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Last class

Non linear functions using

> features
f(x)=wx f(x)=w'x,

> kernels
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More precisely

> A feature map @ defines the space Hy of functions
f(x)=w'x,

and k(x,x) := ©(x)®(x), is pos. def.
> A pos. def. kernels k defines space H of functions

N
f(x) = Zk(x,x,-)c,-.
i=1

with the reproducing property
F(x) = (F k()
> For every k there is a! @ such that
k(x,x) = D(x)D(X),

and
Hk = qu.

lndeed, infinitely many. LRosasco, 9.520/6.860 2018



Today

Beyond least squares

(v = f(x))? = €(y, f(x)).

Today
» Logistic loss.

> Hinge loss.
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ERM and penalization

n

1
min = Y (y;,w'x;)+ Alwl|%, A>0.

weRd N =

» |ogistic loss > logistic regression.
» Hinge — SVM.

Non linear extensions via features/kernels.
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From regularization to optimization

Problem Solve N
min L(w)+ A||w||?
welRd

where
n

Tw) ==Y wx),

i=1
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Minimization

Assume £ convex and continuous, let

Ly(w) =L(w) + Allwll.

> Coercive?, strongly convex functional
= a minimizer exists and is unique.

» Computations depends on the considered loss.

2 lim)j )| —o0 LA (W) = co. LRosasco, 9.520/6.860 2018



Logistic regression

—~ 1v T
La(w) == ) log(1+e™™" ) + Alwi’,
i=1

> /L\,\ is smooth

. 1y XiYi
VL/\(W) = —H Zm + 2Aw.
i=1

> Optimality condition gives a nonlinear equation
Vii(w) =0,
so we use gradient methods.
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Gradient descent

f(x)

Starting

/ Point

lteration 3

Iteration 4

Convergence

Final
Value

Let F : RY — R differentiable, (strictly) convex and such that

IVF(w) - VF(w')]| < Bllw - w'|

(e.g. sup,, |[H(w) |l < B)
~——
hessian

Then

1
wo=0, wpp1=w;— EVF(Wt)’

converges to the minimizer of F.
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Gradient descent for logistic regression

min — Zlog(l +e v’ XY 4 A|wl|?

welRd N

Consider

1 15 Xy
=w,——|-=Y — 4 oAw, |
Wi+l = Wi B Z 14 ervix Wi

Complexity
Time: O(ndT) for n examples, d dimension, T steps.
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Non-linear features

fx)=w'x

O(x) = (P1(x),--» Pp(x))-

f(x) = w'd(x),

Input Space

Feature Space
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Gradient descent for non linear logistic regression

1 n
min — Zlog(l + e_y’WTq’(X")) + Allwl?
i=1

welRP N 4

Consider

[ 1v Oy
W1 =We— 5 ——Z&JrZAwt.

n = 1 + e.VIW;r(D(Xi)

Complexity
Time O(npT) for n examples, p features, T steps.

What about kernels?
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Representer theorem for logistic regression?

As for least squares,
Show that w =) [ ; x;c;. i.e.

n
f(x)=w'x= ZX.TXC,, ci €R.

i
i=1

Compute ¢ = (c1,...,¢,) € R” rather than w € R9.
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Representer theorem for GD & logistic regression

By induction
1] 1¢ ey,
—c. 2 |-= I 4 B
1T g|T, Zl’ 1+ eife(x) 24c
i=

with e; the i-th element of the canonical basis and

n

fe(x) = ZXTXi(Ct)i

i=1
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Proof of the representer theorem for GD & logistic

regression

Assume )
Wt:ZXi(Ct):
i=1
1{ 1 Xy
= -=|-— _ AP
Wil = W B[ ”Zl+ey,-thx,-+2/\Wt]
i=1
n 1 1 n , )
B A1 YA : 220} xi(c);
;x,(ct): B[ n;X’1+eyf()lf_1xj(Cr)j)Txi+ (i_lxl(ct)l)]
n
1 1 Yi
- i B\ Th 22(c)i )l
’:1Xl [(Ct)l B( nl—l—ey"():?:lxj(ct)j)Tx,» + (Ct),)]
Then

n

Wi41 = in(ct—i-l)i
i=1
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Kernel logistic regression

Given a pos. def. kernel, consider

1] 1¢ ey
cor— s LY o,

B n 4 T ]__|_eJ/ift(Xi)
i=

with e; the i-th element of the canonical basis and

filx) =) k(ox)(ce)s
i=1

Complexity
Time: O(n?(Cy + T)) for n examples, Cy kernel evaluation, T steps.
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Hinge loss and support vector machines

n

—~ 1
Liw)= =) 11=yiw e + Allwl?
i=1

non-smooth & strongly-convex

Consider “left” derivative

1 [1¢
w. =w;— ——| — Si(w;) + 2w
1 = W B\/f[n; () t

—v.x; ifyw'x <1
Si(w) =4 Y BYIWINE g suplixll + 24
0 otherwise xeX

B+t is a bound on the subgradient.
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Subgradient

Let F : RP — R convex,
Subgradient
dF (wp) set of vectors v € RP such that, for every w € IRP

F(w)=F(wo) > (w=wo)"v

In one dimension dF (wg) = [F/(wg), F/, (wo)]-
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Subgradient method

Let F : RP — R convex, with subdifferential bounded by B, and

-1 then,

Vt:B\/f

Wit1l = W — YtV

with v; € dF(w;) converges to the minimizer of F.

