MIT 9.520/6.860, Fall 2018
 Statistical Learning Theory and Applications

Class 07: Learning with (Random) Projections

Lorenzo Rosasco

Learning algorithm design so far

- ERM + Optimization

$$
\widehat{w}_{\lambda}=\underset{w \in \mathbb{R}^{d}}{\arg \min } \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} x_{i}\right)+\lambda\|w\|^{2}}_{\widehat{L}^{\lambda}(w)}, \quad w_{t+1}=w_{t}-\gamma_{t} \nabla \widehat{L}^{\lambda}\left(w_{t}\right)
$$

- Learning by optimization (GD/SGD)

$$
\widehat{w}_{t+1}=\widehat{w}_{t}-\gamma_{t} \nabla \widehat{L}\left(\widehat{w}_{t}\right), \quad \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} x_{i}\right)}_{\widehat{L}(w)}
$$

Non linear extensions via features/kernels.

Statistics and computations

- Regularization by penalization separates statistics and computations
- Implicit regularization: training time controls statistics and computations

What about memory?

Large scale learning

In many modern applications, space is the real constraint.

Think $n \sim d$ large!

Projections and dimensionality reduction

Let S be a $d \times M$ matrix and

$$
\widehat{X}_{M}=\widehat{x} S
$$

Equivalenty

$$
x \in \mathbb{R}^{d} \quad \mapsto \quad x_{M}=\left(s_{j}^{\top} x\right)_{j=1}^{M} \in \mathbb{R}^{m}
$$

with s_{1}, \ldots, s_{M} columns of S.

Learning with projected data

$$
\min _{w \in \mathbb{R}^{M}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, w^{\top}\left(x_{M}\right)_{i}\right)+\lambda\|w\|^{2}, \quad \lambda \geq 0
$$

We will focus on ERM based learning and least squares in particular.

PCA

The SVD of \widehat{x} is

$$
\widehat{X}=U \Sigma V^{\top}
$$

Consider V_{M} the matrix $d \times M$ of the first M columns of V.

A corresponding projection is given by

$$
\widehat{X}_{M}=\widehat{X} S, \quad S=V_{M}
$$

Representer theorem for PCA

Note that

$$
\widehat{X}=U \Sigma V^{\top} \quad \Leftrightarrow \quad \widehat{X}^{\top}=V \Sigma U^{\top} \quad \Leftrightarrow \quad V=\widehat{X}^{\top} U \Sigma^{-1}
$$

and $V_{M}=\widehat{X}^{\top} U_{M} \Sigma_{M}^{-1}$.
Then

$$
\widehat{X}_{M}=\widehat{X} V_{M}=\underbrace{\widehat{x} \widehat{X}^{\top}}_{\widehat{K}} U_{M} \Sigma_{M}^{-1}=U_{M} \Sigma_{M}
$$

and for any x

$$
x^{\top} v_{j}=\sum_{i=1}^{n} \underbrace{x^{\top} x_{i}}_{k\left(x, x_{i}\right)} \frac{u_{j}^{i}}{\sigma_{j}}
$$

with $\left(u_{j}, \sigma_{j}^{2}\right)_{j}$ eigenvectors/eigenvalues of \widehat{K}.

Kernel PCA

If Φ is a feature map, then the SVD in feature space is

$$
\widehat{\Phi}=U \Sigma V^{\top}
$$

and if V_{M} is the matrix $d \times M$ of the first M columns of V,

$$
\widehat{\Phi}_{M}=\widehat{\Phi} V_{M}
$$

Equivalently using kernels

$$
\widehat{\Phi}_{M}=\widehat{K} U_{M} \Sigma_{M}^{-1}=U_{M} \Sigma_{M},
$$

and for any x

$$
\Phi(x)^{\top} v_{j}=\sum_{i=1}^{n} k\left(x, x_{i}\right) \frac{u_{j}^{i}}{\sigma_{j}} .
$$

PCA+ERM for least squares

Consider (no penalization)

$$
\min _{w \in \mathbb{R}^{M}} \frac{1}{n}\left\|\widehat{X}_{M} w-\widehat{Y}\right\|^{2} .
$$

The solution is ${ }^{1}$

$$
\widehat{w}_{M}=\left(\widehat{X}_{M}^{\top} \widehat{X}_{M}\right)^{-1} \widehat{X}_{M}^{\top} \widehat{Y} .
$$

[^0]
PCA+ERM for least squares

It is easy to see that that, for all x

$$
f_{M}(x)=x_{M}^{\top} \widehat{w}_{M}=\sum_{j=1}^{M} \frac{1}{\sigma} u_{j}^{\top} \widehat{Y} v_{j}^{\top} x
$$

where $x_{M}=V_{M} x$.

