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Learning algorithms so far

ERM + explicit `2 penalty

min
w∈Rd

1
n

n∑
i=1

`(yi ,w
>xi) +λ‖w‖2.

I Implicit regularization by optimization.

I Regularization with projections/sketching.

I Non linear extension with features/kernels.

What about other norms/penalties?
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Sparsity

The function of interest depends on few building blocks
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Why sparsity?

I Interpretability

I High dimensional statistics, n� d

I Compression
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What is sparsity?

f (x) =
d∑
j=1

xjwj

Sparse coefficients: few wj , 0
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Sparsity and dictionaries

More generally consider

f (x) =
p∑
j=1

φj (x)wj

with φ1, . . . ,φp dictionary.
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Sparsity and dictionaries (cont.)

The concept of sparsity depends on the considered dictionary.

If we let (φj )j ,(ψj )j two dictionaries of lin. indip. features such that

f (x) =
∑
j

φjβj =
∑
j

ψjbj ,

then ‖f ‖ = ‖β‖ = ‖b‖.

However, sparsity on (φj )j ,(ψj )j can be very different!
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Linear

We stick to linear functions for sake of simplicity.

f (x) =
d∑
j=1

xjwj .

Given data, consider the linear system

X̂w = Ŷ .
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Linear systems with sparsity

n� d

There is a solution with s� d non zero entries in unknown locations.
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Best subset selection

Solve for all possible columns subsets.

Aka torturing the data until they confess.
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Sparse regularization

Best subset selection is equivalent to

min
w∈Rd
��
�*
‖w‖0

‖w‖, subj. to X̂w = Ŷ ,

or

min
w∈Rd

1
n
‖X̂w − Ŷ ‖2 +λ��

�*
‖w‖0

‖w‖2

`0-norm

‖w‖0 =
d∑
j=1

1{wj,0}
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Best subset selection

min
w∈Rd

‖w‖0, subj. to X̂w = Ŷ ,

The problem is combinatorially hard.

Approximate approaches include:

1. Greedy methods.

2. Convex relaxations.
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Greedy methods

Initalize, then

I select a variable.
I Compute solution.
I Update.
I Repeat.
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Matching pursuit

r0 = Ŷ , w0 = 0, I0 = ∅

for i = 1 to T
I Let X̂j = X̂ej , and select j ∈ {1, . . . ,d}maximizing 1

aj = v
2
j ‖X̂j‖

2 with vj =
r>i−1X̂j

‖X̂j‖2
,

I Ii = Ii−1 ∪ {j},
I wi = wi−1 + vjej
I ri = ri−1 − X̂jvj = Ŷ − X̂wi

1Note that

vj = argmin
v∈R

‖X̂jv − ri−1‖2, and, ‖X̂jvj − ri−1‖2 = ‖ri−1‖ − aj
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Orthogonal Matching pursuit

r0 = Ŷ , w0 = 0, I0 = ∅

for i = 1 to T
I Let X̂j = X̂ej , and select j ∈ {1, . . . ,d}maximizing

aj = v
2
j ‖X̂j‖

2 with vj =
r>i−1X̂j

‖X̂j‖2
,

I Ii = Ii−1 ∪ {j},
I wi = argminw ‖X̂MIiw − Ŷ ‖

2, where (MIiw)j = δj∈Iiwj
I ri = Ŷ − X̂wi
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Convex relaxation

Lasso (statistics) or Basis Pursuit (signal processing)

min
w∈Rd

1
n
‖X̂w − Ŷ ‖2 +λ��

�*
‖w‖1

‖w‖2

`1-norm

‖w‖1 =
d∑
i=1

|wi |.

Next, we discuss modeling + optimization aspects.
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The geometry of sparsity

min‖w‖1, s.t. X̂w = Ŷ
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Ridge regression and sparsity

Replace ‖w‖1 with ‖w‖?
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`1 vs `2

Unlike ridge-regression, `1 regularization leads to sparsity!
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Optimization for sparse regularization

min
w∈Rd

1
n
‖X̂w − Ŷ ‖2 +λ‖w‖1

I Convex but not smooth
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Optimization

I Could be solved via the subgradient method
I Objective function is composite

min
w∈Rd

1
n
‖X̂w − Ŷ ‖2︸         ︷︷         ︸

convex smooth

+λ ‖w‖1︸︷︷︸
convex
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Proximal methods

min
w∈Rd

E(w) +R(w)

Let

ProxR(w) = min
v∈Rd

1
2
‖v −w‖2 +R(v)

and, for w0 = 0
wt = ProxγR(wt−1 −γ∇E(wt−1))
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Proximal Methods (cont.)

min
w∈Rd

E(w) +R(w)

Let R :Rp→R convex continuous and E :Rp→R differentiable,
convex and such that

‖∇E(w)−∇E(w′)‖ ≤ L‖w −w′‖

(e.g. supw ‖H(w)︸︷︷︸
hessian

‖ ≤ L), Then for γ = 1/L,

wt = ProxγR(wt−1 −γ∇E(wt−1))

converges to a minimizer of E +R.
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Soft thresholding

R(w) = λ‖w‖1

(Proxλ‖·‖1(w))j =


wj −λ wj > λ

0 wj ∈ [−λ,λ]
wj +λ wj < −λ
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ISTA

wt+1 = Proxγλ‖·‖1(wt −
γ

n
X̂>(X̂wt − Ŷ ))

(Proxγλ‖·‖1(w))
j =


wj −γλ wj > γλ

0 wj ∈ [−γλ,γλ]
wj +γλ wj < −γλ

Small coefficients are set to zero!
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Back to inverse problems

X̂w = Ŷ

If xi are i.i.d. gaussian vectors, ‖w‖0 = s and

n ≥ 2s log
d
s

then `1 regularization recovers w with high probability.
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Sampling theorem

Classically 2ω0 samples needed
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LASSO

min
w∈Rd

1
n
‖X̂w − Ŷ ‖2 +λ‖w‖1

I Interpretability: variable selection!
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Variable selection and correlation

min
w∈Rd

1
n
‖X̂w − Ŷ ‖2 +λ‖w‖1︸                     ︷︷                     ︸
���strictly convex

Cannot handle cor-
relations between
the variables
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Elastic net regularization

min
w∈Rd

1
n
‖X̂w − Ŷ ‖2 + λ(α‖w‖1 + (1−α)‖w‖2)
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ISTA for elastic net

wt+1 = Proxγλα‖·‖1(wt −γ
2
n
X̂>(X̂wt − Ŷ )−γλ(1−α)wt−1)

(Proxγλα‖·‖1(w))
j =


wj −γλα wj > γλα

0 wj ∈ [−γλα,γλα]
wj +γλα wj < −γλα

Small coefficients are set to zero!
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Grouping effect

Strong convexity

=⇒ All relevant (possibly correlated) variables are selected

L.Rosasco, 9.520/6.860 2018



Elastic net and `p norms
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1
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(
d∑
j=1

|wj |p)1/p = 1

`p norms are similar to elastic net but they are smooth (no “kink”!)
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Summary

I Sparsity
I Geometry
I Computations
I Variable selection and elastic net

L.Rosasco, 9.520/6.860 2018