Note: it is not a descent method.
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Subgradient method for SVM

min —Zu yiwTxily + Allwll®

welRP N

Consider
1 [(1¢
Wip1 = Wy — B_\/f [; Zsi(wt) + 2Aw;
i=1
S (wy) = —-yix; ifyiwTx; <1
ot 0 otherwise
Complexity

Time: O(ndT) for n examples, d dimensions, T steps.
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Connection to the perceptron

> Replace the hinge loss with

€y, f(x) == yf(x)l+
> Set A=0.

Reasoning as above we can solve ERM by
1 [1¢ —yix; ifyiwlx; <1
Wil =We———=|— ) Sj(wy) + 2Aw, |, Si(w,) = e i =
t+1 t B\/? n ; i(wt) t] i(we) {O otherwise
This is a “batch” version of the perceptron of the algorithm,

-yix; if y,wTx, <0

wep1 = we =Y (Si(we)), Si(w) = {0 otherwise
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Nonlinear SVM using features and subgradients

min —Z“ yiwT@0q)l 1 + Allwl?

welRP N

Consider
L iS( ) + 24
Wi =Wy ———| — i(w, w.
t+1 t B\/E n L I t t
—v.d(x) ifviwTx <1
S,’(Wt): yl (XI) 1 yIW ?(I—
0 otherwise
Complexity

Time O(npT) for n examples, p features, T steps.

What about kernels?
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Representer theorem of SVM

By induction

1 (1v¢
Ct41=Ct — B_\/f[; ;Si(ct)+2ACt
=

with e; the i-th element of the canonical basis,

n

f) =) xTx(c);

i=1

and

Si(c) =1 e if yife(x;) <1
et 0 otherwise
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Kernel SVM using subgradient

By induction

1 [1¢
cir1=¢———=|— ) Si(c)+2Ac
1= Bﬁ[n; i(e0) +2Ae;
with e; the i-th element of the canonical basis,
n
flx) =) k(xx)(c)
i=1

and
—v.e; ifyv.fi(x)<1
S,‘(Ct): ylel 1 yl t(X.l) .
0 otherwise

Complexity
Time: O(n?(Cy + T)) for n examples, Cy kernel evaluation, T steps.
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What else

» Why are they called support vector machines?

» And what about the margin and all that?
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Optimality condition for SVM

Smooth Convex Non-smooth Convex

VF(w,)=0 0 € dF(w)

0cdfF(w,) & 0€dll-yw'xls+A2w

= w68—|1 —yiw x|y
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Optimality condition for SVM (cont.)

The optimality condition can be rewritten as
1 n n vic;
0= FZ(—y,x,-c,-)—i—Z/\w > w= Zx,(ﬁ)

i=1 =

where
¢ =ci(w) €[ (~y;w x), €1 (—y;wx;)]

with €7, €7 left, right derivatives of |- | .

A direct computation gives

=1 if  yf(x;)<1
0<c¢<1 if  yf(x)=1
Ci = 0 if yf(X,) 1
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Support vectors
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Sparsity and SVM solvers

The conditions
c=1 if  yf(x;)<1
0<¢<1 if  yf(x)=1
C,‘ = O if yf(X,) > 1

show that the SVM solution is sparse wrt the training points.

» Classical Quadratic Programming solvers for SVM exploit
sparsity.

» Subgradient methods require only matrix vector multiplications,
hence are preferable for large scale problems.
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And now the margin

min —Zu yiwTxily + Allwl.

welRP N

For C = ﬁ, consider the following equivalent formulation

subj. toforalli=1,...,n,

The slack variables &;’s quantify how much constraints are violated.
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Soft and hard margin SVM

This is the classical soft margin SVM formulation

n
. 1.5 . T -
V?;{l{lpCElé,-+§||w||, subj.to & >0, yw'x;>1-¢;, Vi=1,...
i=

The name comes from considering the limit case C — 0
min 1||w||2 subj.to yw'x;>1, VYi=1 n
weRP 2 ’ . i i =+ yeeer iy

called hard margin SVM.
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Max margin

min [lw]|?, subj.to yiw'x;>1, VYi=1,...,n.
welRP

The above problem has a geometric interpretation.

For linearly separable data
> 2/||w|| is the margin: smallest distance of each class to w' x.

» The constraint select functions linearly separating the data.
Hard margin SVM: find the max margin solution separating the data.
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Summary

Logistic regression and SVM are instances of penalized ERM.

Optimization by gradient descent/subgradient method.

Nonlinear extension using features/kernels.

Optimality conditions and support vectors.

Margin .
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	Logistic regression

