MIT 9.520/6.860, Fall 2018

Class 11: Neural networks — tips, tricks & software

Andrzej Banburski



Last time - Convolutional neural networks

source: github.com/vdumoulin/conv_arithmetic

Large-scale Datasets

General Purpose GPUs

IMAGENET % j’w ’
AlexNet o] e
Krizhevsky E‘E M

et al (2012)

A. Banburski



Overview

Initialization & hyper-parameter tuning

A. Banburski



Initialization & hyper-parameter tuning

Consider the problem of training a neural network fy(z) by minimizing a
loss

N
L(0,x) = Liys, folz:)) + A0

i=1
with SGD and mini-batch size b:

1
Orr =00 =17 > VoL(bs, ;) (1)
i€B

A. Banburski



Initialization & hyper-parameter tuning

Consider the problem of training a neural network fy(z) by minimizing a
loss

N
L(0,x) = Liys, folz:)) + A0

i=1
with SGD and mini-batch size b:

1
Orr =00 =17 > VoL(bs, ;) (1)
i€B

» How should we choose the initial set of parameters 67

A. Banburski



Initialization & hyper-parameter tuning

Consider the problem of training a neural network fy(z) by minimizing a
loss

N
L(0,x) = Liys, folz:)) + A0

i=1
with SGD and mini-batch size b:

1
Orr =00 =17 > VoL(bs, ;) (1)
i€B

» How should we choose the initial set of parameters 67

» How about the hyper-parameters n, A and b?

A. Banburski



Weight Initialization

> First obvious observation: starting with 0 will make every weight
update in the same way. Similarly, too big and we can run into NaN.

A. Banburski



Weight Initialization

> First obvious observation: starting with 0 will make every weight
update in the same way. Similarly, too big and we can run into NaN.

» What about 0y = € x N(0,1), with ¢ ~ 10727

A. Banburski



Weight Initialization

> First obvious observation: starting with 0 will make every weight
update in the same way. Similarly, too big and we can run into NaN.

» What about 0y = € x N(0,1), with ¢ ~ 10727
» For a few layers this would seem to work nicely.

A. Banburski



v

v

v

v

Weight Initialization

First obvious observation: starting with 0 will make every weight
update in the same way. Similarly, too big and we can run into NaN.

What about 0y = € x N(0,1), with € ~ 10727
For a few layers this would seem to work nicely.

If we go deeper however...

A. Banburski



vV v . vvY

Weight Initialization

First obvious observation: starting with 0 will make every weight
update in the same way. Similarly, too big and we can run into NaN.

What about 0y = € x N(0,1), with € ~ 10727
For a few layers this would seem to work nicely.
If we go deeper however...

Super slow update of earlier layers 10~2% for sigmoid or tanh
activations — vanishing gradients. RelLU activations do not suffer so
much from this.

A. Banburski



Xavier & He initializations

» For tanh and sigmoid activations, near origin we deal with a nearly
linear function y = Wz, with © = (z1,...,2,,,). To stop vanishing
and exploding gradients we need

Var(y) = Var(Wz) = Var(wiz1) + - - - + Var(wp,, Tn,,,)

A. Banburski



Xavier & He initializations

» For tanh and sigmoid activations, near origin we deal with a nearly
linear function y = Wz, with © = (z1,...,2,,,). To stop vanishing
and exploding gradients we need

Var(y) = Var(Wz) = Var(wiz1) + - - - + Var(wp,, Tn,,,)

» If we assume that W and x are i.i.d. and have zero mean, then
Var(y) = nVar(w;)Var(z;)

A. Banburski



Xavier & He initializations

» For tanh and sigmoid activations, near origin we deal with a nearly
linear function y = Wz, with © = (z1,...,2,,,). To stop vanishing
and exploding gradients we need

Var(y) = Var(Wz) = Var(wiz1) + - - - + Var(wp,, Tn,,,)

» If we assume that W and x are i.i.d. and have zero mean, then
Var(y) = nVar(w;)Var(z;)

» If we want the inputs and outputs to have same variance, this gives
us Var(w;) = -1

Nin

A. Banburski



Xavier & He initializations

For tanh and sigmoid activations, near origin we deal with a nearly
linear function y = Wz, with © = (z1,...,2,,,). To stop vanishing
and exploding gradients we need

Var(y) = Var(Wz) = Var(wiz1) + - - - + Var(wp,, Tn,,,)

If we assume that W and x are i.i.d. and have zero mean, then
Var(y) = nVar(w;)Var(z;)

If we want the inputs and outputs to have same variance, this gives
us Var(w;) = -1

Nin

1

Nout '

Similar analysis for backward pass gives Var(w;) =

A. Banburski



Xavier & He initializations

For tanh and sigmoid activations, near origin we deal with a nearly
linear function y = Wz, with © = (z1,...,%y,,). To stop vanishing
and exploding gradients we need

Var(y) = Var(Wz) = Var(wiz1) + - - - + Var(wp,, Tn,,,)

