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Last time - Convolutional neural networks

source: github.com/vdumoulin/conv arithmetic

More Data and GPUs 

AlexNet outmatches the ILSVRC 2012

Large-scale Datasets General Purpose GPUs

AlexNet 
Krizhevsky 
et al (2012)
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Initialization & hyper-parameter tuning

Consider the problem of training a neural network fθ(x) by minimizing a
loss

L(θ, x) =

N∑
i=1

li(yi, fθ(xi)) + λ|θ|2

with SGD and mini-batch size b:

θt+1 = θt − η
1

b

∑
i∈B
∇θL(θt, xi) (1)

I How should we choose the initial set of parameters θ?

I How about the hyper-parameters η, λ and b?
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Weight Initialization

I First obvious observation: starting with 0 will make every weight
update in the same way. Similarly, too big and we can run into NaN.

I What about θ0 = ε×N (0, 1), with ε ≈ 10−2?

I For a few layers this would seem to work nicely.

I If we go deeper however...

I Super slow update of earlier layers 10−2L for sigmoid or tanh
activations – vanishing gradients. ReLU activations do not suffer so
much from this.
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Xavier & He initializations

I For tanh and sigmoid activations, near origin we deal with a nearly
linear function y =Wx, with x = (x1, . . . , xnin). To stop vanishing
and exploding gradients we need

Var(y) = Var(Wx) = Var(w1x1) + · · ·+ Var(wnin
xnin

)

I If we assume that W and x are i.i.d. and have zero mean, then
Var(y) = nVar(wi)Var(xi)

I If we want the inputs and outputs to have same variance, this gives
us Var(wi) =

1
nin

.

I Similar analysis for backward pass gives Var(wi) =
1

nout
.

I The compromise is the Xavier initialization [Glorot et al., 2010]:

Var(wi) =
2

nin + nout
(2)

I Heuristically, ReLU is half of the linear function, so we can take

Var(wi) =
4

nin + nout
(3)

An analysis in [He et al., 2015] confirms this.
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Hyper-parameter tuning

How about the hyper-parameters η, λ and b

I How do we choose optimal η, λ and b?

I Basic idea: split your training dataset into a smaller training set and
a cross-validation set.

– Run a coarse search (on a logarithmic scale) over the parameters for
just a few epochs of SGD and evaluate on the cross-validation set.

– Perform a finer search.

I Interestingly, [Bergstra and Bengio, 2012] shows that it is better to
run the search randomly than on a grid.

source: [Bergstra and Bengio, 2012]
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Decaying learning rate

I To improve convergence of SGD, we have to use a decaying learning
rate.

I Typically we use a scheduler – decrease η after some fixed number
of epochs.

I This allows the training loss to keep improving after it has plateaued
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Batch-size & learning rate

An interesting linear scaling relationship seems to exist between the
learning rate η and mini-batch size b:

I In the SGD update, they appear as a ratio η
b , with an additional

implicit dependence of the sum of gradients on b.

I If b� N , we can approximate SGD by a stochastic differential
equation with a noise scale g ≈ ηNb [Smit & Le, 2017].

I This means that instead of decaying η, we can increase batch size
dynamically.

source: [Smith et al., 2018]

I As b approaches N the dynamics become more and more
deterministic and we would expect this relationship to vanish.
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Batch-size & learning rate

source: [Goyal et al., 2017]
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SGD is kinda slow...

I GD – use all points each iteration to compute gradient

I SGD – use one point each iteration to compute gradient

I Faster: Mini-Batch – use a mini-batch of points each iteration to
compute gradient

A. Banburski



Alternatives to SGD

Are there reasonable alternatives outside of Newton method?

Accelerations

I Momentum

I Nesterov’s method

I Adagrad

I RMSprop

I Adam

I . . .
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SGD with Momentum

We can try accelerating SGD

θt+1 = θt − η∇f(θt)

by adding a momentum/velocity term:

vt+1 = µvt − η∇f(θt)
θt+1 = θt + vt+1

(4)

µ is a new ”momentum” hyper-parameter.

source: cs213n.github.io
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Nesterov Momentum

I Sometimes the momentum update can overshoot

I We can instead evaluate the gradient at the point where momentum
takes us:

vt+1 = µvt − η∇f(θt + µvt)

θt+1 = θt + vt+1

(5)

source: Geoff Hinton’s lecture
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AdaGrad

I An alternative way is to automatize the decay of the learning rate.

I The Adaptive Gradient algorithm does this by accumulating
magnitudes of gradients

I AdaGrad accelerates in flat directions of optimization landscape and
slows down in step ones.
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RMSProp

Problem:The updates in AdaGrad always decrease the learning rate, so
some of the parameters can become un-learnable.

I Fix by Hinton: use weighted sum of the square magnitudes instead.
I This assigns more weight to recent iterations. Useful if directions of

steeper or shallower descent suddenly change.
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Adam

Adaptive Moment – a combination of the previous approaches.

[Kingma and Ba, 2014]

I Ridiculously popular – more than 13K citations!

I Probably because it comes with recommended parameters and came
with a proof of convergence (which was shown to be wrong).
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So what should I use in practice?

I Adam is a good default in many cases.

