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Learning algorithm design so far

I ERM + Optimization

ŵλ = argmin
w∈Rd

1
n

n∑
i=1

`(yi ,w
>xi )+λ‖w‖2︸                           ︷︷                           ︸

L̂λ(w)

, wt+1 = wt−γt∇L̂λ(wt )

I Learning by optimization (GD/SGD)

ŵt+1 = ŵt −γt∇L̂(ŵt ),
1
n

n∑
i=1

`(yi ,w
>xi )︸               ︷︷               ︸

L̂(w)

.

Non linear extensions via features/kernels.
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Statistics and computations

I Regularization by penalization separates statistics and
computations

I Implicit regularization: training time controls statistics and
computations

What about memory?
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Large scale learning

In many modern applications, space is the real constraint.

X̂︸︷︷︸
n×d

, X̂>X̂︸︷︷︸
d×d

, X̂ X̂> or K̂︸     ︷︷     ︸
n×n

Think n ∼ d large!
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Projections and dimensionality reduction

Let S be a d ×M matrix and

X̂M = X̂S

Equivalenty
x ∈Rd 7→ xM = (s>j x)

M
j=1 ∈R

m

with s1, . . . ,sM columns of S .
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Learning with projected data

min
w∈RM

1
n

n∑
i=1

`(yi ,w
>(xM )i )+λ‖w‖2 , λ ≥ 0

We will focus on ERM based learning and least squares in particular.
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PCA

The SVD of X̂ is
X̂ = UΣVT

Consider VM the matrix d ×M of the first M columns of V .

A corresponding projection is given by

X̂M = X̂S , S = VM .
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Representer theorem for PCA

Note that

X̂ = UΣVT ⇔ X̂> = VΣU> ⇔ V = X̂>UΣ−1

and VM = X̂>UMΣ−1
M .

Then
X̂M = X̂VM = X̂ X̂>︸︷︷︸

K̂

UMΣ−1
M = UMΣM

and for any x

x>vj =
n∑

i=1

x>xi︸︷︷︸
k(x ,xi )

u i
j

σj
,

with (uj ,σ
2
j )j eigenvectors/eigenvalues of K̂ .
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Kernel PCA

If Φ is a feature map, then the SVD in feature space is

Φ̂ = UΣVT

and if VM is the matrix d ×M of the first M columns of V ,

Φ̂M = Φ̂VM .

Equivalently using kernels

Φ̂M = K̂UMΣ−1
M = UMΣM ,

and for any x

Φ(x)>vj =
n∑

i=1

k(x ,xi )
u i
j

σj
.

L.Rosasco, 9.520/6.860 2018



PCA+ERM for least squares

Consider (no penalization)

min
w∈RM

1
n

∥∥∥X̂Mw − Ŷ
∥∥∥2
.

The solution is1

ŵM = (X̂>M X̂M )−1X̂>M Ŷ .

1Assuming invertibility for simplicity. In general replace with pseudoiverse.L.Rosasco, 9.520/6.860 2018



PCA+ERM for least squares

It is easy to see that that , for all x

fM (x) = x>M ŵM =
M∑
j=1

1
σ j

u>j Ŷv
>
j x

where xM = VMx .

Essentially due to the fact that

X̂>M X̂M = V>M X̂>X̂VM

is the covariance matrix projected on its first M eigenvectors.
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PCR, TSVD, Filtering

fM (x) =
M∑
j=1

1
σ j

u>j Ŷv
>
j x

I PCA+ERM is called Principal component regression in statistics

I . . . and truncated singular value decomposition in linear algebra.

I It corresponds to the spectral filter

F(σj ) =

 1
σ j , j ≤M

0, oth.

Compare to Tikhonov and Landweber,

FTik.(σj ) = σj /(1+λσj ) FLand.(σj ) = (1− (1−γσj )t )σ−1
j .
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Projection and complexity

Then,
I PCA + ERM = regularization.
I In principle, down stream learning is computationally cheaper. . .

. . . however SVD requires time

O(nD2 ∨d3)

or with kernel matrices
O(n2CK ∨n3)
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Sketching

Let S be a d ×M matrix s.t. Sij ∼N (0,1) and

X̂M = X̂S .

Computing X̂M is time O(ndM) and memory O(nd)
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Dimensionality reduction with sketching

Note that if xM = S>x and x ′M = S>x ′ , then

1
M

E[x>Mx ′M ] =
1
M

E[x>SS>x ′] = x>E[SS>]x ′ =
1
M

x>
M∑
j=1

E[sjs
>
j ]︸  ︷︷  ︸

Identity

x ′ = x>x ′ .

I Inner products, norms distances preserved in expectation..
I ... and with high probability for given M (Johnson-Linderstrauss

Lemma).

L.Rosasco, 9.520/6.860 2018



Least squares with sketching

Consider

min
w∈RM

1
n

∥∥∥X̂Mw − Ŷ
∥∥∥2

+λ‖w‖2 , λ > 0.

Regularization is needed. For sketching

X̂>M X̂M = S>X̂>X̂S ,

is not the covariance matrix projected on its first M eigenvectors, but

E[X̂M X̂>M ] = E[X̂SS>X̂>] = X̂ X̂>.

There is extra variability.
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Least squares with sketching (cont.)

Consider

min
w∈RM

1
n

∥∥∥X̂Mw − Ŷ
∥∥∥2

+λ‖w‖2 , λ > 0.

