
MIT 9.520/6.860, Fall 2018

Class 11: Neural networks – tips, tricks & software

Andrzej Banburski

Last time - Convolutional neural networks

source: github.com/vdumoulin/conv arithmetic

More Data and GPUs

AlexNet outmatches the ILSVRC 2012

Large-scale Datasets General Purpose GPUs

AlexNet
Krizhevsky
et al (2012)

A. Banburski

Overview

Initialization & hyper-parameter tuning

Optimization algorithms

Batchnorm & Dropout

Finite dataset woes

Software

A. Banburski

Initialization & hyper-parameter tuning

Consider the problem of training a neural network fθ(x) by minimizing a
loss

L(θ, x) =

N∑
i=1

li(yi, fθ(xi)) + λ|θ|2

with SGD and mini-batch size b:

θt+1 = θt − η
1

b

∑
i∈B
∇θL(θt, xi) (1)

I How should we choose the initial set of parameters θ?

I How about the hyper-parameters η, λ and b?

A. Banburski

Initialization & hyper-parameter tuning

Consider the problem of training a neural network fθ(x) by minimizing a
loss

L(θ, x) =

N∑
i=1

li(yi, fθ(xi)) + λ|θ|2

with SGD and mini-batch size b:

θt+1 = θt − η
1

b

∑
i∈B
∇θL(θt, xi) (1)

I How should we choose the initial set of parameters θ?

I How about the hyper-parameters η, λ and b?

A. Banburski

Initialization & hyper-parameter tuning

Consider the problem of training a neural network fθ(x) by minimizing a
loss

L(θ, x) =

N∑
i=1

li(yi, fθ(xi)) + λ|θ|2

with SGD and mini-batch size b:

θt+1 = θt − η
1

b

∑
i∈B
∇θL(θt, xi) (1)

I How should we choose the initial set of parameters θ?

I How about the hyper-parameters η, λ and b?

A. Banburski

Weight Initialization

I First obvious observation: starting with 0 will make every weight
update in the same way. Similarly, too big and we can run into NaN.

I What about θ0 = ε×N (0, 1), with ε ≈ 10−2?

I For a few layers this would seem to work nicely.

I If we go deeper however...

I Super slow update of earlier layers 10−2L for sigmoid or tanh
activations – vanishing gradients. ReLU activations do not suffer so
much from this.

A. Banburski

Weight Initialization

I First obvious observation: starting with 0 will make every weight
update in the same way. Similarly, too big and we can run into NaN.

I What about θ0 = ε×N (0, 1), with ε ≈ 10−2?

I For a few layers this would seem to work nicely.

I If we go deeper however...

I Super slow update of earlier layers 10−2L for sigmoid or tanh
activations – vanishing gradients. ReLU activations do not suffer so
much from this.

A. Banburski

Weight Initialization

I First obvious observation: starting with 0 will make every weight
update in the same way. Similarly, too big and we can run into NaN.

I What about θ0 = ε×N (0, 1), with ε ≈ 10−2?

I For a few layers this would seem to work nicely.

I If we go deeper however...

I Super slow update of earlier layers 10−2L for sigmoid or tanh
activations – vanishing gradients. ReLU activations do not suffer so
much from this.

A. Banburski

Weight Initialization

I First obvious observation: starting with 0 will make every weight
update in the same way. Similarly, too big and we can run into NaN.

I What about θ0 = ε×N (0, 1), with ε ≈ 10−2?

I For a few layers this would seem to work nicely.

I If we go deeper however...

I Super slow update of earlier layers 10−2L for sigmoid or tanh
activations – vanishing gradients. ReLU activations do not suffer so
much from this.

A. Banburski

Weight Initialization

I First obvious observation: starting with 0 will make every weight
update in the same way. Similarly, too big and we can run into NaN.

I What about θ0 = ε×N (0, 1), with ε ≈ 10−2?

I For a few layers this would seem to work nicely.

I If we go deeper however...

I Super slow update of earlier layers 10−2L for sigmoid or tanh
activations – vanishing gradients. ReLU activations do not suffer so
much from this.

A. Banburski

Xavier & He initializations

I For tanh and sigmoid activations, near origin we deal with a nearly
linear function y =Wx, with x = (x1, . . . , xnin). To stop vanishing
and exploding gradients we need

Var(y) = Var(Wx) = Var(w1x1) + · · ·+ Var(wnin
xnin

)

I If we assume that W and x are i.i.d. and have zero mean, then
Var(y) = nVar(wi)Var(xi)

I If we want the inputs and outputs to have same variance, this gives
us Var(wi) =

1
nin

.

I Similar analysis for backward pass gives Var(wi) =
1

nout
.

I The compromise is the Xavier initialization [Glorot et al., 2010]:

Var(wi) =
2

nin + nout
(2)

I Heuristically, ReLU is half of the linear function, so we can take

Var(wi) =
4

nin + nout
(3)

An analysis in [He et al., 2015] confirms this.

