MIT 9.520/6.860, Fall 2018
 Statistical Learning Theory and Applications

Class 08: Sparsity Based Regularization

Lorenzo Rosasco

Learning algorithms so far

ERM + explicit ℓ^{2} penalty

$$
\min _{w \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} x_{i}\right)+\lambda\|w\|^{2}
$$

- Implicit regularization by optimization.
- Regularization with projections/sketching.
- Non linear extension with features/kernels.

What about other norms/penalties?

Sparsity

The function of interest depends on few building blocks

Why sparsity?

- Interpretability
- High dimensional statistics, $n \ll d$
- Compression

What is sparsity?

$$
f(x)=\sum_{j=1}^{d} x_{j} w_{j}
$$

Sparse coefficients: few $w_{j} \neq 0$

Sparsity and dictionaries

More generally consider

$$
f(x)=\sum_{j=1}^{p} \phi_{j}(x) w_{j}
$$

with $\phi_{1}, \ldots, \phi_{p}$ dictionary.

Sparsity and dictionaries (cont.)

The concept of sparsity depends on the considered dictionary.

If we let $\left(\phi_{j}\right)_{j},\left(\psi_{j}\right)_{j}$ two dictionaries of lin. indip. features such that

$$
f(x)=\sum_{j} \phi_{j} \beta_{j}=\sum_{j} \psi_{j} b_{j}
$$

then $\|f\|=\|\beta\|=\|b\|$.

However, sparsity on $\left(\phi_{j}\right)_{j},\left(\psi_{j}\right)_{j}$ can be very different!

Linear

We stick to linear functions for sake of simplicity.

$$
f(x)=\sum_{j=1}^{d} x_{j} w_{j} .
$$

Given data, consider the linear system

$$
\widehat{X} w=\widehat{Y} .
$$

Linear systems with sparsity

$$
n \ll d
$$

There is a solution with $s \ll d$ non zero entries in unknown locations.

Best subset selection

Solve for all possible columns subsets.

Aka torturing the data until they confess.

Sparse regularization

Best subset selection is equivalent to

$$
\min _{w \in \mathbb{R}^{d}}\|w o\|^{\|} \quad \stackrel{\|_{0}}{ } \text { subj. to } \quad \widehat{X} w=\widehat{Y}
$$

or

$$
\min _{w \in \mathbb{R}^{d}} \frac{1}{n}\|\widehat{X} w-\widehat{Y}\|^{2}+\lambda \Downarrow w\left\|^{2^{-}}\right\| w \|_{0}
$$

ℓ_{0}-norm

$$
\|w\|_{0}=\sum_{j=1}^{d} \mathbf{1}_{\left\{w_{j} \neq 0\right\}}
$$

Best subset selection

$$
\min _{10}\|w\|_{0}, \quad \text { subj. to } \quad \widehat{X} w=\widehat{Y}
$$

The problem is combinatorially hard.

Approximate approaches include:

1. Greedy methods.
2. Convex relaxations.

Greedy methods

Initalize, then

- select a variable.
- Compute solution.
- Update.
- Repeat.

Matching pursuit

$$
r_{0}=\widehat{Y}, \quad w_{0}=0, \quad I_{0}=\emptyset
$$

for $i=1$ to T

- Let $\widehat{X}_{j}=\widehat{X} e_{j}$, and select $j \in\{1, \ldots, d\}$ maximizing ${ }^{1}$

$$
a_{j}=v_{j}^{2}\left\|\widehat{X}_{j}\right\|^{2} \quad \text { with } \quad v_{j}=\frac{r_{i-1}^{\top} \widehat{X}_{j}}{\left\|\widehat{X}_{j}\right\|^{2}},
$$

- $I_{i}=I_{i-1} \cup\{j\}$,
- $w_{i}=w_{i-1}+v_{j} e_{j}$
- $r_{i}=r_{i-1}-\widehat{X}_{j} v_{j}=\widehat{Y}-\widehat{X} w_{i}$
${ }^{1}$ Note that

$$
v_{j}=\underset{v \in \mathbb{R}}{\arg \min }\left\|\hat{X}_{j} v-r_{i-1}\right\|^{2}, \quad \text { and, } \quad\left\|\hat{X}_{j} v_{j}-r_{i-1}\right\|^{2}=\left\|r_{i-1}\right\|-a_{j}
$$

Orthogonal Matching pursuit

$$
r_{0}=\widehat{Y}, \quad w_{0}=0, \quad I_{0}=\emptyset
$$

for $i=1$ to T

- Let $\widehat{X}_{j}=\widehat{X} e_{j}$, and select $j \in\{1, \ldots, d\}$ maximizing

$$
a_{j}=v_{j}^{2}\left\|\widehat{X}_{j}\right\|^{2} \quad \text { with } \quad v_{j}=\frac{r_{i-1}^{\top} \widehat{X}_{j}}{\left\|\widehat{X}_{j}\right\|^{2}},
$$

- $I_{i}=I_{i-1} \cup\{j\}$,
- $w_{i}=\arg \min _{w}\left\|\widehat{X} M_{I_{i}} w-\widehat{Y}\right\|^{2}$, where $\left(M_{I_{i}} w\right)_{j}=\delta_{j \in I_{i}} w_{j}$
- $r_{i}=\widehat{Y}-\widehat{X} w_{i}$

Convex relaxation

Lasso (statistics) or Basis Pursuit (signal processing)

$$
\min _{w \in \mathbb{R}^{d}} \frac{1}{n}\|\widehat{X} w-\widehat{Y}\|^{2}+\lambda\|w\|^{-2^{-2}}\|w\|_{1}
$$

ℓ_{1}-norm

$$
\|w\|_{1}=\sum_{i=1}^{d}\left|w_{i}\right|
$$

Next, we discuss modeling + optimization aspects.