Essentially due to the fact that

$$
\widehat{X}_{M}^{\top} \widehat{X}_{M}=V_{M}^{\top} \widehat{X}^{\top} \widehat{X} V_{M}
$$

is the covariance matrix projected on its first M eigenvectors.

PCR, TSVD, Filtering

$$
f_{M}(x)=\sum_{j=1}^{M} \frac{1}{\sigma} u_{j}^{\top} \widehat{Y} v_{j}^{\top} x
$$

- PCA+ERM is called Principal component regression in statistics
- and truncated singular value decomposition in linear algebra.
- It corresponds to the spectral filter

$$
F\left(\sigma_{j}\right)= \begin{cases}\frac{1}{\sigma_{j}}, & j \leq M \\ 0, & \text { oth. }\end{cases}
$$

Compare to Tikhonov and Landweber,

$$
F_{\mathrm{Tik} .}\left(\sigma_{j}\right)=\sigma_{j} /\left(1+\lambda \sigma_{j}\right) \quad F_{\text {Land. }}\left(\sigma_{j}\right)=\left(1-\left(1-\gamma \sigma_{j}\right)^{t}\right) \sigma_{j}^{-1}
$$

Projection and complexity

Then,

- PCA + ERM = regularization.
- In principle, down stream learning is computationally cheaper...
...however SVD requires time

$$
O\left(n D^{2} \vee d^{3}\right)
$$

or with kernel matrices

$$
O\left(n^{2} C_{K} \vee n^{3}\right)
$$

Sketching

Let S be a $d \times M$ matrix s.t. $S_{i j} \sim \mathcal{N}(0,1)$ and

$$
\widehat{x}_{M}=\widehat{x} S .
$$

Computing \widehat{X}_{M} is time $O(n d M)$ and memory $O(n d)$

Dimensionality reduction with sketching

Note that if $x_{M}=S^{\top} x$ and $x_{M}^{\prime}=S^{\top} x^{\prime}$, then

$$
\frac{1}{M} \mathbb{E}\left[x_{M}^{\top} x_{M}^{\prime}\right]=\frac{1}{M} \mathbb{E}\left[x^{\top} S S^{\top} x^{\prime}\right]=x^{\top} \mathbb{E}\left[S S^{\top}\right] x^{\prime}=\frac{1}{M} x^{\top} \sum_{j=1}^{M} \underbrace{\mathbb{E}\left[s_{j} s_{j}^{\top}\right]}_{\text {Identity }} x^{\prime}=x^{\top} x^{\prime} .
$$

- Inner products, norms distances preserved in expectation..
- ... and with high probability for given M (Johnson-Linderstrauss Lemma).

Least squares with sketching

Consider

$$
\min _{w \in \mathbb{R}^{M}} \frac{1}{n}\left\|\widehat{X}_{M} w-\widehat{Y}\right\|^{2}+\lambda\|w\|^{2}, \quad \lambda>0 .
$$

Regularization is needed. For sketching

$$
\hat{X}_{M}^{\top} \widehat{x}_{M}=S^{\top} \widehat{x}^{\top} \widehat{x} S,
$$

is not the covariance matrix projected on its first M eigenvectors, but

$$
\mathbb{E}\left[\widehat{X}_{M} \widehat{X}_{M}^{\top}\right]=\mathbb{E}\left[\widehat{X} S S^{\top} \widehat{X}^{\top}\right]=\widehat{X X} \widehat{X}^{\top} .
$$

There is extra variability.

Least squares with sketching (cont.)

Consider

$$
\min _{w \in \mathbb{R}^{M}} \frac{1}{n}\left\|\widehat{X}_{M} w-\widehat{Y}\right\|^{2}+\lambda\|w\|^{2}, \quad \lambda>0 .
$$

The solution is

$$
\widehat{w}_{\lambda, M}=\left(\widehat{X}_{M}^{\top} \widehat{X}_{M}+\lambda n l\right)^{-1} \widehat{X}_{M}^{\top} \widehat{Y}
$$

Computing $\widehat{w}_{\lambda, M}$ is time $O\left(n M^{2}+n d M\right)$ and memory $O(n M)$.

