MIT 9.520/6.860, Fall 2018
Statistical Learning Theory and Applications

Class 10: Neural Networks (aka Deep Learning)

Lorenzo Rosasco



Learning functions

So far:
» Linear
flz)=w'z
» Features ,
fl@)=w'd(z) =Y wip;(z).
j=1
» Kernels

L.Rosasco, 9.520/6.860 2018



Learning functions (cont.)

Random features: ®(z) = o(Sz) = (o(s{ 2),...,0(s1,7))

M
f(z) = w'o(Sz) =Y wjo(s]x),
j=1

where:
» o :R — R can be nonlinear.

» (s1,...,8m)" =S random.

L.Rosasco, 9.520/6.860 2018



Neural networks (shallow)

M

J(@) = wTo(Se) = 3 wio(s] ),

j=1
where:

» o :R — R can be nonlinear.

» s1,...,8p = S free parameters.

> Offsets are typically added U(szx +b;).

L.Rosasco, 9.520/6.860 2018



Other neural networks

Other form of neural networks can be considered.

For example radial basis functions (RBF) networks
M

Fa) =Y wio(ls; - xl),
j=1

e.g. O'(HSJ — :L‘H) = e_HSJ'_xHZ'Y_

L.Rosasco, 9.520/6.860 2018



Neural nets vs features/kernels

M
0) = Y wyo(s] ) ij (s, = )

» Random features: any non linearity, random S.
> Kernels: pos. def. non linearity, S is the training set.

» Neural nets: any non linearity, any S. Extensions by composition.

L.Rosasco, 9.520/6.860 2018



Multilayer neural networks (deep)

f(@)=w'o(SL...0(S20(S1)))
where
» o :R — R can be nonlinear.
» My=dand M; € N.
> S, =RMi 5 RMi-1 =1 ...
> Offsets are typically added.

Building functions by composition.

L.Rosasco, 9.520/6.860 2018



Neural networks terminology

» Each intermediate representation corresponds to a (hidden) layer.

> The dimensionalities (M), are the number of hidden units.

» The non linearity is called activation function.

L.Rosasco, 9.520/6.860 2018



Activation functions

> Logistic function o(a) = (1+e %)L, a € R,

» Hyperbolic tangent o(a) = (e* —e ) /(e* + e %), a € R,

» Rectified linear unit (ReLU) o(a) = |s|4+, o € R.

L.Rosasco, 9.520/6.860 2018



Neural networks function spaces

The space of functions of the form

f(w7(se)l)(1') = U)TJ(SL e 0(520(51:5)))

does not have a linear structure, hence no inner product/norm.

Compare to features/kernels.

L.Rosasco, 9.520/6.860 2018



What now?

» Why neural networks?

» Computations.

» Extensions.

L.Rosasco, 9.520/6.860 2018



Why neural networks?

> Learning representations.

» Biological interpretation.

» Because they are awesome.

Today we discuss the first two items.

L.Rosasco, 9.520/6.860 2018



Learning data representations

So far ® fixed a priori.

Can it be learned?

L.Rosasco, 9.520/6.860 2018



Learning linear representations

We need to parametrize ®.

Consider @ linear, that is
O(z) = Sx.

Then, consider
fw,s)(x) =w' Sz,

where both w and S need to be estimated.

L.Rosasco, 9.520/6.860 2018



Learning linear representations (cont.)

fow,s)(x) =w' Sz,

Different constraints can be imposed on w, S.

Still, we are working with linear functions,

B=S"w = fus@) =8

L.Rosasco, 9.520/6.860 2018



Beyond linear representations

-
fw,s)(x) =w' Sz,
» Insert non linearity in front of x

fw.s)(x) = w' S®(x), + back to kernels. ..

» Insert non linearity in front of S

Jw,s)(x) = w' S®(x), > neural nets

L.Rosasco, 9.520/6.860 2018



Biological interpretation

One neuron

d
z=o0(s'z) = O’(Z sl
j=1

» Each neuron has d inputs.
» Each input is multiplied by a different weight stored in the neuron.
» The weighted inputs are aggregated by summation.

» The activation function suppresses small outputs and clips big
outputs.

L.Rosasco, 9.520/6.860 2018



Connecting neurons

One neuron

d
z=o0(s'x) = O'(Z sa?)

Another neuron taking as input other neurons,

d
y= O’(U)TZ) = U(Z wjzj)

L.Rosasco, 9.520/6.860 2018



Connectionism is deep

One neuron

d
z=o0(s'x) = O'(Z sa?)
j=1
Another neuron taking as input other neurons,

y=o(w'z) g w’ 27)

Another neuron taking as input other neurons,

N
u=0(vTy) = o(}_ viy)

j=1

L.Rosasco, 9.520/6.860 2018



Computations

f(w,(se)[)(x) = chr(SL ‘e (T(SQO’(Sll‘)))

ERM for neural nets

n
i 2
min i — flw i 7
w,(50); i:l(y CREABIC)

possibly with norm constraints on the weights (regularization).

L.Rosasco, 9.520/6.860 2018



Computations

f(w7(se)[)(:17) = ’wTCT(SL ‘e (T(SQO’(Slx)))

ERM for neural nets

n

i 2
min i — frw 2))2,
w,(Se)e i=1(y f( ’(Sl)ﬂ)( )

possibly with norm constraints on the weights (regularization).

The problem is non-convex and possibly non smooth depending on o.

L.Rosasco, 9.520/6.860 2018



Optimization for neural nets

Let .
L(w, (Se)e) = > (Wi — fw (s, (1))
i=1
Gradient descent becomes
wtl = wl— %awi(wt, (SH)e)
Sz+l = SE - ’ytasLE(wtv (SE)Z)
SIY = St — s, L(w', (S})e)

The step-size (v;); are often called learning rates.

There is a natural order to compute derivatives by the chain rule.

L.Rosasco, 9.520/6.860 2018



Computations for shallow network

Consider a one hidden layer network and corresponding ERM,

n

L(w,8) =>4 — fruws(@))?

i=1
Unrolling all the equations in gradient descent we get

w?“ = wé——'ytaij(wt7St)

S = S— ks, (')

L.Rosasco, 9.520/6.860 2018



Back-propagation & chain rule

By direct computations,

OLu,(w,8) = = 23 (i — frus(@)) o(s] x)
— N— ——
=1 Am
OLs,, (w,S) = = *22 — fow.s)(@:))wjo’ (5] x)
MNik

Back-prop equations: 7; ), = A;w;0’(s] x)

Using the above equations, iterations are performed in two steps:
» Forward pass: compute function values keeping weights fixed,
» Backward pass: compute errors and propagate

» Hence the weights are updated.

L.Rosasco, 9.520/6.860 2018



Few remarks

» Multiple layers are treated analogously: efficient derivative
computations are needed.

» Stochastic gradient descent is the method of choice.

» A number of variations are considered, including
— acceleration,

minibatching,

batch normalization

L.Rosasco, 9.520/6.860 2018



Auto-encoders

» A neural network with one input layer, one output layer and one (or
more) hidden layers connecting them.

» The output layer has equally many nodes as the input layer,

> It is trained to predict the input rather than some target output.

L.Rosasco, 9.520/6.860 2018



Auto-encoders (cont.)

An auto encoder with one hidden layer of k& units, can be seen as a
representation-reconstruction pair:

d: X -RM  ®(x)=0(Sz), VzeX
with M < d and

v RM X, \IJ(B):(T(S',B), VB e RM.

ERM corresponds to find best data reconstruction

n
min » *[|lz; — W o &(x;)||?
58 i

L.Rosasco, 9.520/6.860 2018



Stacked auto-encoders

Multiple layers of auto-encoders can be stacked [Hinton et al '06]. ..

(P10T;1)o(PyoWy) -0 (PgoWy)
——

Autoencoder

... with the potential of obtaining richer representations.

L.Rosasco, 9.520/6.860 2018



Pre-training

» Unsupervised training of each layer to initialize supervised training.

» Potential benefit of unlabeled data.

L.Rosasco, 9.520/6.860 2018



Convolutional neural networks

From
M
fla) = wjo(s] ),
j=1
to o
f@) = w (s o).
j=1
where:
» pooling

18]l = max |,

» convolution

L.Rosasco, 9.520/6.860 2018



Convolutions

Convolution is linear
s'e=Cx

Cs is a circulant matrix (each row is a shifted copy of s).

L.Rosasco, 9.520/6.860 2018



Weights sharing

Let
Cs=(Csyy...,Csy).

Then
(o(s1%x),...,0(sp*x2)) =0 (Cgx)

a standard neural nets with repeated weights.

L.Rosasco, 9.520/6.860 2018



Pooling

Compared to classical neural nets CNN have structured nonlinearities.

Other form of pooling can be considered

» average pooling
1
525
j=1

> /, pooling

1
P

d
181, = | > 1817

j=1

L.Rosasco, 9.520/6.860 2018



Why CNN?

» [nvariance.

» Hierarchical compositionality.

L.Rosasco, 9.520/6.860 2018



	Basic definition
	Interpretations