A. Banburski

Xavier & He initializations

I For tanh and sigmoid activations, near origin we deal with a nearly
linear function y =Wx, with x = (x1, . . . , xnin). To stop vanishing
and exploding gradients we need

Var(y) = Var(Wx) = Var(w1x1) + · · ·+ Var(wnin
xnin

)

I If we assume that W and x are i.i.d. and have zero mean, then
Var(y) = nVar(wi)Var(xi)

I If we want the inputs and outputs to have same variance, this gives
us Var(wi) =

1
nin

.

I Similar analysis for backward pass gives Var(wi) =
1

nout
.

I The compromise is the Xavier initialization [Glorot et al., 2010]:

Var(wi) =
2

nin + nout
(2)

I Heuristically, ReLU is half of the linear function, so we can take

Var(wi) =
4

nin + nout
(3)

An analysis in [He et al., 2015] confirms this.

A. Banburski

Xavier & He initializations

I For tanh and sigmoid activations, near origin we deal with a nearly
linear function y =Wx, with x = (x1, . . . , xnin). To stop vanishing
and exploding gradients we need

Var(y) = Var(Wx) = Var(w1x1) + · · ·+ Var(wnin
xnin

)

I If we assume that W and x are i.i.d. and have zero mean, then
Var(y) = nVar(wi)Var(xi)

I If we want the inputs and outputs to have same variance, this gives
us Var(wi) =

1
nin

.

I Similar analysis for backward pass gives Var(wi) =
1

nout
.

I The compromise is the Xavier initialization [Glorot et al., 2010]:

Var(wi) =
2

nin + nout
(2)

I Heuristically, ReLU is half of the linear function, so we can take

Var(wi) =
4

nin + nout
(3)

An analysis in [He et al., 2015] confirms this.

A. Banburski

Xavier & He initializations

I For tanh and sigmoid activations, near origin we deal with a nearly
linear function y =Wx, with x = (x1, . . . , xnin). To stop vanishing
and exploding gradients we need

Var(y) = Var(Wx) = Var(w1x1) + · · ·+ Var(wnin
xnin

)

I If we assume that W and x are i.i.d. and have zero mean, then
Var(y) = nVar(wi)Var(xi)

I If we want the inputs and outputs to have same variance, this gives
us Var(wi) =

1
nin

.

I Similar analysis for backward pass gives Var(wi) =
1

nout
.

I The compromise is the Xavier initialization [Glorot et al., 2010]:

Var(wi) =
2

nin + nout
(2)

I Heuristically, ReLU is half of the linear function, so we can take

Var(wi) =
4

nin + nout
(3)

An analysis in [He et al., 2015] confirms this.

A. Banburski

Xavier & He initializations

I For tanh and sigmoid activations, near origin we deal with a nearly
linear function y =Wx, with x = (x1, . . . , xnin). To stop vanishing
and exploding gradients we need

Var(y) = Var(Wx) = Var(w1x1) + · · ·+ Var(wnin
xnin

)

I If we assume that W and x are i.i.d. and have zero mean, then
Var(y) = nVar(wi)Var(xi)

I If we want the inputs and outputs to have same variance, this gives
us Var(wi) =

1
nin

.

I Similar analysis for backward pass gives Var(wi) =
1

nout
.

I The compromise is the Xavier initialization [Glorot et al., 2010]:

Var(wi) =
2

nin + nout
(2)

I Heuristically, ReLU is half of the linear function, so we can take

Var(wi) =
4

nin + nout
(3)

An analysis in [He et al., 2015] confirms this.

A. Banburski

Xavier & He initializations

I For tanh and sigmoid activations, near origin we deal with a nearly
linear function y =Wx, with x = (x1, . . . , xnin). To stop vanishing
and exploding gradients we need

Var(y) = Var(Wx) = Var(w1x1) + · · ·+ Var(wnin
xnin

)

I If we assume that W and x are i.i.d. and have zero mean, then
Var(y) = nVar(wi)Var(xi)

I If we want the inputs and outputs to have same variance, this gives
us Var(wi) =

1
nin

.

I Similar analysis for backward pass gives Var(wi) =
1

nout
.

I The compromise is the Xavier initialization [Glorot et al., 2010]:

Var(wi) =
2

nin + nout
(2)

I Heuristically, ReLU is half of the linear function, so we can take

Var(wi) =
4

nin + nout
(3)

An analysis in [He et al., 2015] confirms this.
A. Banburski

Hyper-parameter tuning

How about the hyper-parameters η, λ and b

I How do we choose optimal η, λ and b?

I Basic idea: split your training dataset into a smaller training set and
a cross-validation set.

– Run a coarse search (on a logarithmic scale) over the parameters for
just a few epochs of SGD and evaluate on the cross-validation set.