Beyond linear sketching

Let S be a $d \times M$ random matrix and

$$
\widehat{X}_{M}=\sigma(\widehat{X} S)
$$

where $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is a given nonlinearity.

Then consider functions of the form,

$$
f_{M}(x)=x_{M}^{\top} w=\sum_{j=1}^{M} w^{j} \sigma\left(s_{j}^{\top} x\right) .
$$

Learning with random weights networks

$$
f_{M}(x)=x_{M}^{\top} w=\sum_{j=1}^{M} w^{j} \sigma\left(s_{j}^{\top} x\right)
$$

Here, w^{1}, \ldots, w^{M} can be computed solving a convex problem

$$
\min _{w \in \mathbb{R}^{M}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f_{M}\left(x_{i}\right)^{2}+\lambda\|w\|^{2}, \quad \lambda>0\right.
$$

in time $O\left(n M^{2}+n d M\right)$ and memory $O(n M)$.

Neural networks, random features and kernels

$$
f_{M}(x)=\sum_{j=1}^{M} w^{j} \sigma\left(s_{j}^{\top} x\right)
$$

- It is a one hidden layer neural network with random weights.
- It is defined by a random feature map $\Phi_{M}(x)=\sigma\left(S^{\top} x\right)$.
- There are a number of cases in which

$$
\mathbb{E}\left[\Phi_{M}(x)^{\top} \Phi_{M}\left(x^{\prime}\right)\right]=k\left(x, x^{\prime}\right)
$$

with k a suitable pos. def. kernel k.

Random Fourier features

Let $X=\mathbb{R}, \mathrm{s} \sim \mathcal{N}(0,1)$ and

$$
\Phi_{M}^{j}(x)=\frac{1}{\sqrt{M}} \underbrace{e^{i s_{j} x}}_{\text {complex exp. }}
$$

For $k\left(x, x^{\prime}\right)=e^{-\left|x-x^{\prime}\right|^{2} \gamma}$ it holds

$$
\mathbb{E}\left[\Phi_{M}(x)^{\top} \Phi_{M}\left(x^{\prime}\right)\right]=k\left(x, x^{\prime}\right) .
$$

Proof: from basic properties of the Fourier transform

$$
e^{-\left|x-x^{\prime}\right|^{2} \gamma}=\text { const. } \int d s \underbrace{e^{i s x}}_{\text {Inv. transf. - Transl. - Tranf. of Gaussian }} \underbrace{e^{-i s x}} \underbrace{e^{\frac{s^{2}}{\gamma}}}
$$

Random Fourier features (cont.)

- The above reasoning immediately extends to $X=\mathbb{R}^{d}$.
- Using symmetry one can show the same result holds for

$$
\Phi_{M}^{j}(x)=\frac{1}{\sqrt{M}} \cos \left(s_{j}^{\top} x+b_{j}\right)
$$

with b_{j} uniformly distributed.

Other random features

The relation

$$
\mathbb{E}\left[\Phi_{M}(x)^{\top} \Phi_{M}\left(x^{\prime}\right)\right]=k\left(x, x^{\prime}\right) .
$$

is satisfied by a number of nonlinearities and corresponding kernels:

- ReLU $\sigma(a)=|a|_{+} \ldots$
- Sigmoidal $\sigma(a), \ldots$
- ...

As for all feature map the relation with kernels is not one two one.

Infinite networks and large scale kernel methods

- One hidden layer network with infinite random weights= kernels.
- Random features are an approach to scaling kernel methods: from

$$
\text { time } O\left(n^{2} C_{k} \vee n^{3}\right) \quad \text { memory } O\left(n^{2}\right)
$$

to

$$
\text { time } O\left(n d M \vee n M^{2}\right) \quad \text { memory } O(n M)
$$

Subsampling aka Nyström method

Through the representer theorem, the ERM solution has the form,

$$
w=\sum_{i=1}^{n} x_{i} c_{i}=\widehat{X}^{\top} c .
$$

For $M<n$, choose a set of centers $\left\{\widetilde{x}_{1}, \ldots, \widetilde{x}_{M}\right\} \subset\left\{x_{1}, \ldots, x_{n}\right\}$ and let

$$
w_{M}=\sum_{i=1}^{M} x_{i}\left(c_{M}\right)_{i}=\widetilde{X}_{M}^{\top} c_{M} .
$$

