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Last time - Convolutional neural networks

source: github.com/vdumoulin/conv_arithmetic

Large-scale Datasets

General Purpose GPUs

IMAGENET % j’w ’
AlexNet o] e
Krizhevsky E‘E M

et al (2012)

A. Banburski



Overview

Initialization & hyper-parameter tuning
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Initialization & hyper-parameter tuning

Consider the problem of training a neural network fy(z) by minimizing a
loss

N
L(0,x) = Liys, folz:)) + A0

i=1
with SGD and mini-batch size b:

1
Orr =00 =17 > VoL(bs, ;) (1)
i€B
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Initialization & hyper-parameter tuning

Consider the problem of training a neural network fy(z) by minimizing a
loss

N
L(0,x) = Liys, folz:)) + A0

i=1
with SGD and mini-batch size b:

1
Orr =00 =17 > VoL(bs, ;) (1)
i€B

» How should we choose the initial set of parameters 67

» How about the hyper-parameters n, A and b?
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Weight Initialization

> First obvious observation: starting with 0 will make every weight
update in the same way. Similarly, too big and we can run into NaN.

A. Banburski



Weight Initialization

> First obvious observation: starting with 0 will make every weight
update in the same way. Similarly, too big and we can run into NaN.

» What about 0y = € x N(0,1), with ¢ ~ 10727

A. Banburski



Weight Initialization

> First obvious observation: starting with 0 will make every weight
update in the same way. Similarly, too big and we can run into NaN.

» What about 0y = € x N(0,1), with ¢ ~ 10727
» For a few layers this would seem to work nicely.

A. Banburski



v

v

v

v

Weight Initialization

First obvious observation: starting with 0 will make every weight
update in the same way. Similarly, too big and we can run into NaN.

What about 0y = € x N(0,1), with € ~ 10727
For a few layers this would seem to work nicely.

If we go deeper however...
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Weight Initialization

First obvious observation: starting with 0 will make every weight
update in the same way. Similarly, too big and we can run into NaN.

What about 0y = € x N(0,1), with € ~ 10727
For a few layers this would seem to work nicely.
If we go deeper however...

Super slow update of earlier layers 10~2% for sigmoid or tanh
activations — vanishing gradients. RelLU activations do not suffer so
much from this.
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Xavier & He initializations

» For tanh and sigmoid activations, near origin we deal with a nearly
linear function y = Wz, with © = (z1,...,2,,,). To stop vanishing
and exploding gradients we need

Var(y) = Var(Wz) = Var(wiz1) + - - - + Var(wp,, Tn,,,)
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Xavier & He initializations

For tanh and sigmoid activations, near origin we deal with a nearly
linear function y = Wz, with © = (z1,...,%y,,). To stop vanishing
and exploding gradients we need

Var(y) = Var(Wz) = Var(wiz1) + - - - + Var(wp,, Tn,,,)

If we assume that W and x are i.i.d. and have zero mean, then
Var(y) = nVar(w;)Var(z;)

If we want the inputs and outputs to have same variance, this gives
us Var(w;) = -1

Nin

1

Similar analysis for backward pass gives Var(w;) = r—s

The compromise is the Xavier initialization [Glorot et al., 2010]:
2

Var(wi) = m (2)
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Xavier & He initializations

For tanh and sigmoid activations, near origin we deal with a nearly
linear function y = Wz, with © = (z1,...,%y,,). To stop vanishing
and exploding gradients we need

Var(y) = Var(Wz) = Var(wiz1) + - - - + Var(wp,, Tn,,,)

If we assume that W and x are i.i.d. and have zero mean, then
Var(y) = nVar(w;)Var(z;)

If we want the inputs and outputs to have same variance, this gives
us Var(w;) = -1

Nin

1

Similar analysis for backward pass gives Var(w;) = r—s

The compromise is the Xavier initialization [Glorot et al., 2010]:

2
Var(wy) = @)

Heuristically, ReLU is half of the linear function, so we can take

Var(u;) = ———— 3)

Nin + Nout

An analysis in [He et al., 2015] confirms this.
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» How do we choose optimal 7, A and b7
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Hyper-parameter tuning

How about the hyper-parameters 1, A and b
» How do we choose optimal 7, A and b7

> Basic idea: split your training dataset into a smaller training set and
a cross-validation set.

