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Learning algorithms so far

ERM + explicit £? penalty

1 n
min — Zﬁ(y,',wai) + Alwl%.
i=1
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> Implicit regularization by optimization.
» Regularization with projections/sketching.

» Non linear extension with features/kernels.

What about other norms/penalties?
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Sparsity

The function of interest depends on few building blocks
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Why sparsity?

» Interpretability

» High dimensional statistics, n < d

» Compression
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What is sparsity?

d
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Sparse coefficients: few w; = 0
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Sparsity and dictionaries

More generally consider

with ¢1,..., ¢, dictionary.
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Sparsity and dictionaries (cont.)

The concept of sparsity depends on the considered dictionary.

If we let (¢;);,(1;); two dictionaries of lin. indip. features such that
f=) 6ib=) wiby
j j

then ||| = [IBll = [Ibll.

However, sparsity on (¢;);,(¢;); can be very different!
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Linear

We stick to linear functions for sake of simplicity.

d

f(x)= ijw]-.

j=1

Given data, consider the linear system
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Linear systems with sparsity

n<d

There is a solution with s < d non zero entries in unknown locations.
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Best subset selection

Solve for all possible columns subsets.

X —

Naf!

w

Aka torturing the data until they confess.
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Sparse regularization

Best subset selection is equivalent to

llwllo - =
min JJwt]] subj. to Xw=Y,
welR4
or
L loll
min —||Xw — Y| + Allwt?”
weRd 1
{p-norm

d
llo = ) ;o)
j=1
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Best subset selection

min ||w||o, subj. to Xw=Y,
weRY

The problem is combinatorially hard.

Approximate approaches include:

1. Greedy methods.

2. Convex relaxations.
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Greedy methods

Initalize, then

> select a variable.
» Compute solution.
> Update.
> Repeat.
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Matching pursuit

TOZY, wO:O, I():@

fori=1toT
> Let )?] = )?e]-, and select j € {1,...,d} maximizing 1
=
i1 Xj

21T 12 .
(ZZVHX” with v, = ——=
o IR

> I =11 U{j},
> w,=w;_ +'I/]'€]'

| 4 ;=11 —5(\]'1}]‘ = /Y\—j(\wl'

INote that

vj =argmin|Xjv—ri_1|%,  and, [Xjvj—ri_1l* =lrio1ll-a;
veR
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Orthogonal Matching pursuit

—

VOZY, wO:O, I():@

fori=1toT
> Let}’(\j = X\ej, and select j € {1,...,d} maximizing

> I;=1;_1 U{j},

> w; =argmin,, | XM;w - Y|, where (M w); = Sjer,w;

> 1= ?—)?w,-
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Convex relaxation

Lasso (statistics) or Basis Pursuit (signal processing)

1 - [llly
min —||Xw - Y|I* + At
weRd 1

{1-norm

d
ol =) fwil.
i=1

Next, we discuss modeling + optimization aspects.
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The geometry of sparsity

min|jw|;, st. Xw=Y
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Ridge regression and sparsity

8

Replace [[wll; with [[w]]? <>
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g] VS 52

Unlike ridge-regression, ¢; regularization leads to sparsity!
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Optimization for sparse regularization

R
min — || Xw - Y]||® + A||lwl|;
weRd N

» Convex but not smooth
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Optimization

> Could be solved via the subgradient method

» Objective function is composite

S T
min — || Xw - Y]||>+2 |Jwl|;
welRd 1 S~

convex

|
convex smooth
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Proximal methods

min E(w) + R(w)
weR?

Let .
Proxg(w) = min =||v - w||* + R(v)
veR? 2

and, for wg =0
w; = Prox, (w1 — yVE(w;_1))
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Proximal Methods (cont.)

min E(w) + R(w)
weR4

Let R:IRP — IR convex continuous and E : R — R differentiable,
convex and such that

IVE(w) - VE(W')|| < Lljw - w’||
(e.g. sup, || H(w) || <L), Then for y =1/L,

~——
hessian

wy = PfOXyR(wt—l —yVE(w;-1))

converges to a minimizer of E + R.
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Soft thresholding

R(w) = Allwlly

w]—/'\ w]>/\

(PI‘OX,\”,HI(‘W))]' =<0 wj € [-A,A] A
wj+ A wj < -A
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ISTA

w1 = Prox, ., (we — %X\F(X\wt -Y))

w —yA wi>yp)
(Proxﬂ”.”l(w))] =20 ' w]i el-yAyA]
w+yd w <-yA

Small coefficients are set to zero!
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Back to inverse problems

If x; are i.i.d. gaussian vectors, |[w||p = s and
d
n>2slog —
s

then {1 regularization recovers w with high probability.
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Sampling theorem

—Wo wo

Classically 2w samples needed

A

0 1

L.Rosasco, 9.520/6.860 2018



LASSO

1= =
min — || Xw - Y||* + Aljwll;
welRd 1

> Interpretability: variable selection!
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Variable selection and correlation

welRY

1 —~ —
min — || Xw - Y]||? + A||lwl|;
n

strietly convex

Cannot handle cor-
relations between

the variables
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Elastic net regularization

T
min = || Xw - Y|I> + Aalwll; + (1 -a)llwl?)
welRd 1

€1+€2 Y
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ISTA for elastic net

2 — —~
Wiy1 = PTOXy g, (wy — y;)’(\r(th -Y)-yA1l-a)w;q)

w —yla w >yla
(Proxy,\a”.”l(w))] =<0 . w{ € [-yAa,yAa]
w+yla w <-yla

Small coefficients are set to zero!
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Grouping effect

Strong convexity

= All relevant (possibly correlated) variables are selected
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Elastic net and €p norms

il + Lwl? =1 :

p— —_— w =

2T (E lw;lP)P =1
j=1

¢, norms are similar to elastic net but they are smooth (no “kink™!)
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Summary

> Sparsity
» Geometry
» Computations

» Variable selection and elastic net
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