Least squares with Nyström centers

Consider

$$
\min _{w_{M} \in \mathbb{R}^{d}} \frac{1}{n}\left\|\widehat{X} w_{M}-\widehat{Y}\right\|^{2}+\lambda\left\|w_{M}\right\|^{2}, \quad \lambda>0
$$

Equivalently

$$
\min _{c \in \mathbb{R}^{M}} \frac{1}{n}\|\underbrace{\widehat{X} \widetilde{X}_{M}^{\top}}_{\widehat{K}_{n M}} c_{M}-\widehat{Y}\|^{2}+\lambda c_{M}^{\top} \underbrace{\widetilde{X}_{M} \widetilde{X}_{M}^{\top}}_{\widehat{K}_{M}} c_{M}, \quad \lambda>0 .
$$

Least squares with Nyström centers

$$
\min _{c \in \mathbb{R}^{M}} \frac{1}{n}\|\underbrace{\widehat{X} \widetilde{X}_{M}^{\top}}_{\widehat{K}_{n M}} c_{M}-\widehat{Y}\|^{2}+\lambda c_{M}^{\top} \underbrace{\widetilde{X}_{M} \widetilde{X}_{M}^{\top}}_{\widehat{K}_{M}} c_{M}, \quad \lambda>0 .
$$

The solutions is

$$
\widehat{c}_{\lambda, M}=\left(\widehat{K}_{n M}^{\top} \widehat{K}_{M}+n \lambda \widehat{K}_{M}\right)^{-1} \widehat{K}_{n M}^{\top} \widehat{Y}
$$

requiring

$$
\text { time } O\left(n d M \vee n M^{2}\right) \quad \text { memory } O(n M)
$$

Nyström centers and sketching

Note that Nyström corresponds to sketching

$$
\widehat{x}_{M}=\widehat{x} S,
$$

with

$$
S=\widetilde{X}_{M}
$$

Regularization with sketching and Nyström centers

Considering regularization as we did for sketching leads to

$$
\min _{c \in \mathbb{R}^{M}} \frac{1}{n}\left\|\widehat{X} \widetilde{X}_{M}^{\top} c_{M}-\widehat{Y}\right\|^{2}+\lambda c_{M}^{\top} c_{M}, \quad \lambda>0 .
$$

In the Nyström derivation we ended up with Equivalently

$$
\min _{c \in \mathbb{R}^{M}} \frac{1}{n}\left\|\widehat{X} \widetilde{X}_{M}^{\top} c_{M}-\widehat{Y}\right\|^{2}+\lambda c_{M}^{\top} \widetilde{X}_{M} \widetilde{X}_{M}^{\top} c_{M}, \quad \lambda>0
$$

Different regularizers are considered.

Nyström approximation

A classical discrete approximation to integral equations.
For all x

$$
\int k\left(x, x^{\prime}\right) c\left(x^{\prime}\right) d x^{\prime}=y(x) \quad \mapsto \quad \sum_{j=1}^{M} k\left(x, \tilde{x}_{j}\right) c\left(\tilde{x}_{j}\right)=y\left(\tilde{x}_{j}\right)
$$

Related to to quadrature methods.

From operators to matrices.
For all $i=1, \ldots, n$

$$
\sum_{j=1}^{n} k\left(x_{i}, x_{j}\right) c_{j}=y_{j} \quad \mapsto \quad \sum_{j=1}^{M} k\left(x_{i}, \tilde{x}_{j}\right) c_{i}=y_{j}
$$

Nyström approximation and subsampling

For all $i=1, \ldots, n$

$$
\sum_{j=1}^{n} k\left(x_{i}, x_{j}\right) c_{j}=y_{j} \quad \mapsto \quad \sum_{j=1}^{M} k\left(x_{i}, \tilde{x}_{j}\right) c_{i}=y_{j}
$$

The above formulation highlights connection to columns subsampling

$$
\widehat{K} c=\widehat{Y} \quad \mapsto \quad \widehat{K}_{n M} c_{M}=\widehat{Y}
$$

In summary

- Projection (dim. reductions) regularizes.
- Reducing computations by sketching
- Nyström approximation and columns subsampling.

[^0]: ${ }^{1}$ Assuming invertibility for simplicity. In general replace with pseudoiwersese20/6.860 2018