— Run a coarse search (on a logarithmic scale) over the parameters for
just a few epochs of SGD and evaluate on the cross-validation set.
— Perform a finer search.

» Interestingly, [Bergstra and Bengio, 2012] shows that it is better to
run the search randomly than on a grid.

Grid Layout Random Layout

o Q o

Unimportant parameter
Unimportant parameter

Important parameter Important parameter

source: [Bergstra and Bengio, 2012]
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Decaying learning rate

» To improve convergence of SGD, we have to use a decaying learning
rate.
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Decaying learning rate

» To improve convergence of SGD, we have to use a decaying learning
rate.

» Typically we use a scheduler — decrease 7 after some fixed number
of epochs.

» This allows the training loss to keep improving after it has plateaued

Training loss (Rolling mean over 100 batches)
— Nsize=3 (ORIG PAPER), 20 layers
— Nsize=5, 32 layers
Nsize=7, 44 layers
— Nsize=9, 56 layers
Nsize=18, 110 layers, fancy policy
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Batch-size & learning rate

An interesting linear scaling relationship seems to exist between the
learning rate i and mini-batch size b:

» In the SGD update, they appear as a ratio #, with an additional
implicit dependence of the sum of gradients on b.

A. Banburski



Batch-size & learning rate

An interesting linear scaling relationship seems to exist between the
learning rate i and mini-batch size b:
» In the SGD update, they appear as a ratio #, with an additional
implicit dependence of the sum of gradients on b.
» If b < N, we can approximate SGD by a stochastic differential
equation with a noise scale g ~ n&' [Smit & Le, 2017].

A. Banburski



Batch-size & learning rate

An interesting linear scaling relationship seems to exist between the
learning rate i and mini-batch size b:
» In the SGD update, they appear as a ratio #, with an additional
implicit dependence of the sum of gradients on b.
» If b < N, we can approximate SGD by a stochastic differential
equation with a noise scale g ~ n&' [Smit & Le, 2017].
» This means that instead of decaying 1, we can increase batch size
dynamically.

A. Banburski



Batch-size & learning rate

An interesting linear scaling relationship seems to exist between the
learning rate i and mini-batch size b:
» In the SGD update, they appear as a ratio #, with an additional
implicit dependence of the sum of gradients on b.
» If b < N, we can approximate SGD by a stochastic differential
equation with a noise scale g ~ n&' [Smit & Le, 2017].
» This means that instead of decaying 1, we can increase batch size
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Batch-size & learning rate

An interesting linear scaling relationship seems to exist between the
learning rate i and mini-batch size b:
» In the SGD update, they appear as a ratio #, with an additional
implicit dependence of the sum of gradients on b.
» If b < N, we can approximate SGD by a stochastic differential
equation with a noise scale g ~ n&' [Smit & Le, 2017].
» This means that instead of decaying 1, we can increase batch size
dynamically.
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source: [Smith et al., 2018]

» As b approaches N the dynamics become more and more

deterministic and we would expect this relationship to vanish.



Batch-size & learning rate
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Overview

Optimization algorithms
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SGD is kinda slow...

gradient descent

ITERATIONS

» GD — use all points each iteration to compute gradient
> SGD — use one point each iteration to compute gradient

» Faster: Mini-Batch — use a mini-batch of points each iteration to
compute gradient
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Alternatives to SGD

Are there reasonable alternatives outside of Newton method?

Accelerations
» Momentum
» Nesterov's method
» Adagrad
» RMSprop
» Adam

| 4
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SGD with Momentum

We can try accelerating SGD
Orr1 =0 —nV f(6:)

by adding a momentum /velocity term:
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SGD with Momentum

We can try accelerating SGD
Orr1 =0 —nV f(6:)

by adding a momentum /velocity term:
Vi1 = pvg —nV f(0r)

Orp1 = 0 +ve1

1 is a new "momentum” hyper-parameter.
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SGD with Momentum

We can try accelerating SGD
Orr1 =0 —nV f(6:)

by adding a momentum /velocity term:

Vt41 = UV — va(ot)
Or11 = 0: + v

1 is a new "momentum” hyper-parameter.

momentum
step
actual step

gradient
step

source: cs213n.github.io
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Nesterov Momentum

» Sometimes the momentum update can overshoot
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» We can instead evaluate the gradient at the point where momentum
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Nesterov Momentum

» Sometimes the momentum update can overshoot

» We can instead evaluate the gradient at the point where momentum
takes us:

Vi1 = vy — NV f(0y + poy)
Orp1 =0 + v

(5)

3 Momentum Vector ———» Nesterov steps

=3 Gradient/correction —> Standard momentum steps

source: Geoff Hinton's lecture
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AdaGrad

> An alternative way is to automatize the decay of the learning rate.
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AdaGrad

> An alternative way is to automatize the decay of the learning rate.

» The Adaptive Gradient algorithm does this by accumulating
magnitudes of gradients

Algorithm 4 AdaGrad
Require: Global learning rate n

Require: Initial parameter 6
Initialize gradient accumulation variable r = 0
while Stopping criterion not met do
Sample a minibatch of m examples from the training set {z("), ... 2™},
Apply interim update: 6 < 6 + pv
Set g =10
for i =1 to m do

Compute gradient:
94 g+ VoL(f(2;6)),4":6).

end for
Accumulate gradient: r «— r + g* (square is applied element-wise)
Compute update: A *%!] (% is applied element-wise)
Apply update: 6 « 6 + Ab,

end while
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AdaGrad

> An alternative way is to automatize the decay of the learning rate.

» The Adaptive Gradient algorithm does this by accumulating
magnitudes of gradients

Algorithm 4 AdaGrad
Require: Global learning rate n

Require: Initial parameter 6
Initialize gradient accumulation variable r = 0
while Stopping criterion not met do
Sample a minibatch of m examples from the training set {z("), ... 2™},
Apply interim update: 6 < 6 + pv
Set g =10
for i =1 to m do

Compute gradient:
9 g+ VoL(f(z;0)),4:0).

end for
Accumulate gradient: r «— r + g* (square is applied element-wise)
Compute update: A *%_‘] (% is applied element-wise)
Apply update: 6 « 6 + Ab,

end while

» AdaGrad accelerates in flat directions of optimization landscape and

slows down in step ones.
A. Banburski



RMSProp

Problem:The updates in AdaGrad always decrease the learning rate, so
some of the parameters can become un-learnable.
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» Fix by Hinton: use weighted sum of the square magnitudes instead.

» This assigns more weight to recent iterations. Useful if directions of
steeper or shallower descent suddenly change.
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RMSProp

Problem:The updates in AdaGrad always decrease the learning rate, so
some of the parameters can become un-learnable.

» Fix by Hinton: use weighted sum of the square magnitudes instead.

» This assigns more weight to recent iterations. Useful if directions of
steeper or shallower descent suddenly change.

Algorithm 5 RMSprop
Require: Global learning rate 7, decay rate p

Require: Initial parameter 6

Initialize accumulation variable r = 0

while Stopping criterion not met do
Sample a minibatch of m examples from the training set {.l,'“) ...... l:(”’)},
Set g =0
for i =1 tom do

Compute gradient:
g g+ VoL(f(@?:0)),y":0).

end for
Accumulate gradient: 7 < pr + (1 — p)g?
Compute parameter update: Af < ——'\/%!1 (% is applied element-wise)
Apply update: 0 < 6 + A6,
end while
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Adam

Adaptive Moment — a combination of the previous approaches.

Algorithm 8.7 The Adam algorithm

Require: Step size € (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, p; and pa in [0,1).

(Suggested defaults: 0.9 and 0.999 respect

ely)

Require: Small constant § used for numerical stabilization. (Suggested default:

10-9)
Require: Initial parameters

ze 1st and 2nd moment variables s = 0, 7 = 0
ze time step t = 0

while stopping criterion not met do
Sample a minibatch of m examples from the training set {a(!)
corresponding targets y(V).
Compute gradient: g < '—}.Va S L(f(zD;0),39)
tet+1
Update biased first moment estimate: s « pys+ (1 - p;)g
Update biased second moment estimate: 7 < por + (1 — p2)g© g

Correct bias in first moment: § « 2
=t

..... =™} with

Correct bias in second moment: # ﬁ'
N —p2
Compute update: AQ = —{7;’7[ (operations applied element-wise)
Apply update: 6 « 0+ A0
end while

training cost

0t

MNIST Multilayer Neural Network + dropout

AdaGrad
RMSProp
SGDNesterov

i

T
iterations over entire dataset

[Kingma and Ba, 2014]
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Adam

Adaptive Moment — a combination of the previous approaches.

Algorithm 8.7 The Adam algorithm

Require: Step size € (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, p; and ps in [0,1).
(Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant § used for numerical stabilization. (Suggested default:
10-9)

Require: Initial parameters 6

ze 1st and 2nd moment variables s = 0, 7 = 0
ze time step t = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z("),... (™} with
corresponding targets y(V).
Compute gradient: g « Vg 3, L(f(x):0),3")
tet+1
Update biased first moment estimate: s < p;s+ (1 - py)g
Update biased second moment estimate: 7 < por + (1 — p2)g © g
Correct bias in first moment: § «

s
1-p}
Correct bias in second moment: # ﬁ'
—p2
Compute update: A@ = —{7;;'3 (operations applied element-wi
Apply update: 6 « 6 + A8
end while

training cost

0t

MNIST Multilayer Neural Network + dropout

AdaGrad
RMSProp
SGDNesterov|

150 Z00
iterations over entire dataset

[Kingma and Ba, 2014]

» Ridiculously popular — more than 13K citations!
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Adam

Adaptive Moment — a combination of the previous approaches.

Algorithm 8.7 The Adam algorithm

Require: Step size € (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, p; and ps in [0,1).
(Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant § used for numerical stabilization. (Suggested default:
1079

Require: Initial parameters 6

Ist and 2nd moment variables s = 0, 7 = 0

ime step t =0

while stopping criterion not met do

Sample a minibatch of m examples from the training set {&V),... (™} with
corresponding targets y(V).

Compute gradient: g < Vo 37, L(f(z;0),y")

t—t+1

Update biased first moment estimate: s < p1s + (1 — p1)g

Update biased second moment estimate: 7 < por + (1 — p2)g © g

Correct bias in first moment: & ¢ -2
Correct bias in second moment: 7 ¢ 12

Compute update: AQ = —{7;7& (operations applied element-wise)
Apply update: 8 « 0 + A0

end while

training cost

10t

MNIST Multilayer Neural Network + dropout

AdaGrad
— RMSProp
SGDNesterov|
AdaDelta

iterations over entire dataset

[Kingma and Ba, 2014]

» Ridiculously popular — more than 13K citations!

» Probably because it comes with recommended parameters and came
with a proof of convergence (which was shown to be wrong).
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So what should | use in practice?

» Adam is a good default in many cases.
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» There exist datasets in which Adam and other adaptive methods do
not generalize to unseen data at all! [Marginal Value of Adaptive
Gradient Methods in Machine Learning]
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» Adam is a good default in many cases.

» There exist datasets in which Adam and other adaptive methods do
not generalize to unseen data at all! [Marginal Value of Adaptive
Gradient Methods in Machine Learning]

» SGD with Momentum and a decay rate often outperforms Adam

(but requires tuning).
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So what should | use in practice?

» Adam is a good default in many cases.

» There exist datasets in which Adam and other adaptive methods do
not generalize to unseen data at all! [Marginal Value of Adaptive
Gradient Methods in Machine Learning]

» SGD with Momentum and a decay rate often outperforms Adam

(but requires tuning). includegraphicsFigures/comp.png source

github.com /YingzhenLi
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Overview

Batchnorm & Dropout
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Data pre-processing

Since our non-linearities change their behavior around the origin, it makes
sense to pre-process to zero-mean and unit variance.

. _ % — Elxj]
e Var|z;] (©)
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Data pre-processing

Since our non-linearities change their behavior around the origin, it makes
sense to pre-process to zero-mean and unit variance.

Xr; — E[Z‘l]

i Var|z;] (©)

original data zero-centered data normalized data

source: cs213n.github.io
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Batch Normalization

A common technique is to repeat this throughout the deep network in a
differentiable way:
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Batch Normalization

A common technique is to repeat this throughout the deep network in a
differentiable way:

Input: Values of x over a mini-batch: B = {x1_m};
Parameters to be learned: ~,
Output: {y; = BN, g(z:)}

1 m
— i // mini-batch

B ;xz mini-batch mean
1 m

2 2 .. .

— x; — I -batch

Tp ;(h 1B) mini-batch variance

T %:7% // normalize
Vo te

Yi < 7% + f = BNy g(w4) // scale and shift

[loffe and Szegedy, 2015]
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Batch Normalization

In practice, a batchnorm layer is added after a conv or fully-connected
layer, but before activations.

RELL R
kel

A. Banburski



Batch Normalization

In practice, a batchnorm layer is added after a conv or fully-connected
layer, but before activations.

avgpool

» In the original paper the authors claimed that this is meant to
reduce covariate shift.
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Batch Normalization

In practice, a batchnorm layer is added after a conv or fully-connected
layer, but before activations.

» In the original paper the authors claimed that this is meant to
reduce covariate shift.

» More obviously, this reduces 2nd-order correlations between layers.
Recently shown that it actually doesn't change covariate shift!
Instead it smooths out the landscape.

A. Banburski



Batch Normalization

Standard Standard + Standard +

BatchNorm “Noisy" BatchNorm
é;é
A

100

=
g
Layer #2

E/

Training Accuracy

Layer #9

—— Standard
—— Standard + BatchNorm
~—— Standard + "Noisy" Batchnorm

Layer #13

0 5k 10k 15k -

Steps

» More obviously, this reduces 2nd-order correlations between layers.
Recently shown that it actually doesn't change covariate shift!
Instead it smooths out the landscape.

[Santurkar, Tsipras, llyas, Madry, 2018]
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Batch Normalization

In practice, a batchnorm layer is added after a conv or fully-connected
layer, but before activations.

» In the original paper the authors claimed that this is meant to
reduce covariate shift.

» More obviously, this reduces 2nd-order correlations between layers.
Recently shown that it actually doesn't change covariate shift!
Instead it smooths out the landscape.

> In practice this reduces dependence on initialization and seems to
stabilize the flow of gradient descent.

A. Banburski



Batch Normalization

In practice, a batchnorm layer is added after a conv or fully-connected
layer, but before activations.

» In the original paper the authors claimed that this is meant to
reduce covariate shift.

» More obviously, this reduces 2nd-order correlations between layers.
Recently shown that it actually doesn't change covariate shift!
Instead it smooths out the landscape.

> In practice this reduces dependence on initialization and seems to
stabilize the flow of gradient descent.

» Using BN usually nets you a gain of few % increase in test accuracy.
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Dropout

Another common technique: during forward pass, set some of the
weights to 0 randomly with probability p. Typical choice is p = 50%.
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Dropout
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Dropout

Another common technique: during forward pass, set some of the
weights to 0 randomly with probability p. Typical choice is p = 50%.

(a) Standard Neural Net (b) After applying dropout.

» The idea is to prevent co-adaptation of neurons.
> At test want to remove the randomness. A good approximation is to
multiply the neural network by p.

» Dropout is more commonly applied for fully-connected layers,

though its use is waning.
A. Banburski
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Finite dataset woes

While we are entering the Big Data age, in practice we often find
ourselves with insufficient data to sufficiently train our deep neural
networks.

» What if collecting more data is slow/difficult?

» Can we squeeze out more from what we already have?

A. Banburski



Invariance problem

An often-repeated claim about CNNs is that they are invariant to small
translations. Independently of whether this is true, they are not invariant
to most other types of transformations:

Camera pose llumination Deformation Occlusion

\

Background clutter

source: cs213n.github.io
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Data augmentation

» Can greatly increase the amount of data by performing:
— Translations
— Rotations
— Reflections
— Scaling
— Cropping
— Adding Gaussian Noise
— Adding Occlusion
— Interpolation
— etc.

» Crucial for achieving state-of-the-art performance!

» For example, ResNet improves from 11.66% to 6.41% error on
CIFAR-10 dataset and from 44.74% to 27.22% on CIFAR-100.

A. Banburski
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Transfer Learning

What if you truly have too little data?

» If your data has sufficient similarity to a bigger dataset, the you're in
luck!
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Transfer Learning

What if you truly have too little data?
If your data has sufficient similarity to a bigger dataset, the you're in
luck!
Idea: take a model trained for example on ImageNet.

> Freeze all but last few layers and retrain on your small data. The
bigger your dataset, the more layers you have to retrain.

Target AAM Source AAM
Instance Transfer: combine advantages

Selection of helpful source sampl
raV S

High specialization
Low expressiveness

High variability
Generic, low robustness

source: [Haase et al., 2014]
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Why use frameworks?
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Why use frameworks?

» You don't have to implement everything yourself.

» Many inbuilt modules allow quick iteration of ideas — building a
neural network becomes putting simple blocks together and
computing backprop is a breeze.

» Someone else already wrote CUDA code to efficiently run training
on GPUs (or TPUs).

A. Banburski



Main design difference

Static vs Dynamic

“Define-and-run”

Static

“Define-by-run”
Dynamic
graph graph
Sam. utational The graph is allowed
framework ww;mwv " framework mcﬁ::, sach
iteration. iteration.

T Scaffe Céﬁﬂ&wnﬁ
TensorFlow

Microsoft

CNTK PYTORCH

source: Introduction to Chainer
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PyTorch concepts

Similar in code to numpy.

> Tensor: nearly identical to np.array, can run on GPU just with

device = torch.device(
"cuda" if use_cuda else "cpu")

» Autograd: package for automatic computation of backprop and
construction of computational graphs.

» Module: neural network layer storing weights

» Dataloader:

class for simplifying efficient data loading

import torch
from torchvision import transforms, datasets

data_transform = transforms.Compose ([
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensox (),
transforms.Normalize (mean=[0.485, 456, 0.406],
std=[0.229, 0.224, 0.225])

hymenoptera_dataset = datasets.ImageFolder(root='hymenoptera_data/train’,
transform=data_transform)
dataset_loader = torch.utils.data.Dataloader (hymenoptera_dataset,
batch_size=4, shuffle=True,

num_workers=4)|

A. Banburski



PyTorch - optimization

import torch

N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
torch.nn.Linear(D_in, H),
torch.nn.ReLU(),
torch.nn.Linear(H, D out))

rnina rate = le-4
optimizer = torch.optim.Adam(model.parameters(),
lr=learning rate)

for t in range(500):
y_pred = model(x)
loss = torch.nn.functional.mse loss(y_pred, y)

loss.backward()

optimizer.step()
optimizer.zero grad()

A. Banburski



PyTorch - ResNet in one page

class BnLayer(nn.Module):
def __init_ (self, ni, nf, stride=2):
super().__init_ ()
self.conv = nn.Conv2d(ni, nf, kernel_size=3, stride=stride, bias=False, padding=1)
self.a = nn.Parameter(torch.zeros(nf,1,1))
self.m = nn.Parameter(torch.ones(nf,1,1))

def forward(self, x):
X = F.relu(self.conv(x))
X_chan = x.transpose(©,1).contiguous().view(x.size(1), -1)
if self.training:

self.means = x_chan.mean(1)[:,None,None]

self.stds = x_chan.std (1)[:,None,None]

x - self.means

x = x / self.stds

return x*self.m+self.a

class ResnetLayer(BnLayer):
def forward(self, x): return x + super().forward(x)

class Resnet(nn.Module):
def __init__(self, layers, c):

Super().__init_ ()

self.layers = nn.ModuleList([BnLayer(layers[i], layers[i+1])
for i in range(len(layers) - 1)])

self.layers2 = nn.ModuleList([ResnetLayer(layers[i+1], layers[i + 1], 1)
for i in range(len(layers) - 1)])

self.layers3 = nn.ModuleList([ResnetLayer(layers[i+1], layers[i + 1], 1)
for i in range(len(layers) - 1)])

self.out = nn.Linear(layers[-1], c)

def forward(self, x):
for 1,12,13 in zip(self.layers, self.layers2, self.layers3):
x = 13(12(1(x)))
x = F.adaptive_max_pool2d(x, 1)
X = X.view(x.size(®), -1)
return F.log_softmax(self.out(x), dim=-1)

@jeremyphoward
A. Banburski



Tensorflow static graphs

N, D, H = 64, 1000, 100

x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
wl = tf.placeholder(tf.float32, shape=(D, H))
w2 = tf.placeholder(tf.float32, shape=(H, D))

h = tf.maximum(tf.matmul(x, wl), 0)

y_pred = tf.matmul(h, w2)

diff = y pred - y

loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))

grad_wl, grad_w2 = tf.gradients(loss, [wl, w2])

with tf.Session() as sess:
values = {x: np.random.randn(N, D),
wl: np.random.randn(D, H),
w2: np.random.randn(H, D),
y: np.random.randn(N, D),}
out = sess.run([loss, grad wl, grad w2],
feed_dict=values)
loss_val, grad wl_val, grad _w2_val = out

source: cs213n.github.io
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Keras wrapper - closer to PyTorch

N, D, H = 64, 1000, 100
X = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))

model = tf.keras.Sequential()

model.add(tf.keras.layers.Dense(H, input_shape=(D,),
activation=tf.nn.relu))

model.add(tf.keras.layers.Dense(D))

y_pred = model(x)

loss = tf.losses.mean squared error(y_pred, y)

optimizer = tf.train.GradientDescentOptimizer(1lel)
updates = optimizer.minimize(loss)

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
values = {x: np.random.randn(N, D),
y: np.random.randn(N, D)}
for t in range(50):
loss_val, _ = sess.run([loss, updates],
feed dict=values)

source: cs213n.github.io
A. Banburski



Tensorboard - very useful tool for visualization

TensorBoard SCALARS ~ GRAPHS  DISTRIBUTIONS  HISTOGRAMS

INACTIVE c o g

Histogram mode hidden1

OVERLAY hidden1/act tain| =

Offset time axis

Runs

Wite a regex to filter uns

® tain
O test

000 010 | 0%

TOGGLE ALL RUNS
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Tensorflow overview

» Main difference — uses static graphs. Longer code, but more
optimized. In practice PyTorch is faster to experiment on.
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Tensorflow overview

» Main difference — uses static graphs. Longer code, but more
optimized. In practice PyTorch is faster to experiment on.

» With Keras wrapper code is more similar to PyTorch however.

» Can use TPUs

A. Banburski
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But

» Tensorflow has added dynamic batching, which makes dynamic
graphs possible.
» PyTorch is merging with Caffe2, which will provide static graphs too!
» Which one to choose then?
— PyTorch is more popular in the research community for easy
development and debugging.
— In the past a better choice for production was Tensorflow. Still the
only choice if you want to use TPUs.

A. Banburski
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