– Perform a finer search.

I Interestingly, [Bergstra and Bengio, 2012] shows that it is better to
run the search randomly than on a grid.

source: [Bergstra and Bengio, 2012]

A. Banburski

Hyper-parameter tuning

How about the hyper-parameters η, λ and b

I How do we choose optimal η, λ and b?

I Basic idea: split your training dataset into a smaller training set and
a cross-validation set.

– Run a coarse search (on a logarithmic scale) over the parameters for
just a few epochs of SGD and evaluate on the cross-validation set.

– Perform a finer search.

I Interestingly, [Bergstra and Bengio, 2012] shows that it is better to
run the search randomly than on a grid.

source: [Bergstra and Bengio, 2012]

A. Banburski

Hyper-parameter tuning

How about the hyper-parameters η, λ and b

I How do we choose optimal η, λ and b?

I Basic idea: split your training dataset into a smaller training set and
a cross-validation set.

– Run a coarse search (on a logarithmic scale) over the parameters for
just a few epochs of SGD and evaluate on the cross-validation set.

– Perform a finer search.

I Interestingly, [Bergstra and Bengio, 2012] shows that it is better to
run the search randomly than on a grid.

source: [Bergstra and Bengio, 2012]

A. Banburski

Hyper-parameter tuning

How about the hyper-parameters η, λ and b

I How do we choose optimal η, λ and b?

I Basic idea: split your training dataset into a smaller training set and
a cross-validation set.

– Run a coarse search (on a logarithmic scale) over the parameters for
just a few epochs of SGD and evaluate on the cross-validation set.

– Perform a finer search.

I Interestingly, [Bergstra and Bengio, 2012] shows that it is better to
run the search randomly than on a grid.

source: [Bergstra and Bengio, 2012]

A. Banburski

Hyper-parameter tuning

How about the hyper-parameters η, λ and b

I How do we choose optimal η, λ and b?

I Basic idea: split your training dataset into a smaller training set and
a cross-validation set.

– Run a coarse search (on a logarithmic scale) over the parameters for
just a few epochs of SGD and evaluate on the cross-validation set.

– Perform a finer search.

I Interestingly, [Bergstra and Bengio, 2012] shows that it is better to
run the search randomly than on a grid.

source: [Bergstra and Bengio, 2012]

A. Banburski

Hyper-parameter tuning

How about the hyper-parameters η, λ and b

I How do we choose optimal η, λ and b?

I Basic idea: split your training dataset into a smaller training set and
a cross-validation set.

– Run a coarse search (on a logarithmic scale) over the parameters for
just a few epochs of SGD and evaluate on the cross-validation set.

– Perform a finer search.

I Interestingly, [Bergstra and Bengio, 2012] shows that it is better to
run the search randomly than on a grid.

source: [Bergstra and Bengio, 2012]

A. Banburski

Decaying learning rate

I To improve convergence of SGD, we have to use a decaying learning
rate.

I Typically we use a scheduler – decrease η after some fixed number
of epochs.

I This allows the training loss to keep improving after it has plateaued

A. Banburski

Decaying learning rate

I To improve convergence of SGD, we have to use a decaying learning
rate.

I Typically we use a scheduler – decrease η after some fixed number
of epochs.

I This allows the training loss to keep improving after it has plateaued

A. Banburski

Decaying learning rate

I To improve convergence of SGD, we have to use a decaying learning
rate.

I Typically we use a scheduler – decrease η after some fixed number
of epochs.

I This allows the training loss to keep improving after it has plateaued

A. Banburski

Batch-size & learning rate

An interesting linear scaling relationship seems to exist between the
learning rate η and mini-batch size b:

I In the SGD update, they appear as a ratio η
b , with an additional

implicit dependence of the sum of gradients on b.

I If b� N , we can approximate SGD by a stochastic differential
equation with a noise scale g ≈ ηNb [Smit & Le, 2017].

I This means that instead of decaying η, we can increase batch size
dynamically.

source: [Smith et al., 2018]

I As b approaches N the dynamics become more and more
deterministic and we would expect this relationship to vanish.

A. Banburski

Batch-size & learning rate

An interesting linear scaling relationship seems to exist between the
learning rate η and mini-batch size b:

I In the SGD update, they appear as a ratio η
b , with an additional

implicit dependence of the sum of gradients on b.
I If b� N , we can approximate SGD by a stochastic differential

equation with a noise scale g ≈ ηNb [Smit & Le, 2017].

I This means that instead of decaying η, we can increase batch size
dynamically.

source: [Smith et al., 2018]

I As b approaches N the dynamics become more and more
deterministic and we would expect this relationship to vanish.

