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Learning algorithm design so far

»> ERM + Optimization

1y —
= ;e(y,-, whx) F AR wess = wep VI (we)
=

W) = argmin
weRd

LM (w)
» Learning by optimization (GD/SGD)

Wep1 = W, -y VL(Wy), -
i=1

Non linear extensions via features/kernels.
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Statistics and computations

> Regularization by penalization separates statistics and
computations

> Implicit regularization: training time controls statistics and
computations

What about memory?
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Large scale learning

In many modern applications, space is the real constraint.

X , XTX, XXT or K
S—— S—— ~——
nxd dxd nxn

Think n ~ d large!
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Projections and dimensionality reduction

Let S be a d x M matrix and

Xy = XS

Equivalenty

xeRY — xy=(s/x); eR”

with sq,...,s)y columns of S.
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Learning with projected data

n

1
min — €(y,~,WT(XM),~)+A||W||2, A>0

M n
weR =1

We will focus on ERM based learning and least squares in particular.
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PCA

The SVD of X is R
X=uxv’

Consider V), the matrix d x M of the first M columns of V.

A corresponding projection is given by

Xy = XS, S=V,.
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Representer theorem for PCA

Note that
X=uxv’T N XT=vyuT N V=XTux!
and Vi = XTUpyZy}-

Then . . s
Xy = XVy = XXT UyZpt = Uy Ty
~——
3

and for any x

3

x'v;= X' X
’-:1\/—/
k(xx;)

S|s

with (uj,ajz)j eigenvectors/eigenvalues of K.
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Kernel PCA

If @ is a feature map, then the SVD in feature space is
o =Uxv’
and if V) is the matrix d x M of the first M columns of V,

Dy =DV,

Equivalently using kernels
Dy = KUyt = UySu,
and for any x

n U{
CD(x)ij = Zk(x, x,»)j.
i=1 J
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PCA+ERM for least squares

Consider (no penalization)

TR =112
WnewlanM;“XMw—Y” .

The solution is!

W = (KT %) XTI,

1Assuming invertibility for simplicity. In general replace with pseudweivesse20/6.860 2018



PCA+ERM for least squares

It is easy to see that that, for all x

M
T 1 Ty, T
fm(x) = xywy = E L) Yv; x
4 j
j=1

where xyy = V) x.

Essentially due to the fact that
X X = Vi XTX Viy

is the covariance matrix projected on its first M eigenvectors.
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PCR, TSVD, Filtering

M

1
fu(x)= gjuj-'— Yy, x
j=1

» PCA+ERM is called Principal component regression in statistics
» ...and truncated singular value decomposition in linear algebra.

» |t corresponds to the spectral filter

Compare to Tikhonov and Landweber,
Fric(0;) = 0j/(1+A0))  Flana.(0;) = (1= (1=y0;)")a; .
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Projection and complexity

Then,
» PCA + ERM = regularization.

» In principle, down stream learning is computationally cheaper...

...however SVD requires time
O(nD? v d?)

or with kernel matrices
O(nCg v n3)
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Sketching

Let S be a d x M matrix s.t. S; ~ NV(0,1) and

Xy = XS.

Computing Xy is time O(ndM) and memory O(nd)
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Dimensionality reduction with sketching

Note that if x;y = STx and x/, = ST x’, then
M M

M
1 1 1 )
m E[xyxy] = m E[x"SSTx'] = xTE[SST]x" = MXT ZIE[sjsz] x'=x"x.
j=1—
Identity

> Inner products, norms distances preserved in expectation..

» ... and with high probability for given M (Johnson-Linderstrauss
Lemma).
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Least squares with sketching

Consider

min —“XMW Y” +Alwl)?, A>o0.
weRM N

Regularization is needed. For sketching
XTXM STXTXS,
is not the covariance matrix projected on its first M eigenvectors, but
E[XyX,,] = E[XSSTXT] = XXT.

There is extra variability.
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Least squares with sketching (cont.)

Consider
min l“’)?MW—VHZ+/\||w||2, A>0.

welRM N

The solution is R L
W = (XX +An) XY,

Computing Wy y is time O(nM? 4 ndM) and memory O(nM).
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Beyond linear sketching

Let S be a d x M random matrix and
5<\M = 0'(5(\5)

where 0 : R — R is a given nonlinearity.