If we assume that W and x are i.i.d. and have zero mean, then
Var(y) = nVar(w;)Var(z;)

If we want the inputs and outputs to have same variance, this gives
us Var(w;) = -1

Nin

1

Similar analysis for backward pass gives Var(w;) = r—s

The compromise is the Xavier initialization [Glorot et al., 2010]:
2

Var(wi) = m (2)

A. Banburski



Xavier & He initializations

For tanh and sigmoid activations, near origin we deal with a nearly
linear function y = Wz, with © = (z1,...,%y,,). To stop vanishing
and exploding gradients we need

Var(y) = Var(Wz) = Var(wiz1) + - - - + Var(wp,, Tn,,,)

If we assume that W and x are i.i.d. and have zero mean, then
Var(y) = nVar(w;)Var(z;)

If we want the inputs and outputs to have same variance, this gives
us Var(w;) = -1

Nin

1

Similar analysis for backward pass gives Var(w;) = r—s

The compromise is the Xavier initialization [Glorot et al., 2010]:

2
Var(wy) = @)

Heuristically, ReLU is half of the linear function, so we can take

Var(u;) = ———— 3)

Nin + Nout

An analysis in [He et al., 2015] confirms this.

A. Banburski



Hyper-parameter tuning

How about the hyper-parameters 1, A and b
» How do we choose optimal 7, A and b7

A. Banburski



Hyper-parameter tuning

How about the hyper-parameters 1, A and b

» How do we choose optimal 7, A and b7
> Basic idea: split your training dataset into a smaller training set and

a cross-validation set.

A. Banburski



Hyper-parameter tuning

How about the hyper-parameters 1, A and b

» How do we choose optimal 7, A and b7
» Basic idea: split your training dataset into a smaller training set and

a cross-validation set.
— Run a coarse search (on a logarithmic scale) over the parameters for

just a few epochs of SGD and evaluate on the cross-validation set.

A. Banburski



Hyper-parameter tuning

How about the hyper-parameters 1, A and b

» How do we choose optimal 7, A and b7
» Basic idea: split your training dataset into a smaller training set and

a cross-validation set.
— Run a coarse search (on a logarithmic scale) over the parameters for

just a few epochs of SGD and evaluate on the cross-validation set.

— Perform a finer search.

A. Banburski



Hyper-parameter tuning

How about the hyper-parameters 1, A and b

» How do we choose optimal 7, A and b7
» Basic idea: split your training dataset into a smaller training set and

a cross-validation set.
— Run a coarse search (on a logarithmic scale) over the parameters for

just a few epochs of SGD and evaluate on the cross-validation set.

— Perform a finer search.
» Interestingly, [Bergstra and Bengio, 2012] shows that it is better to

run the search randomly than on a grid.

A. Banburski



Hyper-parameter tuning

How about the hyper-parameters 1, A and b
» How do we choose optimal 7, A and b7

> Basic idea: split your training dataset into a smaller training set and
a cross-validation set.

— Run a coarse search (on a logarithmic scale) over the parameters for
just a few epochs of SGD and evaluate on the cross-validation set.
— Perform a finer search.

» Interestingly, [Bergstra and Bengio, 2012] shows that it is better to
run the search randomly than on a grid.

Grid Layout Random Layout

o Q o

Unimportant parameter
Unimportant parameter

Important parameter Important parameter

source: [Bergstra and Bengio, 2012]
A. Banburski



Decaying learning rate

» To improve convergence of SGD, we have to use a decaying learning
rate.

A. Banburski



Decaying learning rate

» To improve convergence of SGD, we have to use a decaying learning
rate.

» Typically we use a scheduler — decrease 7 after some fixed number
of epochs.

A. Banburski



Decaying learning rate

» To improve convergence of SGD, we have to use a decaying learning
rate.

» Typically we use a scheduler — decrease 7 after some fixed number
of epochs.

» This allows the training loss to keep improving after it has plateaued

Training loss (Rolling mean over 100 batches)
— Nsize=3 (ORIG PAPER), 20 layers
— Nsize=5, 32 layers
Nsize=7, 44 layers
— Nsize=9, 56 layers
Nsize=18, 110 layers, fancy policy

A. Banburski



Batch-size & learning rate

An interesting linear scaling relationship seems to exist between the
learning rate i and mini-batch size b:

» In the SGD update, they appear as a ratio #, with an additional
implicit dependence of the sum of gradients on b.

A. Banburski



Batch-size & learning rate

An interesting linear scaling relationship seems to exist between the
learning rate i and mini-batch size b:
» In the SGD update, they appear as a ratio #, with an additional
implicit dependence of the sum of gradients on b.
» If b < N, we can approximate SGD by a stochastic differential
equation with a noise scale g ~ n&' [Smit & Le, 2017].

A. Banburski



Batch-size & learning rate

An interesting linear scaling relationship seems to exist between the
learning rate i and mini-batch size b:
» In the SGD update, they appear as a ratio #, with an additional
implicit dependence of the sum of gradients on b.
» If b < N, we can approximate SGD by a stochastic differential
equation with a noise scale g ~ n&' [Smit & Le, 2017].
» This means that instead of decaying 1, we can increase batch size
dynamically.