A. Banburski

Batch-size & learning rate

An interesting linear scaling relationship seems to exist between the
learning rate η and mini-batch size b:

I In the SGD update, they appear as a ratio η
b , with an additional

implicit dependence of the sum of gradients on b.
I If b� N , we can approximate SGD by a stochastic differential

equation with a noise scale g ≈ ηNb [Smit & Le, 2017].
I This means that instead of decaying η, we can increase batch size

dynamically.

source: [Smith et al., 2018]

I As b approaches N the dynamics become more and more
deterministic and we would expect this relationship to vanish.

A. Banburski

Batch-size & learning rate

An interesting linear scaling relationship seems to exist between the
learning rate η and mini-batch size b:

I In the SGD update, they appear as a ratio η
b , with an additional

implicit dependence of the sum of gradients on b.
I If b� N , we can approximate SGD by a stochastic differential

equation with a noise scale g ≈ ηNb [Smit & Le, 2017].
I This means that instead of decaying η, we can increase batch size

dynamically.

source: [Smith et al., 2018]

I As b approaches N the dynamics become more and more
deterministic and we would expect this relationship to vanish.

A. Banburski

Batch-size & learning rate

An interesting linear scaling relationship seems to exist between the
learning rate η and mini-batch size b:

I In the SGD update, they appear as a ratio η
b , with an additional

implicit dependence of the sum of gradients on b.
I If b� N , we can approximate SGD by a stochastic differential

equation with a noise scale g ≈ ηNb [Smit & Le, 2017].
I This means that instead of decaying η, we can increase batch size

dynamically.

source: [Smith et al., 2018]

I As b approaches N the dynamics become more and more
deterministic and we would expect this relationship to vanish.

A. Banburski

Batch-size & learning rate

source: [Goyal et al., 2017]

A. Banburski

Overview

Initialization & hyper-parameter tuning

Optimization algorithms

Batchnorm & Dropout

Finite dataset woes

Software

A. Banburski

SGD is kinda slow...

I GD – use all points each iteration to compute gradient

I SGD – use one point each iteration to compute gradient

I Faster: Mini-Batch – use a mini-batch of points each iteration to
compute gradient

A. Banburski

Alternatives to SGD

Are there reasonable alternatives outside of Newton method?

Accelerations

I Momentum

I Nesterov’s method

I Adagrad

I RMSprop

I Adam

I . . .

A. Banburski

SGD with Momentum

We can try accelerating SGD

θt+1 = θt − η∇f(θt)

by adding a momentum/velocity term:

vt+1 = µvt − η∇f(θt)
θt+1 = θt + vt+1

(4)

µ is a new ”momentum” hyper-parameter.

source: cs213n.github.io

A. Banburski

SGD with Momentum

We can try accelerating SGD

θt+1 = θt − η∇f(θt)

by adding a momentum/velocity term:

vt+1 = µvt − η∇f(θt)
θt+1 = θt + vt+1

(4)

µ is a new ”momentum” hyper-parameter.

source: cs213n.github.io

A. Banburski

SGD with Momentum

We can try accelerating SGD

θt+1 = θt − η∇f(θt)

by adding a momentum/velocity term:

vt+1 = µvt − η∇f(θt)
θt+1 = θt + vt+1

(4)

µ is a new ”momentum” hyper-parameter.

source: cs213n.github.io

A. Banburski

Nesterov Momentum

I Sometimes the momentum update can overshoot

I We can instead evaluate the gradient at the point where momentum
takes us:

vt+1 = µvt − η∇f(θt + µvt)

θt+1 = θt + vt+1

(5)

source: Geoff Hinton’s lecture

A. Banburski

Nesterov Momentum

I Sometimes the momentum update can overshoot

I We can instead evaluate the gradient at the point where momentum
takes us:

vt+1 = µvt − η∇f(θt + µvt)

θt+1 = θt + vt+1

(5)

source: Geoff Hinton’s lecture

A. Banburski

Nesterov Momentum

I Sometimes the momentum update can overshoot

I We can instead evaluate the gradient at the point where momentum
takes us:

vt+1 = µvt − η∇f(θt + µvt)

θt+1 = θt + vt+1

(5)

source: Geoff Hinton’s lecture

A. Banburski

Nesterov Momentum

I Sometimes the momentum update can overshoot

I We can instead evaluate the gradient at the point where momentum
takes us:

vt+1 = µvt − η∇f(θt + µvt)

θt+1 = θt + vt+1

(5)

source: Geoff Hinton’s lecture

A. Banburski

AdaGrad

I An alternative way is to automatize the decay of the learning rate.

I The Adaptive Gradient algorithm does this by accumulating
magnitudes of gradients

I AdaGrad accelerates in flat directions of optimization landscape and
slows down in step ones.

A. Banburski

AdaGrad

I An alternative way is to automatize the decay of the learning rate.
I The Adaptive Gradient algorithm does this by accumulating

magnitudes of gradients

I AdaGrad accelerates in flat directions of optimization landscape and
slows down in step ones.