Then consider functions of the form,
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Learning with random weights networks

M
fn(x) = xyw = ija(szx)
j=1

M

Here, wl,. ..,w" can be computed solving a convex problem

n

1
min = Y (y;—fy(x)?+Alwl>, A>0,

M n
welR =

in time O(nM? 4+ ndM) and memory O(nM).
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Neural networks, random features and kernels

> |t is a one hidden layer neural network with random weights.
> It is defined by a random feature map ®@y(x) = o (ST x).

» There are a number of cases in which
E[®y(x) TPy (x")] = k(x,x")

with k a suitable pos. def. kernel k.
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Random Fourier features

Let X =R, s ~N(0,1) and

O (x) = — eisix
M( ) \/M —_—

complex exp.
72
For k(x,x") = e 7 it holds

E[Dy (x) " P (x")] = k(x,x).

Proof: from basic properties of the Fourier transform

2

|2 : i s=

e XY —const. | ds e e e’
~—— ~—— ——

Inv. transf. - Transl. - Tranf. of Gaussian
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Random Fourier features (cont.)

> The above reasoning immediately extends to X = R9.

» Using symmetry one can show the same result holds for
J _ 1 T
D, (x) = \/_M cos(s; x + by)

with b; uniformly distributed.
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Other random features

The relation
Efu (x) @y (x')] = k(x,x).

is satisfied by a number of nonlinearities and corresponding kernels:
» RelUo(a)=lals ...
> Sigmoidal o(a), ...
> ...

As for all feature map the relation with kernels is not one two one.
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Infinite networks and large scale kernel methods

» One hidden layer network with infinite random weights= kernels.

» Random features are an approach to scaling kernel methods:
from
timeO(n?C, v n?) memoryO(n?)

to
timeO(ndMVan) memoryO(nM)
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Subsampling aka Nystrém method

Through the representer theorem, the ERM solution has the form,

n

w= E xici=X"c.

i=1

For M < n, choose a set of centers {xq,..., Xy} C {xq,..

M
wy = in(CM)i = Xy cm-
i—1

., Xn} and let
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Least squares with Nystrom centers

Consider

min —||><WM Y“ + Allwyll?, A>o0.
wy€RI N

Equivalently

min —|| XXT ey = YII2 + Ay, XuXy e, A>0.
ceRM N —— S—

Knm K
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Least squares with Nystrom centers

1 — — _ o~
min = XX}, ey = Y12+ Ac), XX cu, A >0.
CEIRM n ———

Knm K

The solutions is
’C-f\/\‘M = (’IZrTMT(\M =+ n/\’IZM)_lk\JM?

requiring
timeO(ndM v nM?) memoryO(nM)
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Nystrom centers and sketching

Note that Nystrom corresponds to sketching
Xy = XS,

with
S = Xuy-

L.Rosasco, 9.520/6.860 2018



Regularization with sketching and Nystrom centers

Considering regularization as we did for sketching leads to

1 — —
min =|[XX! cy = Y2+ Aclcy, A>O0.
min LIRKjeu - VIP + Acjjen

In the Nystrém derivation we ended up with Equivalently

1 _ —
min =|IXX,,cm — Y|I? + Ay XuXyeu,  A>0.
ceRM N

Different regularizers are considered.
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Nystréom approximation

A classical discrete approximation to integral equations.
For all x

Related to to quadrature methods.

From operators to matrices.
Foralli=1,...,n

n M
Zk(xiij)cj =Y — Zk(Xi')?j)Ci =y;
j=1 j=1
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Nystrom approximation and subsampling

Foralli=1,...,n

n M

Y Kbwx)g =y ) k(xuX)a =y

j=1 j=1

The above formulation highlights connection to columns
subsampling

Kc=Y (ad KnMCM:Y

L.Rosasco, 9.520/6.860 2018



In summary

» Projection (dim. reductions) regularizes.

» Reducing computations by sketching

» Nystrom approximation and columns subsampling.
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