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What’s a generative model?

Useful for lots of problems beyond sampling random images!

Model of high-dimensional unobserved variables P (X|Y = y)
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Three perspectives on GANs

1. Structured loss 

2. Generative model 

3. Domain-level supervision / mapping
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Data prediction problems (“structured prediction”)
Object labeling

[Long et al. 2015, …]

Edge Detection

[Xie et al. 2015, …]

[Reed et al. 2014, …]

Text-to-photo

“this small bird has a pink 
breast and crown…”

Future frame prediction

[Mathieu et al. 2016, …]



Challenges in data prediction

1. Output is a high-dimensional, structured object 

2. Uncertainty in the mapping, many plausible 
outputs



Properties of generative models

1. Model high-dimensional, structured output 

2. Model uncertainty; a whole distribution of 
possible outputs
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“What should I do” “How should I do it?”

argmin
F

Ex,y[L(F(x),y)]

Image-to-Image Translation

F

Input x Output y



Input Output Ground truth

Designing loss functions





Color distribution cross-entropy loss with colorfulness enhancing term. 

Zhang et al. 2016

Designing loss functions
Input Ground truth





Designing loss functions

Be careful what you wish for!



Image colorization
Designing loss functions

L2 regression

Super-resolution

[Johnson, Alahi, Li, ECCV 2016]

L2 regression

[Zhang, Isola, Efros, ECCV 2016]



Image colorization
Designing loss functions

Cross entropy objective, 
with colorfulness term

Deep feature covariance 
matching objective

[Johnson, Alahi, Li, ECCV 2016]

Super-resolution
[Zhang, Isola, Efros, ECCV 2016]



Universal loss?

)

… …



…

)

Generated 
vs Real 
(classifier) 

[Goodfellow, Pouget-Abadie, Mirza, Xu, 
Warde-Farley, Ozair, Courville, Bengio 2014]

“Generative Adversarial Network”
 (GANs)

Real photos

Generated images

…

…



Generator

Gx G(x)



G tries to synthesize fake images that fool D

D tries to identify the fakes

Generator Discriminator

DGx G(x)

real or fake?



DGx

Ex,y[ ]argmax
D

logD(G(x))

fake (0.9)

G(x)

+ log(1�D(y))

real (0.1)

Dy



min

G tries to synthesize fake images that fool D:

logD(G(x))Ex,y[ + log(1�D(y)) ]

real or fake?

G
arg

DGx G(x)



G tries to synthesize fake images that fool the best D:

logD(G(x))Ex,y[ + log(1�D(y))

real or fake?

DGx G(x)

argmin
G

max
D

]



D
Loss Function 

G’s perspective: D is a loss function. 

Rather than being hand-designed, it is learned.

Gx G(x)



real or fake?

DGx G(x)

logD(G(x))Ex,y[ + log(1�D(y))argmin
G

max
D

]



real!

DGx G(x)

logD(G(x))Ex,y[ + log(1�D(y))argmin
G

max
D

]

(“Aquarius”)



real or fake pair ?

D

argmin
G
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logD(G(x)) + log(1�D(y))Ex,y[ ]

Gx G(x)
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Ex,y[ ]logD(x, G(x)) + log(1�D(x,y))

real or fake pair ?
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Ex,y[ ]logD(x, G(x)) + log(1�D(x,y))

real or fake pair ?



Training Details: Loss function
Conditional GAN 



Training Details: Loss function
Conditional GAN 

Stable training + fast convergence

Gx G(x) y

-

[c.f. Pathak et al. CVPR 2016]



BW → Color
Input Output Input Output Input Output

Data from [Russakovsky et al. 2015]
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Structured Prediction

y
TargetInput
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X, or, how I learned to start worrying and love Y

August 2017

Basic idea: worry is a prediction that we are near a negative reward.

Similarly, excitement is a prediction that we are near a positive reward.

Worry and excitement smooth the energy surface.

Bigger idea: many emotions are like this.

Oh wait, are we just reinventing value functions?

ŷ = F(x)

L(ŷ,y) = kŷ � yk2

L(ŷ,y) = �
P

i ŷi logyi

1

Output
ŷ



Structured Prediction

Each pixel treated as  
independent
Y

i

p(yi|x)
1

Z

Y

i,j

p(yi, yj |x)

Models at pairwise configuration 
of pixels

CRF



Structured Prediction

Model joint configuration 
of all pixels

p(y|x)

A GAN, with sufficient capacity, 
samples from the full joint distribution 
when perfectly optimized.

Most generative models have this 
property! Give them sufficient 
capacity and infinite data, and they 
are the complete solution to 
prediction problems.



1/0

y

N
 p

ix
el

s

N pixels

D

Rather than penalizing if output image 
looks fake, penalize if each 
overlapping patch in output looks fake  

Shrinking the capacity: Patch Discriminator

[Li & Wand 2016] 
[Shrivastava et al. 2017] 

[Isola et al. 2017]



Labels → Facades
Input 1x1 Discriminator

Data from [Tylecek, 2013]



Labels → Facades
Input 16x16 Discriminator

Data from [Tylecek, 2013]



Labels → Facades
Input 70x70 Discriminator

Data from [Tylecek, 2013]



Labels → Facades
Input Full image Discriminator

Data from [Tylecek, 2013]
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D
Rather than penalizing if output image 
looks fake, penalize if each 
overlapping patch in output looks fake 

Patch Discriminator

• Faster, fewer parameters 
• More supervised observations 
• Applies to arbitrarily large images



Properties of generative models

1. Model high-dimensional, structured output 

2. Model uncertainty; a whole distribution of 
possible outputs

—> Use a deep net, D, to model output!
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2. Generative model 

3. Domain-level supervision / mapping
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Can we generate images from scratch?

Gaussian noise Synthesized image

z ⇠ N (~0, 1)

z ⇠ N (~0, 1)
x



Generator

G G(x)

[Goodfellow et al., 2014]

z



G tries to synthesize fake images that fool D

D tries to identify the fakes

Generator Discriminator

DG G(x)

real or fake?

[Goodfellow et al., 2014]

z



GANs are implicit generative models
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samples from the data distribution
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ŷ = F(x)
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Progressive GAN [Karras et al., 2018]



Progressive GAN [Karras et al., 2018]



Proof

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:

r✓d
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logD
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⌘
+ log

⇣
1�D

⇣
G
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⌘⌘⌘i
.

end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:

r✓g
1

m

mX

i=1

log
⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘
.

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

4

Proof. The training criterion for the discriminator D, given any generator G, is to maximize the
quantity V (G,D)

V (G,D) =

Z

x
pdata(x) log(D(x))dx+

Z

z
pz(z) log(1�D(g(z)))dz

=

Z

x
pdata(x) log(D(x)) + pg(x) log(1�D(x))dx (3)

For any (a, b) 2 R2 \ {0, 0}, the function y ! a log(y) + b log(1 � y) achieves its maximum in
[0, 1] at a

a+b . The discriminator does not need to be defined outside of Supp(pdata) [ Supp(pg),
concluding the proof.

Note that the training objective for D can be interpreted as maximizing the log-likelihood for es-
timating the conditional probability P (Y = y|x), where Y indicates whether x comes from pdata
(with y = 1) or from pg (with y = 0). The minimax game in Eq. 1 can now be reformulated as:

C(G) =max
D

V (G,D)

=Ex⇠pdata [logD
⇤
G(x)] + Ez⇠pz [log(1�D⇤

G(G(z)))] (4)
=Ex⇠pdata [logD

⇤
G(x)] + Ex⇠pg [log(1�D⇤

G(x))]

=Ex⇠pdata


log

pdata(x)

Pdata(x) + pg(x)

�
+ Ex⇠pg


log

pg(x)

pdata(x) + pg(x)

�

Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and only if
pg = pdata. At that point, C(G) achieves the value � log 4.

Proof. For pg = pdata, D⇤
G(x) =

1
2 , (consider Eq. 2). Hence, by inspecting Eq. 4 at D⇤

G(x) =
1
2 , we

find C(G) = log 1
2 + log 1

2 = � log 4. To see that this is the best possible value of C(G), reached
only for pg = pdata, observe that

Ex⇠pdata [� log 2] + Ex⇠pg [� log 2] = � log 4
and that by subtracting this expression from C(G) = V (D⇤

G, G), we obtain:

C(G) = � log(4) +KL

✓
pdata

����
pdata + pg

2

◆
+KL

✓
pg

����
pdata + pg

2

◆
(5)

where KL is the Kullback–Leibler divergence. We recognize in the previous expression the Jensen–
Shannon divergence between the model’s distribution and the data generating process:

C(G) = � log(4) + 2 · JSD (pdata kpg ) (6)
Since the Jensen–Shannon divergence between two distributions is always non-negative, and zero
iff they are equal, we have shown that C⇤ = � log(4) is the global minimum of C(G) and that the
only solution is pg = pdata, i.e., the generative model perfectly replicating the data distribution.

4.2 Convergence of Algorithm 1

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and pg is updated so as to improve the criterion

Ex⇠pdata [logD
⇤
G(x)] + Ex⇠pg [log(1�D⇤

G(x))]
then pg converges to pdata

Proof. Consider V (G,D) = U(pg, D) as a function of pg as done in the above criterion. Note
that U(pg, D) is convex in pg . The subderivatives of a supremum of convex functions include the
derivative of the function at the point where the maximum is attained. In other words, if f(x) =
sup↵2A f↵(x) and f↵(x) is convex in x for every ↵, then @f�(x) 2 @f if � = arg sup↵2A f↵(x).
This is equivalent to computing a gradient descent update for pg at the optimal D given the cor-
responding G. supD U(pg, D) is convex in pg with a unique global optima as proven in Thm 1,
therefore with sufficiently small updates of pg , pg converges to px, concluding the proof.

In practice, adversarial nets represent a limited family of pg distributions via the function G(z; ✓g),
and we optimize ✓g rather than pg itself, so the proofs do not apply. However, the excellent perfor-
mance of multilayer perceptrons in practice suggests that they are a reasonable model to use despite
their lack of theoretical guarantees.
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[Theis et al. 2016]

Behavior under model misspecification



Mode covering versus mode seeking

[Larsen et  al. 2016]
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Modeling multiple possible outputs
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Modeling multiple possible outputs



Modeling multiple possible outputs

Gx G(x)

z ⇠ N (~0, 1)



InfoGAN [Chen et al. 2016]

BiCycleGAN [Zhu et al., NIPS 2017]

Gx

z

y

q(z|y)

Encourages z to relay information about the target.



Labels

Randomly generated facades

[BiCycleGAN, Zhu et al., NIPS 2017] 



Properties of generative models

1. Model high-dimensional, structured output 

2. Model uncertainty; a whole distribution of 
possible outputs

—> Use a deep net, D, to model output!

—> Generator is stochastic, learns to match data 
distribution



Three perspectives on GANs

1. Structured loss 

2. Generative model

3. Domain-level supervision / mapping
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Unpaired data

   

Paired data

 

Jun-Yan Zhu Taesung Park
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real or fake pair ?

D

Gx G(x)

No input-output pairs!

argmin
G

max
D

Ex,y[ ]logD(x, G(x)) + log(1�D(x,y))



real or fake?

DGx G(x)

argmin
G

max
D

logD(G(x)) + log(1�D(y))Ex,y[ ]

Usually loss functions check if output matches a target instance 

GAN loss checks if output is part of an admissible set



Gaussian Target distribution
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Gx G(x) D

Real too!

Nothing to force output to correspond to input



   

[Zhu et al. 2017], [Yi et al. 2017], [Kim et al. 2017]

Cycle-Consistent Adversarial Networks



Cycle-Consistent Adversarial Networks

   



Cycle Consistency Loss
    

 



         

Cycle Consistency Loss
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Why does CycleGAN work?



Slide credit: Ming-Yu Liu
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Simplicity hypothesis 
[Galanti, Wolf, Benaim, 2018]



Conditional Entropy 

“ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching” [Li et 
al. NIPS 2017]. Also see [Tiao et al. 2018] “CycleGAN as Approximate Bayesian Inference”

High 
Conditional 

Entropy

Low 
Conditional 

Entropy

Cycle Loss upper bounds Conditional Entropy



Cycle Loss upper bounds Conditional Entropy

Conditional Entropy 

“ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching” [Li et 
al. NIPS 2017]. Also see [Tiao et al. 2018] “CycleGAN as Approximate Bayesian Inference”



[Tzeng et al. 2014]

Domain Adaptation



Sim2real

Simulated data

,

Real data

, ?

[Richter*, Vineet* et al. 2016] [Krähenbühl et al. 2018]



CycleGAN

,
Training data

[Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Darrell, Efros, 2018]



,
Training data

CycleGAN

[Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Darrell, Efros, 2018]



,
Training data

CycleGAN FCN

[Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Darrell, Efros, 2018]



• MRI reconstruction [Quan et al.] arxiv:1709.00753 
• Cardiac MR images from CT [Chartsias et al. 2017]

Input MR Generated CT Ground truth CT

Medical domain adaptation



Three perspectives on GANs

1. Structured loss 

2. Generative model 

3. Domain-level supervision / mapping



Thank you!