A. Banburski

AdaGrad

I An alternative way is to automatize the decay of the learning rate.
I The Adaptive Gradient algorithm does this by accumulating

magnitudes of gradients

I AdaGrad accelerates in flat directions of optimization landscape and
slows down in step ones.

A. Banburski

AdaGrad

I An alternative way is to automatize the decay of the learning rate.
I The Adaptive Gradient algorithm does this by accumulating

magnitudes of gradients

I AdaGrad accelerates in flat directions of optimization landscape and
slows down in step ones.

A. Banburski

RMSProp

Problem:The updates in AdaGrad always decrease the learning rate, so
some of the parameters can become un-learnable.

I Fix by Hinton: use weighted sum of the square magnitudes instead.
I This assigns more weight to recent iterations. Useful if directions of

steeper or shallower descent suddenly change.

A. Banburski

RMSProp

Problem:The updates in AdaGrad always decrease the learning rate, so
some of the parameters can become un-learnable.

I Fix by Hinton: use weighted sum of the square magnitudes instead.

I This assigns more weight to recent iterations. Useful if directions of
steeper or shallower descent suddenly change.

A. Banburski

RMSProp

Problem:The updates in AdaGrad always decrease the learning rate, so
some of the parameters can become un-learnable.

I Fix by Hinton: use weighted sum of the square magnitudes instead.
I This assigns more weight to recent iterations. Useful if directions of

steeper or shallower descent suddenly change.

A. Banburski

RMSProp

Problem:The updates in AdaGrad always decrease the learning rate, so
some of the parameters can become un-learnable.

I Fix by Hinton: use weighted sum of the square magnitudes instead.
I This assigns more weight to recent iterations. Useful if directions of

steeper or shallower descent suddenly change.

A. Banburski

Adam

Adaptive Moment – a combination of the previous approaches.

[Kingma and Ba, 2014]

I Ridiculously popular – more than 13K citations!

I Probably because it comes with recommended parameters and came
with a proof of convergence (which was shown to be wrong).

A. Banburski

Adam

Adaptive Moment – a combination of the previous approaches.

[Kingma and Ba, 2014]

I Ridiculously popular – more than 13K citations!

I Probably because it comes with recommended parameters and came
with a proof of convergence (which was shown to be wrong).

A. Banburski

Adam

Adaptive Moment – a combination of the previous approaches.

[Kingma and Ba, 2014]

I Ridiculously popular – more than 13K citations!

I Probably because it comes with recommended parameters and came
with a proof of convergence (which was shown to be wrong).

A. Banburski

So what should I use in practice?

I Adam is a good default in many cases.

I There exist datasets in which Adam and other adaptive methods do
not generalize to unseen data at all! [Marginal Value of Adaptive
Gradient Methods in Machine Learning]

I SGD with Momentum and a decay rate often outperforms Adam

(but requires tuning).

includegraphicsFigures/comp.png source:

github.com/YingzhenLi

A. Banburski

So what should I use in practice?

I Adam is a good default in many cases.

I There exist datasets in which Adam and other adaptive methods do
not generalize to unseen data at all! [Marginal Value of Adaptive
Gradient Methods in Machine Learning]

I SGD with Momentum and a decay rate often outperforms Adam

(but requires tuning).

includegraphicsFigures/comp.png source:

github.com/YingzhenLi

A. Banburski

So what should I use in practice?

I Adam is a good default in many cases.

I There exist datasets in which Adam and other adaptive methods do
not generalize to unseen data at all! [Marginal Value of Adaptive
Gradient Methods in Machine Learning]

I SGD with Momentum and a decay rate often outperforms Adam

(but requires tuning).

includegraphicsFigures/comp.png source:

github.com/YingzhenLi

A. Banburski

So what should I use in practice?

I Adam is a good default in many cases.

I There exist datasets in which Adam and other adaptive methods do
not generalize to unseen data at all! [Marginal Value of Adaptive
Gradient Methods in Machine Learning]

I SGD with Momentum and a decay rate often outperforms Adam

(but requires tuning). includegraphicsFigures/comp.png source:

github.com/YingzhenLi

A. Banburski

Overview

Initialization & hyper-parameter tuning

Optimization algorithms

Batchnorm & Dropout

Finite dataset woes

Software

A. Banburski

Data pre-processing

Since our non-linearities change their behavior around the origin, it makes
sense to pre-process to zero-mean and unit variance.

x̂i =
xi − E[xi]√

Var[xi]
(6)

source: cs213n.github.io

A. Banburski

Data pre-processing

Since our non-linearities change their behavior around the origin, it makes
sense to pre-process to zero-mean and unit variance.

x̂i =
xi − E[xi]√

Var[xi]
(6)

source: cs213n.github.io

A. Banburski

Batch Normalization

A common technique is to repeat this throughout the deep network in a
differentiable way:

[Ioffe and Szegedy, 2015]

A. Banburski

Batch Normalization

A common technique is to repeat this throughout the deep network in a
differentiable way:

[Ioffe and Szegedy, 2015]

A. Banburski

Batch Normalization

In practice, a batchnorm layer is added after a conv or fully-connected
layer, but before activations.

