MIT 9.520/6.860, Fall 2018
Statistical Learning Theory and Applications

Class 06: Learning with Stochastic Gradients

Sasha Rakhlin

A. Rakhlin, 9.520/6.860 2018

Why Optimization?

Much (but not all) of Machine Learning: write down objective function
involving data and parameters, find good (or optimal) parameters
through optimization.

Key idea: find a near-optimal solution by iteratively using only local
information about the objective (e.g. gradient, Hessian).

A. Rakhlin, 9.520/6.860 2018

Motivating example: Newton’s Method

Newton's method in 1d:
Wil = Wy — (f//(Wt))ilf/(Wt)

Example (parabola):
f(w) = aw? + bw + ¢

Start with any wy. Then Newton's Method gives
wo = wy — (2a) "} (2awy + b)

which means w, = —b/(2a). Finds minimum of f in 1 step, no matter
where you start!

A. Rakhlin, 9.520/6.860 2018

Newton's Method in multiple dim:
Wiyl = Wy — [sz(wt)]71Vf(Wt)

(here V2f(w;) is the Hessian, assume invertible)

A. Rakhlin, 9.520/6.860 2018

Recalling Least Squares

Least Squares objective (without 1/n normalization)

n

f(w) = (i —x w)® =|Y - Xwl|*

i=1

Calculate: V2f(w) =2X7X and Vf(w) = -2XT(Y — Xw).
Taking wy = 0, the Newton's Method gives
wy =0+ (2X"X)712XT(Y — X0) = (X" X) ' XTY
which is the least-squares solution (global min). Again, 1 step is enough.

Verify: if f(w) = ||Y — Xw|? + A |w|]?, (X"X) becomes (XX + A)

A. Rakhlin, 9.520/6.860 2018

What do we do if data (x1,y1), ..., (Xn, ¥n), ... are streaming? Can we
incorporate data on the fly without having to re-compute inverse (X "X)
at every step?

— Online Learning

A. Rakhlin, 9.520/6.860 2018

Let wy = 0. Let w; be least-squares solution after seeing t — 1 data
points. Can we get w; from w;_; cheaply? Newton's Method will do it in
1 step (since objective is quadratic).

Let G = Zlex,-xf (or +X1) and X = [x1,. .., xe] ", Ye =D, 0] "
Newton's method gives

W1 = we + X (Ve — Xewe)
This can be simplified to
wepr = we + Gy — X we)
since residuals up to t — 1 are orthogonal to columns of X;_;.

The bottleneck is computing C;*. Can we update it quickly from C;ll?

A. Rakhlin, 9.520/6.860 2018

Sherman-Morrison formula: for invertible square A and any u, v

A—l TA—l
(Atu)y t=A"1— d

Hence))
C*l _ C—l Ct—IXtXtTCt—l
t T St—1 1 TC_1
X Gl Xe
and (do the calculation)

1

Colxe=Clixe 75—
1+ x"Cyxe

1+vTA-1y

Computation required: d x d matrix C; ! times a d x 1 vector = O(d?)
time to incorporate new datapoint. Memory: O(d?). Unlike full
regression from scratch, does not depend on amount of data t.

A. Rakhlin, 9.520/6.860 2018

Recursive Least Squares (cont.)

Recap: recursive least squares is
-1
Wep1 = we + C; Xt(yt - XtTWt)
with a rank-one update of Ct__l1 to get C; L.

Consider throwing away second derivative information, replacing with
scalar:
Wer1 = We + 0exe(ye — X we).

where 7); is a decreasing sequence.

A. Rakhlin, 9.520/6.860 2018

Online Least Squares

The algorithm
Wip1 = We + 77tXt(}’t - XtTWt)-

» is recursive;

» does not require storing the matrix Ct_l;

» does not require updating the inverse, but only vector/vector
multiplication.

However, we are not guaranteed convergence in 1 step. How many? How
to choose 7,7

A. Rakhlin, 9.520/6.860 2018

First, recognize that
—V(y: — XtTW)2 = 2X¢[ye — X w].

Hence, proposed method is gradient descent. Let us study it abstractly
and then come back to least-squares.

A. Rakhlin, 9.520/6.860 2018

Lemma: Let f be convex G-Lipschitz. Let w* € argmin f(w) and

|lw*|] < B. Then gradient descent

Wep1 = wy — nVF(we)

with n = G%;? and wy = 0 yields a sequence of iterates such that the

— 1 T . .
average Wt = + »_,_; W; of trajectory satisfies

BG
flwy) — fw') < —.
Proof:
Iwess — w*[|* = lwe — nVF(we) — w*|®
= [we — w*|* + 0? | VF(we)|* — 20V £ (we) "(we — w)
Rearrange:

20V F(we)(we = w*) = [[we = w7l = [wery — w*|[* 47 V£ (we)| |
Note: Lipschitzness of f is equivalent to |Vf(w)| < G.

A. Rakhlin, 9.520/6.860 2018

Summing over t =1,..., T, telescoping, dropping negative term, using
wy = 0, and dividing both sides by 27,

.
3 VA(w)T(we — w) < Qi |w*|* + 3762 < VBGT.
n

t=1

Convexity of f means
f(we) — F(w™) < VF(we)T(we — w™)
and so

N RS : . BG
?Zf(wt)ff(w)§7;Vf(wt) (we — w)gﬁ

Lemma follows by convexity of f and Jensen's inequality. (end of proof)

A. Rakhlin, 9.520/6.860 2018

Gradient descent can be written as
. 1
wesy = argmin 1 {f(we) + VI (we) "(w — we)} + 5 lw — wel?

which can be interpreted as minimizing a linear approximation but
staying close to previous solution.

