt{t}}\left(\frac{1}{n} \sum_{i=1}^{n} S_{i}\left(w_{t}\right)+2 \lambda w_{t}\right) \\
S_{i}\left(w_{t}\right)= \begin{cases}-y_{i} \Phi\left(x_{i}\right) & \text { if } y_{i} w^{\top} x_{i} \leq 1 \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Complexity
Time $O(n p T)$ for n examples, p features, T steps.
What about kernels?

Representer theorem of SVM

By induction

$$
c_{t+1}=c_{t}-\frac{1}{B \sqrt{t}}\left(\frac{1}{n} \sum_{i=1}^{n} S_{i}\left(c_{t}\right)+2 \lambda c_{t}\right)
$$

with e_{i} the i-th element of the canonical basis,

$$
f_{t}(x)=\sum_{i=1}^{n} x^{\top} x_{i}\left(c_{t}\right)_{i}
$$

and

$$
S_{i}\left(c_{t}\right)=\left\{\begin{array}{ll}
-y_{i} e_{i} & \text { if } y_{i} f_{t}\left(x_{i}\right)<1 \\
0 & \text { otherwise }
\end{array} .\right.
$$

Kernel SVM using subgradient

By induction

$$
c_{t+1}=c_{t}-\frac{1}{B \sqrt{t}}\left(\frac{1}{n} \sum_{i=1}^{n} S_{i}\left(c_{t}\right)+2 \lambda c_{t}\right)
$$

with e_{i} the i-th element of the canonical basis,

$$
f_{t}(x)=\sum_{i=1}^{n} k\left(x, x_{i}\right)\left(c_{t}\right)_{i}
$$

and

$$
S_{i}\left(c_{t}\right)=\left\{\begin{array}{ll}
-y_{i} e_{i} & \text { if } y_{i} f_{t}\left(x_{i}\right)<1 \\
0 & \text { otherwise }
\end{array} .\right.
$$

Complexity
Time: $O\left(n^{2}\left(C_{k}+T\right)\right)$ for n examples, C_{k} kernel evaluation, T steps.

What else

- Why are they called support vector machines?
- And what about the margin and all that?

Optimality condition for SVM

Smooth Convex

$$
\nabla F\left(w_{*}\right)=0
$$

Non-smooth Convex

$$
0 \in \partial F(w)
$$

$$
0 \in \partial F\left(w_{*}\right) \quad \Leftrightarrow \quad 0 \in \partial\left|1-y_{i} w^{\top} x_{i}\right|_{+}+\lambda 2 w
$$

$$
\Leftrightarrow \quad w \in \partial \frac{1}{2 \lambda}\left|1-y_{i} w^{\top} x_{i}\right|_{+} .
$$

Optimality condition for SVM (cont.)

The optimality condition can be rewritten as

$$
0=\frac{1}{n} \sum_{i=1}^{n}\left(-y_{i} x_{i} c_{i}\right)+2 \lambda w \Rightarrow w=\sum_{i=1}^{n} x_{i}\left(\frac{y_{i} c_{i}}{2 \lambda n}\right)
$$

where

$$
c_{i}=c_{i}(w) \in\left[\ell^{-}\left(-y_{i} w^{\top} x_{i}\right), \ell^{+}\left(-y_{i} w^{\top} x_{i}\right)\right]
$$

with ℓ^{-}, ℓ^{+}left, right derivatives of $|\cdot|_{+}$.
A direct computation gives

$$
\begin{array}{rll}
c_{i}=1 & \text { if } & y f\left(x_{i}\right)<1 \\
0 \leq c_{i} \leq 1 & \text { if } & y f\left(x_{i}\right)=1 \\
c_{i}=0 & \text { if } & y f\left(x_{i}\right)>1
\end{array}
$$

Support vectors

$$
\begin{array}{rll}
c_{i}=1 & \text { if } & y f\left(x_{i}\right)<1 \\
0 \leq c_{i} \leq 1 & \text { if } & y f\left(x_{i}\right)=1 \\
c_{i}=0 & \text { if } & y f\left(x_{i}\right)>1
\end{array}
$$

Sparsity and SVM solvers

The conditions

$$
\begin{array}{rlll}
c_{i}=1 & \text { if } & y f\left(x_{i}\right)<1 \\
0 \leq c_{i} \leq 1 & \text { if } & y f\left(x_{i}\right)=1 \\
c_{i}=0 & \text { if } & y f\left(x_{i}\right)>1
\end{array}
$$

show that the SVM solution is sparse wrt the training points.

- Classical Quadratic Programming solvers for SVM exploit sparsity.
- Subgradient methods require only matrix vector multiplications, hence are preferable for large scale problems.

And now the margin

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n}\left|1-y_{i} w^{\top} x_{i}\right|_{+}+\lambda\|w\|^{2}
$$

For $C=\frac{1}{2 n \lambda}$, consider the following equivalent formulation

$$
\min _{w \in \mathbb{R}^{p}} C \sum_{i=1}^{n} \xi_{i}+\frac{1}{2}\|w\|^{2}
$$

subj. to for all $i=1, \ldots, n$,

$$
\xi_{i} \geq 0, \quad y_{i} w^{\top} x_{i} \geq 1-\xi_{i}
$$

The slack variables ξ_{i} 's quantify how much constraints are violated.

Soft and hard margin SVM

This is the classical soft margin SVM formulation
$\min _{w \in \mathbb{R}^{p}} C \sum_{i=1}^{n} \xi_{i}+\frac{1}{2}\|w\|^{2}, \quad$ subj. to $\quad \xi_{i} \geq 0, \quad y_{i} w^{\top} x_{i} \geq 1-\xi_{i}, \quad \forall i=1, \ldots, n$.

The name comes from considering the limit case $C \rightarrow 0$

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{2}\|w\|^{2}, \quad \text { subj. to } \quad y_{i} w^{\top} x_{i} \geq 1, \quad \forall i=1, \ldots, n,
$$

called hard margin SVM.

Max margin

$$
\min _{w \in \mathbb{R}^{p}}\|w\|^{2}, \quad \text { subj. to } \quad y_{i} w^{\top} x_{i} \geq 1, \quad \forall i=1, \ldots, n .
$$

The above problem has a geometric interpretation.

For linearly separable data

- $2 /\|w\|$ is the margin: smallest distance of each class to $w^{\top} x$.
- The constraint select functions linearly separating the data.

Hard margin SVM: find the max margin solution separating the data.

Summary

- Logistic regression and SVM are instances of penalized ERM.
- Optimization by gradient descent/subgradient method.
- Nonlinear extension using features/kernels.
- Optimality conditions and support vectors.
- Margin .