I In the original paper the authors claimed that this is meant to
reduce covariate shift.

I More obviously, this reduces 2nd-order correlations between layers.
Recently shown that it actually doesn’t change covariate shift!
Instead it smooths out the landscape.

I In practice this reduces dependence on initialization and seems to
stabilize the flow of gradient descent.

I Using BN usually nets you a gain of few % increase in test accuracy.

A. Banburski

Batch Normalization

In practice, a batchnorm layer is added after a conv or fully-connected
layer, but before activations.

I In the original paper the authors claimed that this is meant to
reduce covariate shift.

I More obviously, this reduces 2nd-order correlations between layers.
Recently shown that it actually doesn’t change covariate shift!
Instead it smooths out the landscape.

I In practice this reduces dependence on initialization and seems to
stabilize the flow of gradient descent.

I Using BN usually nets you a gain of few % increase in test accuracy.

A. Banburski

Batch Normalization

In practice, a batchnorm layer is added after a conv or fully-connected
layer, but before activations.

I In the original paper the authors claimed that this is meant to
reduce covariate shift.

I More obviously, this reduces 2nd-order correlations between layers.
Recently shown that it actually doesn’t change covariate shift!
Instead it smooths out the landscape.

I In practice this reduces dependence on initialization and seems to
stabilize the flow of gradient descent.

I Using BN usually nets you a gain of few % increase in test accuracy.

A. Banburski

Batch Normalization

In practice, a batchnorm layer is added after a conv or fully-connected
layer, but before activations.

I In the original paper the authors claimed that this is meant to
reduce covariate shift.

I More obviously, this reduces 2nd-order correlations between layers.
Recently shown that it actually doesn’t change covariate shift!
Instead it smooths out the landscape.

I In practice this reduces dependence on initialization and seems to
stabilize the flow of gradient descent.

I Using BN usually nets you a gain of few % increase in test accuracy.

A. Banburski

[Santurkar, Tsipras, Ilyas, Madry, 2018]

Batch Normalization

In practice, a batchnorm layer is added after a conv or fully-connected
layer, but before activations.

I In the original paper the authors claimed that this is meant to
reduce covariate shift.

I More obviously, this reduces 2nd-order correlations between layers.
Recently shown that it actually doesn’t change covariate shift!
Instead it smooths out the landscape.

I In practice this reduces dependence on initialization and seems to
stabilize the flow of gradient descent.

I Using BN usually nets you a gain of few % increase in test accuracy.

A. Banburski

Batch Normalization

In practice, a batchnorm layer is added after a conv or fully-connected
layer, but before activations.

I In the original paper the authors claimed that this is meant to
reduce covariate shift.

I More obviously, this reduces 2nd-order correlations between layers.
Recently shown that it actually doesn’t change covariate shift!
Instead it smooths out the landscape.

I In practice this reduces dependence on initialization and seems to
stabilize the flow of gradient descent.

I Using BN usually nets you a gain of few % increase in test accuracy.

A. Banburski

Dropout

Another common technique: during forward pass, set some of the
weights to 0 randomly with probability p. Typical choice is p = 50%.

I The idea is to prevent co-adaptation of neurons.

I At test want to remove the randomness. A good approximation is to
multiply the neural network by p.

I Dropout is more commonly applied for fully-connected layers,
though its use is waning.

A. Banburski

Dropout

Another common technique: during forward pass, set some of the
weights to 0 randomly with probability p. Typical choice is p = 50%.

I The idea is to prevent co-adaptation of neurons.

I At test want to remove the randomness. A good approximation is to
multiply the neural network by p.

I Dropout is more commonly applied for fully-connected layers,
though its use is waning.

A. Banburski

Dropout

Another common technique: during forward pass, set some of the
weights to 0 randomly with probability p. Typical choice is p = 50%.

I The idea is to prevent co-adaptation of neurons.

I At test want to remove the randomness. A good approximation is to
multiply the neural network by p.

I Dropout is more commonly applied for fully-connected layers,
though its use is waning.

A. Banburski

Dropout

Another common technique: during forward pass, set some of the
weights to 0 randomly with probability p. Typical choice is p = 50%.

I The idea is to prevent co-adaptation of neurons.

I At test want to remove the randomness. A good approximation is to
multiply the neural network by p.

I Dropout is more commonly applied for fully-connected layers,
though its use is waning.

A. Banburski

Dropout

Another common technique: during forward pass, set some of the
weights to 0 randomly with probability p. Typical choice is p = 50%.

I The idea is to prevent co-adaptation of neurons.

I At test want to remove the randomness. A good approximation is to
multiply the neural network by p.