The solution is
ŵλ,M = (X̂>M X̂M +λnI)−1X̂>M Ŷ .

Computing ŵλ,M is time O(nM2 +ndM) and memory O(nM).
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Beyond linear sketching

Let S be a d ×M random matrix and

X̂M = σ(X̂S)

where σ :R→R is a given nonlinearity.

Then consider functions of the form,

fM (x) = x>Mw =
M∑
j=1

w jσ(s>j x).
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Learning with random weights networks

fM (x) = x>Mw =
M∑
j=1

w jσ(s>j x)

Here, w1, . . . ,wM can be computed solving a convex problem

min
w∈RM

1
n

n∑
i=1

(yi − fM (xi )
2 +λ‖w‖2 , λ > 0,

in time O(nM2 +ndM) and memory O(nM).

L.Rosasco, 9.520/6.860 2018



Neural networks, random features and kernels

fM (x) =
M∑
j=1

w jσ(s>j x)

I It is a one hidden layer neural network with random weights.

I It is defined by a random feature map ΦM (x) = σ(S>x).

I There are a number of cases in which

E[ΦM (x)>ΦM (x ′)] = k(x ,x ′)

with k a suitable pos. def. kernel k .
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Random Fourier features

Let X =R, s ∼N (0,1) and

Φ
j
M (x) =

1
√
M

e isj x︸︷︷︸
complex exp.

.

For k(x ,x ′) = e−|x−x
′ |2γ it holds

E[ΦM (x)>ΦM (x ′)] = k(x ,x ′).

Proof: from basic properties of the Fourier transform

e−|x−x
′ |2γ = const .

∫
ds e isx︸︷︷︸

Inv. transf. -

e−isx︸︷︷︸
Transl.

e
s2
γ︸︷︷︸

- Tranf. of Gaussian

.
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Random Fourier features (cont.)

I The above reasoning immediately extends to X =R
d .

I Using symmetry one can show the same result holds for

Φ
j
M (x) =

1
√
M

cos(s>j x + bj )

with bj uniformly distributed.
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Other random features

The relation
E[ΦM (x)>ΦM (x ′)] = k(x ,x ′).

is satisfied by a number of nonlinearities and corresponding kernels:
I ReLU σ(a) = |a |+ . . .
I Sigmoidal σ(a), . . .
I . . .

As for all feature map the relation with kernels is not one two one.
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Infinite networks and large scale kernel methods

I One hidden layer network with infinite random weights= kernels.

I Random features are an approach to scaling kernel methods:
from

timeO(n2Ck ∨n3) memoryO(n2)

to
timeO(ndM ∨nM2) memoryO(nM)
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Subsampling aka Nyström method

Through the representer theorem, the ERM solution has the form,

w =
n∑

i=1

xici = X̂>c .

For M < n , choose a set of centers {̃x1, . . . , x̃M } ⊂ {x1, . . . ,xn } and let

wM =
M∑
i=1

xi (cM )i = X̃>McM .
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Least squares with Nyström centers

Consider

min
wM∈Rd

1
n

∥∥∥X̂wM − Ŷ
∥∥∥2

+λ‖wM ‖2 , λ > 0.

Equivalently

min
c∈RM

1
n
‖ X̂ X̃>M︸︷︷︸

K̂nM

cM − Ŷ‖2 +λc>M X̃M X̃>M︸︷︷︸
K̂M

cM , λ > 0.
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Least squares with Nyström centers

min
c∈RM

1
n
‖ X̂ X̃>M︸︷︷︸

K̂nM

cM − Ŷ‖2 +λc>M X̃M X̃>M︸︷︷︸
K̂M

cM , λ > 0.

The solutions is

ĉλ,M = (K̂>nM K̂M +nλK̂M )−1K̂>nM Ŷ

requiring
timeO(ndM ∨nM2) memoryO(nM)
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Nyström centers and sketching

Note that Nyström corresponds to sketching

X̂M = X̂S ,

with
S = X̃M .
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Regularization with sketching and Nyström centers

Considering regularization as we did for sketching leads to

min
c∈RM

1
n
‖X̂ X̃>McM − Ŷ‖2 +λc>McM , λ > 0.

In the Nyström derivation we ended up with Equivalently

min
c∈RM

1
n
‖X̂ X̃>McM − Ŷ‖2 +λc>M X̃M X̃>McM , λ > 0.

Different regularizers are considered.
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Nyström approximation

A classical discrete approximation to integral equations.
For all x∫

k(x ,x ′)c(x ′)dx ′ = y(x) 7→
M∑
j=1

k(x , x̃j )c(x̃j ) = y(x̃j )

Related to to quadrature methods.

From operators to matrices.
For all i = 1, . . . ,n

n∑
j=1

k(xi ,xj )cj = yj 7→
M∑
j=1

k(xi , x̃j )ci = yj
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Nyström approximation and subsampling

For all i = 1, . . . ,n

n∑
j=1

k(xi ,xj )cj = yj 7→
M∑
j=1

k(xi , x̃j )ci = yj

The above formulation highlights connection to columns
subsampling

K̂c = Ŷ 7→ K̂nMcM = Ŷ
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In summary

I Projection (dim. reductions) regularizes.

I Reducing computations by sketching

I Nyström approximation and columns subsampling.
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