Alternatively, can interpret it as building a second-order model locally

(since cannot fully trust the local information — unlike our first parabola
example).

A. Rakhlin, 9.520/6.860 2018

Remarks:

>

>

v

Gradient descent for non-smooth functions does not guarantee
actual descent of the iterates w; (only their average).
For constrained optimization problems over a set K, do projected
gradient step

Wir1 = Proji (we — nVF(wy))

Proof essentially the same.

Can take stepsize 1, = B—\/% to make it horizon-independent.

Knowledge of G and B not necessary (with appropriate changes).

Faster convergence under additional assumptions on f (smoothness,
strong convexity).

Last class: for smooth functions (gradient is L-Lipschitz), constant
step size 1/L gives faster O(1/T) convergence.

Gradients can be replaced with stochastic gradients (unbiased
estimates).

A. Rakhlin, 9.520/6.860 2018

Stochastic Gradients

Suppose we only have access to an unbiased estimate V; of Vf(w;) at
step t. That is, E[V¢|w¢] = Vf(w;). Then Stochastic Gradient Descent
(SGD)

Wty1 = W — th

enjoys the guarantee

E[f(wr)] — f(w?) <

SIB

where G is such that E[|V,|’] < G2 for all t.

Kind of amazing: at each step go in the direction that is wrong (but
correct on average) and still converge.

A. Rakhlin, 9.520/6.860 2018

Stochastic Gradients

Setting #1:

Empirical loss can be written as
f(W Zﬁ .yI7 w XI IEIr\/unif[l:n]g(yla WTXI)

Then V; = V{(y;, w, x) is an unbiased gradient:

E[V|we] = E[VL(y1, w,'xi)lwe] = VE[L(yr, w,'xi)|we] = VF(wy)

Conclusion: if we pick index | uniformly at random from dataset and
make gradient step V£(y;, w,"x;), then we are performing SGD on
empirical loss objective.

A. Rakhlin, 9.520/6.860 2018

Stochastic Gradients

Setting #2:
Expected loss can be written as
f(w)=E{(Y,w'X)
where (X, Y) is drawn i.i.d. from population Pxxy.
Then V; = VL(Y,w, X) is an unbiased gradient:
E[Velwe] = E[VL(Y, w' X)|we] = VE[(Y, w,' X)|wi] = VT (wi)
Conclusion: if we pick example (X, Y) from distribution Px .y and make

gradient step V/(Y, w,'X), then we are performing SGD on expected
loss objective. Equivalent to going through a dataset once.

A. Rakhlin, 9.520/6.860 2018

Stochastic Gradients

Say we are in Setting #2 and we go through dataset once. The

guarantee is

_ . BG
E[f(w)] - f(w)Sﬁ

after T iterations. So, time complexity to find e-minimizer of expected
objective E/(wTX, Y) is independent of the dataset size n!! Suitable for
large-scale problems.

A. Rakhlin, 9.520/6.860 2018

Stochastic Gradients

In practice, we cycle through the dataset several times (which is
somewhere between Setting #1 and #2).

A. Rakhlin, 9.520/6.860 2018

Appendix

A function f : R? — R is convex if
flav+ (1 —a)v) <af(u)+ (1 —a)f(v)

for any a € [0,1] and u, v € RY (or restricted to a convex set). For a
differentiable function, convexity is equivalent to monotonicity

(Vf(u) = Vf(v),u—v)>0. (1)
where oF () oF(u)
Vf(u):<8u1 ey ﬁud>'

A. Rakhlin, 9.520/6.860 2018

Appendix

It holds that for a convex differentiable function
f(u) > f(v) +(VFf(v),u—v). (2)

A subdifferential set is defined (for a given v) precisely as the set of all
vectors V such that

f(u) > f(v)+(V,u—v). (3)

for all u. The subdifferential set is denoted by 9f(v). A subdifferential
will often substitute the gradient, even if we don't specify it.

A. Rakhlin, 9.520/6.860 2018

Appendix

If f(v) = max; f;(v) for convex differentiable f;, then, for a given v,
whenever i € argmax f;(v), it holds that

V£(v) € OF(v).

(Prove it!) We conclude that the subdifferential of the hinge loss
max{0,1 — y; (w, x;) } with respect to w is

—yexe - Yy (w, x) < 1}. (4)

A. Rakhlin, 9.520/6.860 2018

Appendix

A function f is L-Lipschitz over a set S with respect to a norm || - || if
1 (u) = F(V)I| < Lju—v]|

for all u,v € S. A function f is 8-smooth if its gradient maps are
Lipschitz
[VF(v) = VW) < Bllu—v],

which implies
() < () + (VA 0=)+ flu— v

(Prove that the other implication also holds.) The dual notion to

smoothness is that of strong convexity. A function f is o-strongly convex
if

Flou+ (1 — a)v) < af(u) + (1 — a)f(v) — %a(l —a)|lu—v|?,
which means

f(u) > f(v)+ (u—v,VFf(v)) + % Ju—v|.

A. Rakhlin, 9.520/6.860 2018