The geometry of sparsity

Ridge regression and sparsity

$$
\ell_{1} \mathrm{vs} \ell_{2}
$$

Unlike ridge-regression, ℓ_{1} regularization leads to sparsity!

Optimization for sparse regularization

$$
\min _{w \in \mathbb{R}^{d}} \frac{1}{n}\|\widehat{X} w-\widehat{Y}\|^{2}+\lambda\|w\|_{1}
$$

- Convex but not smooth

Optimization

- Could be solved via the subgradient method
- Objective function is composite

Proximal methods

$$
\min _{w \in \mathbb{R}^{d}} E(w)+R(w)
$$

Let

$$
\operatorname{Prox}_{R}(w)=\min _{v \in \mathbb{R}^{d}} \frac{1}{2}\|v-w\|^{2}+R(v)
$$

and, for $w_{0}=0$

$$
w_{t}=\operatorname{Prox}_{\gamma R}\left(w_{t-1}-\gamma \nabla E\left(w_{t-1}\right)\right)
$$

Proximal Methods (cont.)

$$
\min _{w \in \mathbb{R}^{d}} E(w)+R(w)
$$

Let $R: \mathbb{R}^{p} \rightarrow \mathbb{R}$ convex continuous and $E: \mathbb{R}^{p} \rightarrow \mathbb{R}$ differentiable, convex and such that

$$
\left\|\nabla E(w)-\nabla E\left(w^{\prime}\right)\right\| \leq L\left\|w-w^{\prime}\right\|
$$

(e.g. $\left.\sup _{w}\|H(w)\| \leq L\right)$, Then for $\gamma=1 / L$,
hessian

$$
w_{t}=\operatorname{Prox}_{\gamma R}\left(w_{t-1}-\gamma \nabla E\left(w_{t-1}\right)\right)
$$

converges to a minimizer of $E+R$.

Soft thresholding

$$
\begin{gathered}
R(w)=\lambda\|w\|_{1} \\
\left(\operatorname{Prox}_{\lambda\|\cdot\|_{1}}(w)\right)_{j}= \begin{cases}w_{j}-\lambda & w_{j}>\lambda \\
0 & w_{j} \in[-\lambda, \lambda] \\
w_{j}+\lambda & w_{j}<-\lambda\end{cases}
\end{gathered}
$$

ISTA

$$
\begin{gathered}
w_{t+1}=\operatorname{Prox}_{\gamma \lambda\|\cdot\|_{1}}\left(w_{t}-\frac{\gamma}{n} \widehat{X}^{\top}\left(\widehat{X} w_{t}-\widehat{Y}\right)\right) \\
\left(\operatorname{Prox}_{\gamma \lambda\|\cdot\|_{1}}(w)\right)^{j}= \begin{cases}w^{j}-\gamma \lambda & w^{j}>\gamma \lambda \\
0 & w^{j} \in[-\gamma \lambda, \gamma \lambda] \\
w^{j}+\gamma \lambda & w^{j}<-\gamma \lambda\end{cases}
\end{gathered}
$$

Small coefficients are set to zero!

Back to inverse problems

$$
\widehat{X} w=\widehat{Y}
$$

If x_{i} are i.i.d. gaussian vectors, $\|w\|_{0}=s$ and

$$
n \geq 2 s \log \frac{d}{s}
$$

then ℓ_{1} regularization recovers w with high probability.

Sampling theorem

Classically $2 \omega_{0}$ samples needed

LASSO

$$
\min _{w \in \mathbb{R}^{d}} \frac{1}{n}\|\widehat{X} w-\widehat{Y}\|^{2}+\lambda\|w\|_{1}
$$

- Interpretability: variable selection!

Variable selection and correlation

$$
\min _{w \in \mathbb{R}^{d}} \underbrace{\frac{1}{n}\|\widehat{X} w-\widehat{Y}\|^{2}+\lambda\|w\|_{1}}_{\text {strietty convex }}
$$

Elastic net regularization

$$
\min _{w \in \mathbb{R}^{d}} \frac{1}{n}\|\widehat{X} w-\widehat{Y}\|^{2}+\lambda\left(\alpha\|w\|_{1}+(1-\alpha)\|w\|^{2}\right)
$$

ISTA for elastic net

$$
w_{t+1}=\operatorname{Prox}_{\gamma \lambda \alpha\|\cdot\|_{1}}\left(w_{t}-\gamma \frac{2}{n} \widehat{X}^{\top}\left(\widehat{X} w_{t}-\widehat{Y}\right)-\gamma \lambda(1-\alpha) w_{t-1}\right)
$$

$$
\left(\operatorname{Prox}_{\gamma \lambda \alpha\|\cdot\|_{1}}(w)\right)^{j}= \begin{cases}w^{j}-\gamma \lambda \alpha & w^{j}>\gamma \lambda \alpha \\ 0 & w^{j} \in[-\gamma \lambda \alpha, \gamma \lambda \alpha] \\ w^{j}+\gamma \lambda \alpha & w^{j}<-\gamma \lambda \alpha\end{cases}
$$

Small coefficients are set to zero!

Grouping effect

Strong convexity
\Longrightarrow All relevant (possibly correlated) variables are selected

Elastic net and ℓ_{p} norms

$$
\frac{1}{2}\|w\|_{1}+\frac{1}{2}\|w\|^{2}=1
$$

$$
\left(\sum_{j=1}^{d}\left|w_{j}\right|^{p}\right)^{1 / p}=1
$$

ℓ_{p} norms are similar to elastic net but they are smooth (no "kink"!)

Summary

- Sparsity
- Geometry
- Computations
- Variable selection and elastic net