I Dropout is more commonly applied for fully-connected layers,
though its use is waning.

A. Banburski

Overview

Initialization & hyper-parameter tuning

Optimization algorithms

Batchnorm & Dropout

Finite dataset woes

Software

A. Banburski

Finite dataset woes

While we are entering the Big Data age, in practice we often find
ourselves with insufficient data to sufficiently train our deep neural
networks.

I What if collecting more data is slow/difficult?

I Can we squeeze out more from what we already have?

A. Banburski

Finite dataset woes

While we are entering the Big Data age, in practice we often find
ourselves with insufficient data to sufficiently train our deep neural
networks.

I What if collecting more data is slow/difficult?

I Can we squeeze out more from what we already have?

A. Banburski

Invariance problem

An often-repeated claim about CNNs is that they are invariant to small
translations. Independently of whether this is true, they are not invariant
to most other types of transformations:

source: cs213n.github.io

A. Banburski

Data augmentation

I Can greatly increase the amount of data by performing:

– Translations
– Rotations
– Reflections
– Scaling
– Cropping
– Adding Gaussian Noise
– Adding Occlusion
– Interpolation
– etc.

I Crucial for achieving state-of-the-art performance!

I For example, ResNet improves from 11.66% to 6.41% error on
CIFAR-10 dataset and from 44.74% to 27.22% on CIFAR-100.

A. Banburski

Data augmentation

I Can greatly increase the amount of data by performing:

– Translations
– Rotations
– Reflections
– Scaling
– Cropping
– Adding Gaussian Noise
– Adding Occlusion
– Interpolation
– etc.

I Crucial for achieving state-of-the-art performance!

I For example, ResNet improves from 11.66% to 6.41% error on
CIFAR-10 dataset and from 44.74% to 27.22% on CIFAR-100.

A. Banburski

Data augmentation

I Can greatly increase the amount of data by performing:

– Translations
– Rotations
– Reflections
– Scaling
– Cropping
– Adding Gaussian Noise
– Adding Occlusion
– Interpolation
– etc.

I Crucial for achieving state-of-the-art performance!

I For example, ResNet improves from 11.66% to 6.41% error on
CIFAR-10 dataset and from 44.74% to 27.22% on CIFAR-100.

A. Banburski

Data augmentation

I Can greatly increase the amount of data by performing:

– Translations
– Rotations
– Reflections
– Scaling
– Cropping
– Adding Gaussian Noise
– Adding Occlusion
– Interpolation
– etc.

I Crucial for achieving state-of-the-art performance!

I For example, ResNet improves from 11.66% to 6.41% error on
CIFAR-10 dataset and from 44.74% to 27.22% on CIFAR-100.

A. Banburski

Data augmentation

source: github.com/aleju/imgaug

A. Banburski

Transfer Learning

What if you truly have too little data?

I If your data has sufficient similarity to a bigger dataset, the you’re in
luck!

I Idea: take a model trained for example on ImageNet.

I Freeze all but last few layers and retrain on your small data. The
bigger your dataset, the more layers you have to retrain.

source: [Haase et al., 2014]

A. Banburski

Transfer Learning

What if you truly have too little data?

I If your data has sufficient similarity to a bigger dataset, the you’re in
luck!

I Idea: take a model trained for example on ImageNet.

I Freeze all but last few layers and retrain on your small data. The
bigger your dataset, the more layers you have to retrain.

source: [Haase et al., 2014]

A. Banburski

Transfer Learning

What if you truly have too little data?

I If your data has sufficient similarity to a bigger dataset, the you’re in
luck!

I Idea: take a model trained for example on ImageNet.

I Freeze all but last few layers and retrain on your small data. The
bigger your dataset, the more layers you have to retrain.

source: [Haase et al., 2014]

A. Banburski

Transfer Learning

What if you truly have too little data?

I If your data has sufficient similarity to a bigger dataset, the you’re in
luck!

I Idea: take a model trained for example on ImageNet.

I Freeze all but last few layers and retrain on your small data. The
bigger your dataset, the more layers you have to retrain.

source: [Haase et al., 2014]

A. Banburski

Overview

Initialization & hyper-parameter tuning

Optimization algorithms

Batchnorm & Dropout

Finite dataset woes

Software

A. Banburski

Software overview

A. Banburski

Software overview

A. Banburski

Why use frameworks?

I You don’t have to implement everything yourself.

I Many inbuilt modules allow quick iteration of ideas – building a
neural network becomes putting simple blocks together and
computing backprop is a breeze.

I Someone else already wrote CUDA code to efficiently run training
on GPUs (or TPUs).

A. Banburski

Why use frameworks?

I You don’t have to implement everything yourself.

I Many inbuilt modules allow quick iteration of ideas – building a
neural network becomes putting simple blocks together and
computing backprop is a breeze.