I There exist datasets in which Adam and other adaptive methods do
not generalize to unseen data at all! [Marginal Value of Adaptive
Gradient Methods in Machine Learning]

I SGD with Momentum and a decay rate often outperforms Adam

(but requires tuning).

includegraphicsFigures/comp.png source:

github.com/YingzhenLi
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Data pre-processing

Since our non-linearities change their behavior around the origin, it makes
sense to pre-process to zero-mean and unit variance.

x̂i =
xi − E[xi]√

Var[xi]
(6)

source: cs213n.github.io
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Batch Normalization

A common technique is to repeat this throughout the deep network in a
differentiable way:

[Ioffe and Szegedy, 2015]
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Batch Normalization

In practice, a batchnorm layer is added after a conv or fully-connected
layer, but before activations.

I In the original paper the authors claimed that this is meant to
reduce covariate shift.

I More obviously, this reduces 2nd-order correlations between layers.
Recently shown that it actually doesn’t change covariate shift!
Instead it smooths out the landscape.

I In practice this reduces dependence on initialization and seems to
stabilize the flow of gradient descent.

I Using BN usually nets you a gain of few % increase in test accuracy.
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Dropout

Another common technique: during forward pass, set some of the
weights to 0 randomly with probability p. Typical choice is p = 50%.

I The idea is to prevent co-adaptation of neurons.

I At test want to remove the randomness. A good approximation is to
multiply the neural network by p.

I Dropout is more commonly applied for fully-connected layers,
though its use is waning.
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Finite dataset woes

While we are entering the Big Data age, in practice we often find
ourselves with insufficient data to sufficiently train our deep neural
networks.

I What if collecting more data is slow/difficult?

I Can we squeeze out more from what we already have?
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Invariance problem

An often-repeated claim about CNNs is that they are invariant to small
translations. Independently of whether this is true, they are not invariant
to most other types of transformations:

source: cs213n.github.io
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Data augmentation

I Can greatly increase the amount of data by performing:

– Translations
– Rotations
– Reflections
– Scaling
– Cropping
– Adding Gaussian Noise
– Adding Occlusion
– Interpolation
– etc.

I Crucial for achieving state-of-the-art performance!

I For example, ResNet improves from 11.66% to 6.41% error on
CIFAR-10 dataset and from 44.74% to 27.22% on CIFAR-100.
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Data augmentation

source: github.com/aleju/imgaug

A. Banburski



Transfer Learning

What if you truly have too little data?

I If your data has sufficient similarity to a bigger dataset, the you’re in
luck!

I Idea: take a model trained for example on ImageNet.

I Freeze all but last few layers and retrain on your small data. The
bigger your dataset, the more layers you have to retrain.

source: [Haase et al., 2014]
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Why use frameworks?

I You don’t have to implement everything yourself.

I Many inbuilt modules allow quick iteration of ideas – building a
neural network becomes putting simple blocks together and
computing backprop is a breeze.

I Someone else already wrote CUDA code to efficiently run training
on GPUs (or TPUs).
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Main design difference

source: Introduction to Chainer
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PyTorch concepts

Similar in code to numpy.

I Tensor: nearly identical to np.array, can run on GPU just with

I Autograd: package for automatic computation of backprop and
construction of computational graphs.

I Module: neural network layer storing weights

I Dataloader: class for simplifying efficient data loading

A. Banburski



PyTorch concepts

Similar in code to numpy.

I Tensor: nearly identical to np.array, can run on GPU just with

I Autograd: package for automatic computation of backprop and
construction of computational graphs.

I Module: neural network layer storing weights

I Dataloader: class for simplifying efficient data loading

A. Banburski



PyTorch concepts

Similar in code to numpy.

I Tensor: nearly identical to np.array, can run on GPU just with

I Autograd: package for automatic computation of backprop and
construction of computational graphs.

I Module: neural network layer storing weights

I Dataloader: class for simplifying efficient data loading

A. Banburski



PyTorch concepts

Similar in code to numpy.

I Tensor: nearly identical to np.array, can run on GPU just with

I Autograd: package for automatic computation of backprop and
construction of computational graphs.

I Module: neural network layer storing weights

I Dataloader: class for simplifying efficient data loading

A. Banburski



PyTorch concepts

Similar in code to numpy.

I Tensor: nearly identical to np.array, can run on GPU just with

I Autograd: package for automatic computation of backprop and
construction of computational graphs.

I Module: neural network layer storing weights

I Dataloader: class for simplifying efficient data loading

A. Banburski



PyTorch - optimization
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PyTorch - ResNet in one page

@jeremyphoward
A. Banburski



Tensorflow static graphs

source: cs213n.github.io
A. Banburski



Keras wrapper - closer to PyTorch

source: cs213n.github.io
A. Banburski



Tensorboard - very useful tool for visualization
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Tensorflow overview

I Main difference – uses static graphs. Longer code, but more
optimized. In practice PyTorch is faster to experiment on.

I With Keras wrapper code is more similar to PyTorch however.

I Can use TPUs
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But

I Tensorflow has added dynamic batching, which makes dynamic
graphs possible.

I PyTorch is merging with Caffe2, which will provide static graphs too!

I Which one to choose then?

– PyTorch is more popular in the research community for easy
development and debugging.

– In the past a better choice for production was Tensorflow. Still the
only choice if you want to use TPUs.
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