A. Banburski



Batch-size & learning rate

An interesting linear scaling relationship seems to exist between the
learning rate i and mini-batch size b:
» In the SGD update, they appear as a ratio #, with an additional
implicit dependence of the sum of gradients on b.
» If b < N, we can approximate SGD by a stochastic differential
equation with a noise scale g ~ n&' [Smit & Le, 2017].
» This means that instead of decaying 1, we can increase batch size

08 08
> >
T o7 S o7
€ £
E E
3 3
o o
® ®
2 0s 2 0s
§ s
i —— Decaying learning rate 1 2 —— Decaying learning rate 1
= —— Decaying learning rate 2 2 —— Decaying learning rate 2
505 5 o0s
5 —— Increasing batch size 1 s —— Increasing batch size 1
—— Increasing batch size 2 —— Increasing batch size 2
04 04
o x o & @ 000 00 5000 12000
Number of epochs Number of parameter updates

source: [Smith et al., 2018]

A. Banburski



Batch-size & learning rate

An interesting linear scaling relationship seems to exist between the
learning rate i and mini-batch size b:
» In the SGD update, they appear as a ratio #, with an additional
implicit dependence of the sum of gradients on b.
» If b < N, we can approximate SGD by a stochastic differential
equation with a noise scale g ~ n&' [Smit & Le, 2017].
» This means that instead of decaying 1, we can increase batch size
dynamically.

08 08

Decaying learning rate 1
Decaying learning rate 2
Increasing batch size 1
Increasing batch size 2

Decaying learning rate 1
Decaying learning rate 2
Increasing batch size 1
Increasing batch size 2

Validation set accuracy
Valication set accuracy

o 2 £ 000 000 00

) @ 0 12000
Number of epochs Number of parameter updates

source: [Smith et al., 2018]

» As b approaches N the dynamics become more and more

deterministic and we would expect this relationship to vanish.



Batch-size & learning rate

100
0.1, 23.6080.12 56, = 0.1, 23.608=0.12 23.60440.12
% 0.05 23.49%40.12 12, = 0.2, 23.48%=0.05 23.53440.08
g
2
s
o 20 0 50 80 o 20 a0 50 80
100
0.1, 23.60e=0.12 kn=256, 7= 0.1, 25.6080.12 — 0.1, 25.608%0.12
% 0.8, 23.493%0.11 kn= ak, 9= 1.6, 23.56%£0.12 kn= 8k, y= 3.2, 23.74%£0.09
20
®
5
2 60
5 s
0
%0
20
o 20 40 60 80 0 20 40 60 80
100
. kn=256, 7= 0.1, 23.608%0.12 kn=256, 7= 0.1, 23.608=0.12 =256, 7= 0.1, 23.60540.12
kn=16k, 7= 6.4, 24.79%£0.27 ——kn=32k, y=12.8, 27.55%0.2 6k, 7=25.6, 33.96%%0.80
g
5
2
g
20 @0 0 20 0 80

40
epochs

source: [Goyal et al., 2017]

A. Banburski



Overview

Optimization algorithms

A. Banburski



SGD is kinda slow...

gradient descent

ITERATIONS

» GD — use all points each iteration to compute gradient
> SGD — use one point each iteration to compute gradient

» Faster: Mini-Batch — use a mini-batch of points each iteration to
compute gradient

A. Banburski



Alternatives to SGD

Are there reasonable alternatives outside of Newton method?

Accelerations
» Momentum
» Nesterov's method
» Adagrad
» RMSprop
» Adam

| 4

A. Banburski



SGD with Momentum

We can try accelerating SGD
Orr1 =0 —nV f(6:)

by adding a momentum /velocity term:

A. Banburski



SGD with Momentum

We can try accelerating SGD
Orr1 =0 —nV f(6:)

by adding a momentum /velocity term:
Vi1 = pvg —nV f(0r)

Orp1 = 0 +ve1

1 is a new "momentum” hyper-parameter.

A. Banburski



SGD with Momentum

We can try accelerating SGD
Orr1 =0 —nV f(6:)

by adding a momentum /velocity term:

Vt41 = UV — va(ot)
Or11 = 0: + v

1 is a new "momentum” hyper-parameter.

momentum
step
actual step

gradient
step

source: cs213n.github.io

A. Banburski



Nesterov Momentum

» Sometimes the momentum update can overshoot

A. Banburski



Nesterov Momentum

» Sometimes the momentum update can overshoot

» We can instead evaluate the gradient at the point where momentum
takes us:

A. Banburski



Nesterov Momentum

» Sometimes the momentum update can overshoot

» We can instead evaluate the gradient at the point where momentum
takes us:

Vi1 = vy — NV f(0y + poy)
Orp1 =0 + v

(5)

A. Banburski



Nesterov Momentum

» Sometimes the momentum update can overshoot

» We can instead evaluate the gradient at the point where momentum
takes us:

Vi1 = vy — NV f(0y + poy)
Orp1 =0 + v

(5)

3 Momentum Vector ———» Nesterov steps

=3 Gradient/correction —> Standard momentum steps

source: Geoff Hinton's lecture

A. Banburski



AdaGrad

> An alternative way is to automatize the decay of the learning rate.

A. Banburski



AdaGrad

> An alternative way is to automatize the decay of the learning rate.
» The Adaptive Gradient algorithm does this by accumulating
magnitudes of gradients

A. Banburski



AdaGrad

> An alternative way is to automatize the decay of the learning rate.

» The Adaptive Gradient algorithm does this by accumulating
magnitudes of gradients

Algorithm 4 AdaGrad
Require: Global learning rate n

Require: Initial parameter 6
Initialize gradient accumulation variable r = 0
while Stopping criterion not met do
Sample a minibatch of m examples from the training set {z("), ... 2™},
Apply interim update: 6 < 6 + pv
Set g =10
for i =1 to m do

Compute gradient:
94 g+ VoL(f(2;6)),4":6).

end for
Accumulate gradient: r «— r + g* (square is applied element-wise)
Compute update: A *%!] (% is applied element-wise)
Apply update: 6 « 6 + Ab,

end while

A. Banburski



AdaGrad

> An alternative way is to automatize the decay of the learning rate.

» The Adaptive Gradient algorithm does this by accumulating
magnitudes of gradients

Algorithm 4 AdaGrad
Require: Global learning rate n

Require: Initial parameter 6
Initialize gradient accumulation variable r = 0
while Stopping criterion not met do
Sample a minibatch of m examples from the training set {z("), ... 2™},
Apply interim update: 6 < 6 + pv
Set g =10
for i =1 to m do

Compute gradient:
9 g+ VoL(f(z;0)),4:0).

end for
Accumulate gradient: r «— r + g* (square is applied element-wise)
Compute update: A *%_‘] (% is applied element-wise)
Apply update: 6 « 6 + Ab,

end while

» AdaGrad accelerates in flat directions of optimization landscape and

slows down in step ones.
A. Banburski



RMSProp

Problem:The updates in AdaGrad always decrease the learning rate, so
some of the parameters can become un-learnable.

A. Banburski



RMSProp

Problem:The updates in AdaGrad always decrease the learning rate, so
some of the parameters can become un-learnable.

» Fix by Hinton: use weighted sum of the square magnitudes instead.

A. Banburski



RMSProp

Problem:The updates in AdaGrad always decrease the learning rate, so
some of the parameters can become un-learnable.

» Fix by Hinton: use weighted sum of the square magnitudes instead.

» This assigns more weight to recent iterations. Useful if directions of
steeper or shallower descent suddenly change.

A. Banburski



RMSProp

Problem:The updates in AdaGrad always decrease the learning rate, so
some of the parameters can become un-learnable.

» Fix by Hinton: use weighted sum of the square magnitudes instead.

» This assigns more weight to recent iterations. Useful if directions of
steeper or shallower descent suddenly change.

Algorithm 5 RMSprop
Require: Global learning rate 7, decay rate p

Require: Initial parameter 6

Initialize accumulation variable r = 0

while Stopping criterion not met do
Sample a minibatch of m examples from the training set {.l,'“) ...... l:(”’)},
Set g =0
for i =1 tom do

Compute gradient:
g g+ VoL(f(@?:0)),y":0).

end for
Accumulate gradient: 7 < pr + (1 — p)g?
Compute parameter update: Af < ——'\/%!1 (% is applied element-wise)
Apply update: 0 < 6 + A6,
end while

A. Banburski



Adam

Adaptive Moment — a combination of the previous approaches.

Algorithm 8.7 The Adam algorithm

Require: Step size € (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, p; and pa in [0,1).

(Suggested defaults: 0.9 and 0.999 respect

ely)

Require: Small constant § used for numerical stabilization. (Suggested default:

10-9)
Require: Initial parameters

ze 1st and 2nd moment variables s = 0, 7 = 0
ze time step t = 0

while stopping criterion not met do
Sample a minibatch of m examples from the training set {a(!)
corresponding targets y(V).
Compute gradient: g < '—}.Va S L(f(zD;0),39)
tet+1
Update biased first moment estimate: s « pys+ (1 - p;)g
Update biased second moment estimate: 7 < por + (1 — p2)g© g

Correct bias in first moment: § « 2
=t

..... =™} with

Correct bias in second moment: # ﬁ'
N —p2
Compute update: AQ = —{7;’7[ (operations applied element-wise)
Apply update: 6 « 0+ A0
end while

training cost

0t

MNIST Multilayer Neural Network + dropout

AdaGrad
RMSProp
SGDNesterov

i

T
iterations over entire dataset

[Kingma and Ba, 2014]

A. Banburski



Adam

Adaptive Moment — a combination of the previous approaches.

Algorithm 8.7 The Adam algorithm

Require: Step size € (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, p; and ps in [0,1).
(Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant § used for numerical stabilization. (Suggested default:
10-9)

Require: Initial parameters 6

ze 1st and 2nd moment variables s = 0, 7 = 0
ze time step t = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z("),... (™} with
corresponding targets y(V).
Compute gradient: g « Vg 3, L(f(x):0),3")
tet+1
Update biased first moment estimate: s < p;s+ (1 - py)g
Update biased second moment estimate: 7 < por + (1 — p2)g © g
Correct bias in first moment: § «

s
1-p}
Correct bias in second moment: # ﬁ'
—p2
Compute update: A@ = —{7;;'3 (operations applied element-wi
Apply update: 6 « 6 + A8
end while

training cost

0t

MNIST Multilayer Neural Network + dropout

AdaGrad
RMSProp
SGDNesterov|

150 Z00
iterations over entire dataset

[Kingma and Ba, 2014]

» Ridiculously popular — more than 13K citations!

A. Banburski



Adam

Adaptive Moment — a combination of the previous approaches.

Algorithm 8.7 The Adam algorithm

Require: Step size € (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, p; and ps in [0,1).
(Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant § used for numerical stabilization. (Suggested default:
1079

Require: Initial parameters 6

Ist and 2nd moment variables s = 0, 7 = 0

ime step t =0

while stopping criterion not met do

Sample a minibatch of m examples from the training set {&V),... (™} with
corresponding targets y(V).

Compute gradient: g < Vo 37, L(f(z;0),y")

t—t+1

Update biased first moment estimate: s < p1s + (1 — p1)g

Update biased second moment estimate: 7 < por + (1 — p2)g © g

Correct bias in first moment: & ¢ -2
Correct bias in second moment: 7 ¢ 12

Compute update: AQ = —{7;7& (operations applied element-wise)
Apply update: 8 « 0 + A0

end while

training cost

10t

MNIST Multilayer Neural Network + dropout

AdaGrad
— RMSProp
SGDNesterov|
AdaDelta

iterations over entire dataset

[Kingma and Ba, 2014]

» Ridiculously popular — more than 13K citations!

» Probably because it comes with recommended parameters and came
with a proof of convergence (which was shown to be wrong).

A. Banburski



So what should | use in practice?

» Adam is a good default in many cases.

A. Banburski



So what should | use in practice?

» Adam is a good default in many cases.

» There exist datasets in which Adam and other adaptive methods do
not generalize to unseen data at all! [Marginal Value of Adaptive
Gradient Methods in Machine Learning]

A. Banburski



So what should | use in practice?

» Adam is a good default in many cases.

» There exist datasets in which Adam and other adaptive methods do
not generalize to unseen data at all! [Marginal Value of Adaptive
Gradient Methods in Machine Learning]

» SGD with Momentum and a decay rate often outperforms Adam

(but requires tuning).

A. Banburski



So what should | use in practice?

» Adam is a good default in many cases.

» There exist datasets in which Adam and other adaptive methods do
not generalize to unseen data at all! [Marginal Value of Adaptive
Gradient Methods in Machine Learning]

» SGD with Momentum and a decay rate often outperforms Adam

(but requires tuning). includegraphicsFigures/comp.png source

github.com /YingzhenLi
A. Banburski



Overview

Batchnorm & Dropout

A. Banburski



Data pre-processing

Since our non-linearities change their behavior around the origin, it makes
sense to pre-process to zero-mean and unit variance.

. _ % — Elxj]
e Var|z;] (©)

A. Banburski



Data pre-processing

Since our non-linearities change their behavior around the origin, it makes
sense to pre-process to zero-mean and unit variance.

Xr; — E[Z‘l]

i Var|z;] (©)

original data zero-centered data normalized data

source: cs213n.github.io

A. Banburski



Batch Normalization

A common technique is to repeat this throughout the deep network in a
differentiable way:

A. Banburski



Batch Normalization

A common technique is to repeat this throughout the deep network in a
differentiable way:

Input: Values of x over a mini-batch: B = {x1_m};
Parameters to be learned: ~,
Output: {y; = BN, g(z:)}

1 m
— i // mini-batch

B ;xz mini-batch mean
1 m

2 2 .. .

— x; — I -batch

Tp ;(h 1B) mini-batch variance

T %:7% // normalize
Vo te

Yi < 7% + f = BNy g(w4) // scale and shift

[loffe and Szegedy, 2015]

A. Banburski



Batch Normalization

In practice, a batchnorm layer is added after a conv or fully-connected
layer, but before activations.

RELL R
kel

A. Banburski



Batch Normalization

In practice, a batchnorm layer is added after a conv or fully-connected
layer, but before activations.

avgpool

» In the original paper the authors claimed that this is meant to
reduce covariate shift.

A. Banburski



Batch Normalization

In practice, a batchnorm layer is added after a conv or fully-connected
layer, but before activations.

» In the original paper the authors claimed that this is meant to
reduce covariate shift.

» More obviously, this reduces 2nd-order correlations between layers.
Recently shown that it actually doesn't change covariate shift!
Instead it smooths out the landscape.

A. Banburski



Batch Normalization

Standard Standard + Standard +

BatchNorm “Noisy" BatchNorm
é;é
A

100

=
g
Layer #2

E/

Training Accuracy

Layer #9

—— Standard
—— Standard + BatchNorm
~—— Standard + "Noisy" Batchnorm

Layer #13

0 5k 10k 15k -

Steps

» More obviously, this reduces 2nd-order correlations between layers.
Recently shown that it actually doesn't change covariate shift!
Instead it smooths out the landscape.

[Santurkar, Tsipras, llyas, Madry, 2018]

A. Banburski



Batch Normalization

In practice, a batchnorm layer is added after a conv or fully-connected
layer, but before activations.

» In the original paper the authors claimed that this is meant to
reduce covariate shift.

» More obviously, this reduces 2nd-order correlations between layers.
Recently shown that it actually doesn't change covariate shift!
Instead it smooths out the landscape.

> In practice this reduces dependence on initialization and seems to
stabilize the flow of gradient descent.

A. Banburski



Batch Normalization

In practice, a batchnorm layer is added after a conv or fully-connected
layer, but before activations.

» In the original paper the authors claimed that this is meant to
reduce covariate shift.

» More obviously, this reduces 2nd-order correlations between layers.
Recently shown that it actually doesn't change covariate shift!
Instead it smooths out the landscape.

> In practice this reduces dependence on initialization and seems to
stabilize the flow of gradient descent.

» Using BN usually nets you a gain of few % increase in test accuracy.

A. Banburski



Dropout

Another common technique: during forward pass, set some of the
weights to 0 randomly with probability p. Typical choice is p = 50%.

A. Banburski



Dropout

Another common technique: during forward pass, set some of the
weights to 0 randomly with probability p. Typical choice is p = 50%.

X Xy
5 vo.o,&.\\
ECER
,‘e 8%

/XK

AN

N\

(b) After applying dropout.

Standard Neural Net

(2)

A. Banburski



Dropout

Another common technique: during forward pass, set some of the
weights to 0 randomly with probability p. Typical choice is p = 50%.

(a) Standard Neural Net (b) After applying dropout.

» The idea is to prevent co-adaptation of neurons.

A. Banburski



Dropout

Another common technique: during forward pass, set some of the
weights to 0 randomly with probability p. Typical choice is p = 50%.

(a) Standard Neural Net (b) After applying dropout.

» The idea is to prevent co-adaptation of neurons.

> At test want to remove the randomness. A good approximation is to
multiply the neural network by p.

A. Banburski



Dropout

Another common technique: during forward pass, set some of the
weights to 0 randomly with probability p. Typical choice is p = 50%.

(a) Standard Neural Net (b) After applying dropout.

» The idea is to prevent co-adaptation of neurons.
> At test want to remove the randomness. A good approximation is to
multiply the neural network by p.

» Dropout is more commonly applied for fully-connected layers,

though its use is waning.
A. Banburski



Overview

Finite dataset woes

A. Banburski



Finite dataset woes

While we are entering the Big Data age, in practice we often find
ourselves with insufficient data to sufficiently train our deep neural
networks.

» What if collecting more data is slow/difficult?

A. Banburski



Finite dataset woes

While we are entering the Big Data age, in practice we often find
ourselves with insufficient data to sufficiently train our deep neural
networks.

» What if collecting more data is slow/difficult?

» Can we squeeze out more from what we already have?

A. Banburski



Invariance problem

An often-repeated claim about CNNs is that they are invariant to small
translations. Independently of whether this is true, they are not invariant
to most other types of transformations:

Camera pose llumination Deformation Occlusion

\

Background clutter

source: cs213n.github.io

A. Banburski



Data augmentation

» Can greatly increase the amount of data by performing:

A. Banburski



Data augmentation

» Can greatly increase the amount of data by performing:

— Translations

— Rotations

— Reflections

— Scaling

— Cropping

— Adding Gaussian Noise
— Adding Occlusion

— Interpolation

— etc.

A. Banburski



Data augmentation

» Can greatly increase the amount of data by performing:
— Translations
— Rotations
— Reflections
— Scaling
— Cropping
— Adding Gaussian Noise
— Adding Occlusion
— Interpolation
— etc.

» Crucial for achieving state-of-the-art performance!

A. Banburski



Data augmentation

» Can greatly increase the amount of data by performing:
— Translations
— Rotations
— Reflections
— Scaling
— Cropping
— Adding Gaussian Noise
— Adding Occlusion
— Interpolation
— etc.

» Crucial for achieving state-of-the-art performance!

» For example, ResNet improves from 11.66% to 6.41% error on
CIFAR-10 dataset and from 44.74% to 27.22% on CIFAR-100.

A. Banburski



Data augmentation




Transfer Learning

What if you truly have too little data?

» If your data has sufficient similarity to a bigger dataset, the you're in
luck!

A. Banburski



Transfer Learning

What if you truly have too little data?

» If your data has sufficient similarity to a bigger dataset, the you're in
luck!

> Idea: take a model trained for example on ImageNet.

A. Banburski



Transfer Learning

What if you truly have too little data?

> If your data has sufficient similarity to a bigger dataset, the you're in
luck!
> Idea: take a model trained for example on ImageNet.

> Freeze all but last few layers and retrain on your small data. The
bigger your dataset, the more layers you have to retrain.

A. Banburski



Transfer Learning

What if you truly have too little data?
If your data has sufficient similarity to a bigger dataset, the you're in
luck!
Idea: take a model trained for example on ImageNet.

> Freeze all but last few layers and retrain on your small data. The
bigger your dataset, the more layers you have to retrain.

Target AAM Source AAM
Instance Transfer: combine advantages

Selection of helpful source sampl
raV S

High specialization
Low expressiveness

High variability
Generic, low robustness

source: [Haase et al., 2014]

A. Banburski



Overview

Software

A. Banburski



Software overview

i 2
Chainer @Xnet L Caffe2

B Microsoft

CNTK ¥ Tensorflow Ml Keras

@ csruon PYTBRCH theano



Software overview

Ch‘;;;:er @xnet O caffe

B Microsoft
CNTK & TensorFlow) 4 Keras
© sLuon ‘m’ theano



Why use frameworks?

» You don't have to implement everything yourself.

A. Banburski



Why use frameworks?

» You don't have to implement everything yourself.

» Many inbuilt modules allow quick iteration of ideas — building a
neural network becomes putting simple blocks together and
computing backprop is a breeze.

A. Banburski



Why use frameworks?

» You don't have to implement everything yourself.

» Many inbuilt modules allow quick iteration of ideas — building a
neural network becomes putting simple blocks together and
computing backprop is a breeze.

» Someone else already wrote CUDA code to efficiently run training
on GPUs (or TPUs).

A. Banburski



Main design difference

Static vs Dynamic

“Define-and-run”

Static

“Define-by-run”
Dynamic
graph graph
Sam. utational The graph is allowed
framework ww;mwv " framework mcﬁ::, sach
iteration. iteration.

T Scaffe Céﬁﬂ&wnﬁ
TensorFlow

Microsoft

CNTK PYTORCH

source: Introduction to Chainer

A. Banburski



PyTorch concepts

Similar in code to numpy.

A. Banburski



PyTorch concepts

Similar in code to numpy.

> Tensor: nearly identical to np.array, can run on GPU just with

device = torch.device(
"cuda" if use_cuda else "cpu")

A. Banburski



PyTorch concepts

Similar in code to numpy.

> Tensor: nearly identical to np.array, can run on GPU just with

device = torch.device(
"cuda" if use_cuda else "cpu")

» Autograd: package for automatic computation of backprop and
construction of computational graphs.

A. Banburski



PyTorch concepts

Similar in code to numpy.

> Tensor: nearly identical to np.array, can run on GPU just with

device = torch.device(
"cuda" if use_cuda else "cpu")

» Autograd: package for automatic computation of backprop and
construction of computational graphs.

» Module: neural network layer storing weights

A. Banburski



PyTorch concepts

Similar in code to numpy.

> Tensor: nearly identical to np.array, can run on GPU just with

device = torch.device(
"cuda" if use_cuda else "cpu")

» Autograd: package for automatic computation of backprop and
construction of computational graphs.

» Module: neural network layer storing weights

» Dataloader:

class for simplifying efficient data loading

import torch
from torchvision import transforms, datasets

data_transform = transforms.Compose ([
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensox (),
transforms.Normalize (mean=[0.485, 456, 0.406],
std=[0.229, 0.224, 0.225])

hymenoptera_dataset = datasets.ImageFolder(root='hymenoptera_data/train’,
transform=data_transform)
dataset_loader = torch.utils.data.Dataloader (hymenoptera_dataset,
batch_size=4, shuffle=True,

num_workers=4)|

A. Banburski



PyTorch - optimization

import torch

N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
torch.nn.Linear(D_in, H),
torch.nn.ReLU(),
torch.nn.Linear(H, D out))

rnina rate = le-4
optimizer = torch.optim.Adam(model.parameters(),
lr=learning rate)

for t in range(500):
y_pred = model(x)
loss = torch.nn.functional.mse loss(y_pred, y)

loss.backward()

optimizer.step()
optimizer.zero grad()

A. Banburski



PyTorch - ResNet in one page

class BnLayer(nn.Module):
def __init_ (self, ni, nf, stride=2):
super().__init_ ()
self.conv = nn.Conv2d(ni, nf, kernel_size=3, stride=stride, bias=False, padding=1)
self.a = nn.Parameter(torch.zeros(nf,1,1))
self.m = nn.Parameter(torch.ones(nf,1,1))

def forward(self, x):
X = F.relu(self.conv(x))
X_chan = x.transpose(©,1).contiguous().view(x.size(1), -1)
if self.training:

self.means = x_chan.mean(1)[:,None,None]

self.stds = x_chan.std (1)[:,None,None]

x - self.means

x = x / self.stds

return x*self.m+self.a

class ResnetLayer(BnLayer):
def forward(self, x): return x + super().forward(x)

class Resnet(nn.Module):
def __init__(self, layers, c):

Super().__init_ ()

self.layers = nn.ModuleList([BnLayer(layers[i], layers[i+1])
for i in range(len(layers) - 1)])

self.layers2 = nn.ModuleList([ResnetLayer(layers[i+1], layers[i + 1], 1)
for i in range(len(layers) - 1)])

self.layers3 = nn.ModuleList([ResnetLayer(layers[i+1], layers[i + 1], 1)
for i in range(len(layers) - 1)])

self.out = nn.Linear(layers[-1], c)

def forward(self, x):
for 1,12,13 in zip(self.layers, self.layers2, self.layers3):
x = 13(12(1(x)))
x = F.adaptive_max_pool2d(x, 1)
X = X.view(x.size(®), -1)
return F.log_softmax(self.out(x), dim=-1)

@jeremyphoward
A. Banburski



Tensorflow static graphs

N, D, H = 64, 1000, 100

x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
wl = tf.placeholder(tf.float32, shape=(D, H))
w2 = tf.placeholder(tf.float32, shape=(H, D))

h = tf.maximum(tf.matmul(x, wl), 0)

y_pred = tf.matmul(h, w2)

diff = y pred - y

loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))

grad_wl, grad_w2 = tf.gradients(loss, [wl, w2])

with tf.Session() as sess:
values = {x: np.random.randn(N, D),
wl: np.random.randn(D, H),
w2: np.random.randn(H, D),
y: np.random.randn(N, D),}
out = sess.run([loss, grad wl, grad w2],
feed_dict=values)
loss_val, grad wl_val, grad _w2_val = out

source: cs213n.github.io

A. Banburski



Keras wrapper - closer to PyTorch

N, D, H = 64, 1000, 100
X = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))

model = tf.keras.Sequential()

model.add(tf.keras.layers.Dense(H, input_shape=(D,),
activation=tf.nn.relu))

model.add(tf.keras.layers.Dense(D))

y_pred = model(x)

loss = tf.losses.mean squared error(y_pred, y)

optimizer = tf.train.GradientDescentOptimizer(1lel)
updates = optimizer.minimize(loss)

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
values = {x: np.random.randn(N, D),
y: np.random.randn(N, D)}
for t in range(50):
loss_val, _ = sess.run([loss, updates],
feed dict=values)

source: cs213n.github.io
A. Banburski



Tensorboard - very useful tool for visualization

TensorBoard SCALARS ~ GRAPHS  DISTRIBUTIONS  HISTOGRAMS

INACTIVE c o g

Histogram mode hidden1

OVERLAY hidden1/act tain| =

Offset time axis

Runs

Wite a regex to filter uns

® tain
O test

000 010 | 0%

TOGGLE ALL RUNS

A. Banburski



Tensorflow overview

» Main difference — uses static graphs. Longer code, but more
optimized. In practice PyTorch is faster to experiment on.

A. Banburski



Tensorflow overview

» Main difference — uses static graphs. Longer code, but more
optimized. In practice PyTorch is faster to experiment on.

» With Keras wrapper code is more similar to PyTorch however.

A. Banburski



Tensorflow overview

» Main difference — uses static graphs. Longer code, but more
optimized. In practice PyTorch is faster to experiment on.

» With Keras wrapper code is more similar to PyTorch however.

» Can use TPUs

A. Banburski



But

» Tensorflow has added dynamic batching, which makes dynamic
graphs possible.

A. Banburski



But

» Tensorflow has added dynamic batching, which makes dynamic
graphs possible.

» PyTorch is merging with Caffe2, which will provide static graphs too!

A. Banburski



But

» Tensorflow has added dynamic batching, which makes dynamic
graphs possible.

» PyTorch is merging with Caffe2, which will provide static graphs too!
» Which one to choose then?

A. Banburski



But

» Tensorflow has added dynamic batching, which makes dynamic
graphs possible.
» PyTorch is merging with Caffe2, which will provide static graphs too!

» Which one to choose then?

— PyTorch is more popular in the research community for easy
development and debugging.

A. Banburski



But

» Tensorflow has added dynamic batching, which makes dynamic
graphs possible.
» PyTorch is merging with Caffe2, which will provide static graphs too!
» Which one to choose then?
— PyTorch is more popular in the research community for easy
development and debugging.
— In the past a better choice for production was Tensorflow. Still the
only choice if you want to use TPUs.

A. Banburski



	Initialization & hyper-parameter tuning
	Optimization algorithms
	Batchnorm & Dropout
	Finite dataset woes
	Software

	anm0: 
	anm1: 
	anm2: 