I Someone else already wrote CUDA code to efficiently run training
on GPUs (or TPUs).

A. Banburski

Why use frameworks?

I You don’t have to implement everything yourself.

I Many inbuilt modules allow quick iteration of ideas – building a
neural network becomes putting simple blocks together and
computing backprop is a breeze.

I Someone else already wrote CUDA code to efficiently run training
on GPUs (or TPUs).

A. Banburski

Main design difference

source: Introduction to Chainer

A. Banburski

PyTorch concepts

Similar in code to numpy.

I Tensor: nearly identical to np.array, can run on GPU just with

I Autograd: package for automatic computation of backprop and
construction of computational graphs.

I Module: neural network layer storing weights

I Dataloader: class for simplifying efficient data loading

A. Banburski

PyTorch concepts

Similar in code to numpy.

I Tensor: nearly identical to np.array, can run on GPU just with

I Autograd: package for automatic computation of backprop and
construction of computational graphs.

I Module: neural network layer storing weights

I Dataloader: class for simplifying efficient data loading

A. Banburski

PyTorch concepts

Similar in code to numpy.

I Tensor: nearly identical to np.array, can run on GPU just with

I Autograd: package for automatic computation of backprop and
construction of computational graphs.

I Module: neural network layer storing weights

I Dataloader: class for simplifying efficient data loading

A. Banburski

PyTorch concepts

Similar in code to numpy.

I Tensor: nearly identical to np.array, can run on GPU just with

I Autograd: package for automatic computation of backprop and
construction of computational graphs.

I Module: neural network layer storing weights

I Dataloader: class for simplifying efficient data loading

A. Banburski

PyTorch concepts

Similar in code to numpy.

I Tensor: nearly identical to np.array, can run on GPU just with

I Autograd: package for automatic computation of backprop and
construction of computational graphs.

I Module: neural network layer storing weights

I Dataloader: class for simplifying efficient data loading

A. Banburski

PyTorch - optimization

A. Banburski

PyTorch - ResNet in one page

@jeremyphoward
A. Banburski

Tensorflow static graphs

source: cs213n.github.io
A. Banburski

Keras wrapper - closer to PyTorch

source: cs213n.github.io
A. Banburski

Tensorboard - very useful tool for visualization

A. Banburski

Tensorflow overview

I Main difference – uses static graphs. Longer code, but more
optimized. In practice PyTorch is faster to experiment on.

I With Keras wrapper code is more similar to PyTorch however.

I Can use TPUs

A. Banburski

Tensorflow overview

I Main difference – uses static graphs. Longer code, but more
optimized. In practice PyTorch is faster to experiment on.

I With Keras wrapper code is more similar to PyTorch however.

I Can use TPUs

A. Banburski

Tensorflow overview

I Main difference – uses static graphs. Longer code, but more
optimized. In practice PyTorch is faster to experiment on.

I With Keras wrapper code is more similar to PyTorch however.

I Can use TPUs

A. Banburski

But

I Tensorflow has added dynamic batching, which makes dynamic
graphs possible.

I PyTorch is merging with Caffe2, which will provide static graphs too!

I Which one to choose then?

– PyTorch is more popular in the research community for easy
development and debugging.

– In the past a better choice for production was Tensorflow. Still the
only choice if you want to use TPUs.

A. Banburski

But

I Tensorflow has added dynamic batching, which makes dynamic
graphs possible.

I PyTorch is merging with Caffe2, which will provide static graphs too!

I Which one to choose then?

– PyTorch is more popular in the research community for easy
development and debugging.

– In the past a better choice for production was Tensorflow. Still the
only choice if you want to use TPUs.

A. Banburski

But

I Tensorflow has added dynamic batching, which makes dynamic
graphs possible.

I PyTorch is merging with Caffe2, which will provide static graphs too!

I Which one to choose then?

– PyTorch is more popular in the research community for easy
development and debugging.

– In the past a better choice for production was Tensorflow. Still the
only choice if you want to use TPUs.

A. Banburski

But

I Tensorflow has added dynamic batching, which makes dynamic
graphs possible.

I PyTorch is merging with Caffe2, which will provide static graphs too!

I Which one to choose then?

– PyTorch is more popular in the research community for easy
development and debugging.

– In the past a better choice for production was Tensorflow. Still the
only choice if you want to use TPUs.

A. Banburski

But

I Tensorflow has added dynamic batching, which makes dynamic
graphs possible.

I PyTorch is merging with Caffe2, which will provide static graphs too!

I Which one to choose then?

– PyTorch is more popular in the research community for easy
development and debugging.

– In the past a better choice for production was Tensorflow. Still the
only choice if you want to use TPUs.

A. Banburski

	Initialization & hyper-parameter tuning
	Optimization algorithms
	Batchnorm & Dropout
	Finite dataset woes
	Software

	anm0:
	anm1:
	anm2:

