

Generative Adversarial Networks

Phillip Isola 9.520 10/17/18

Image classification

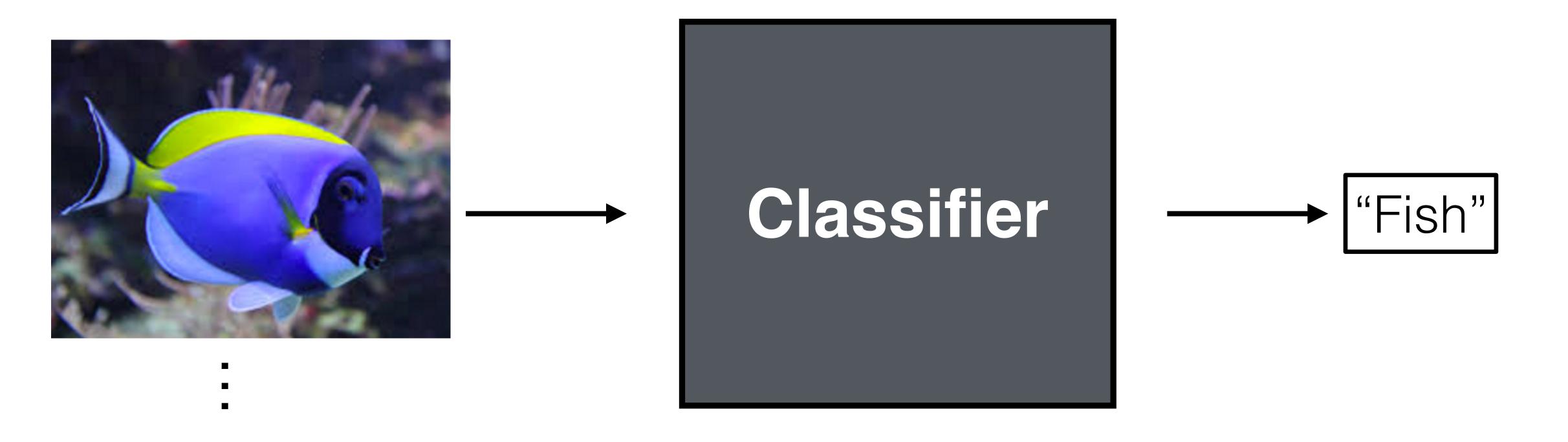
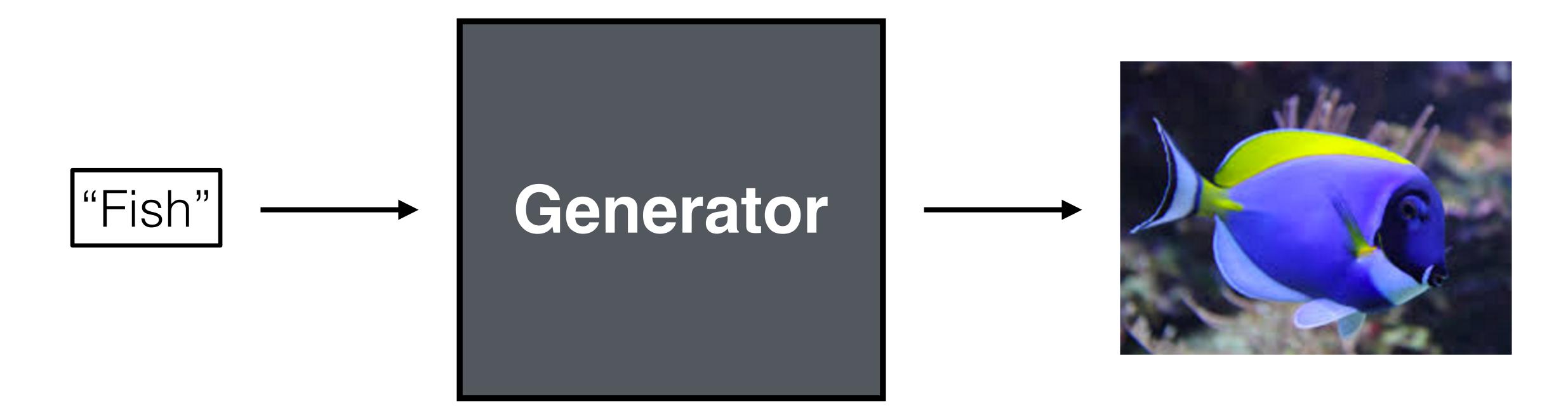


image X label Y

Image generation



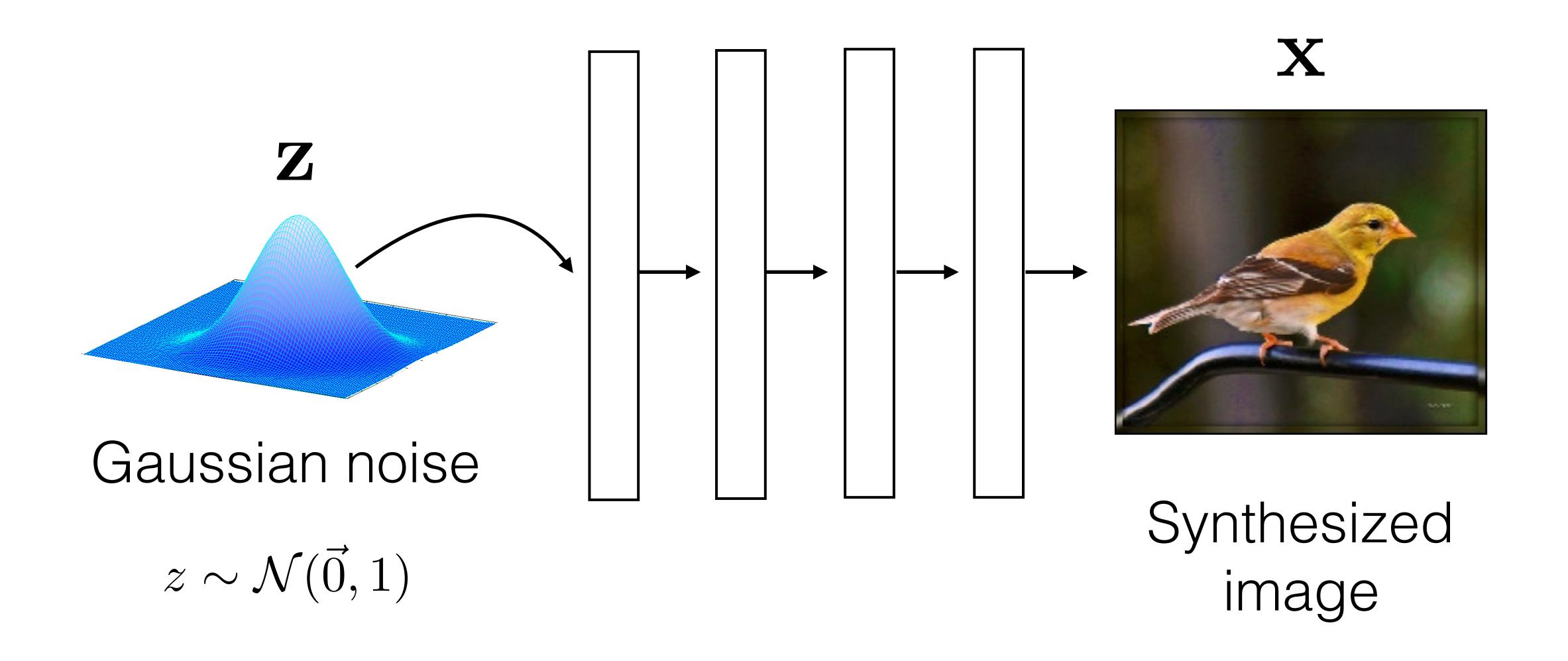
label Y image X

What's a generative model?

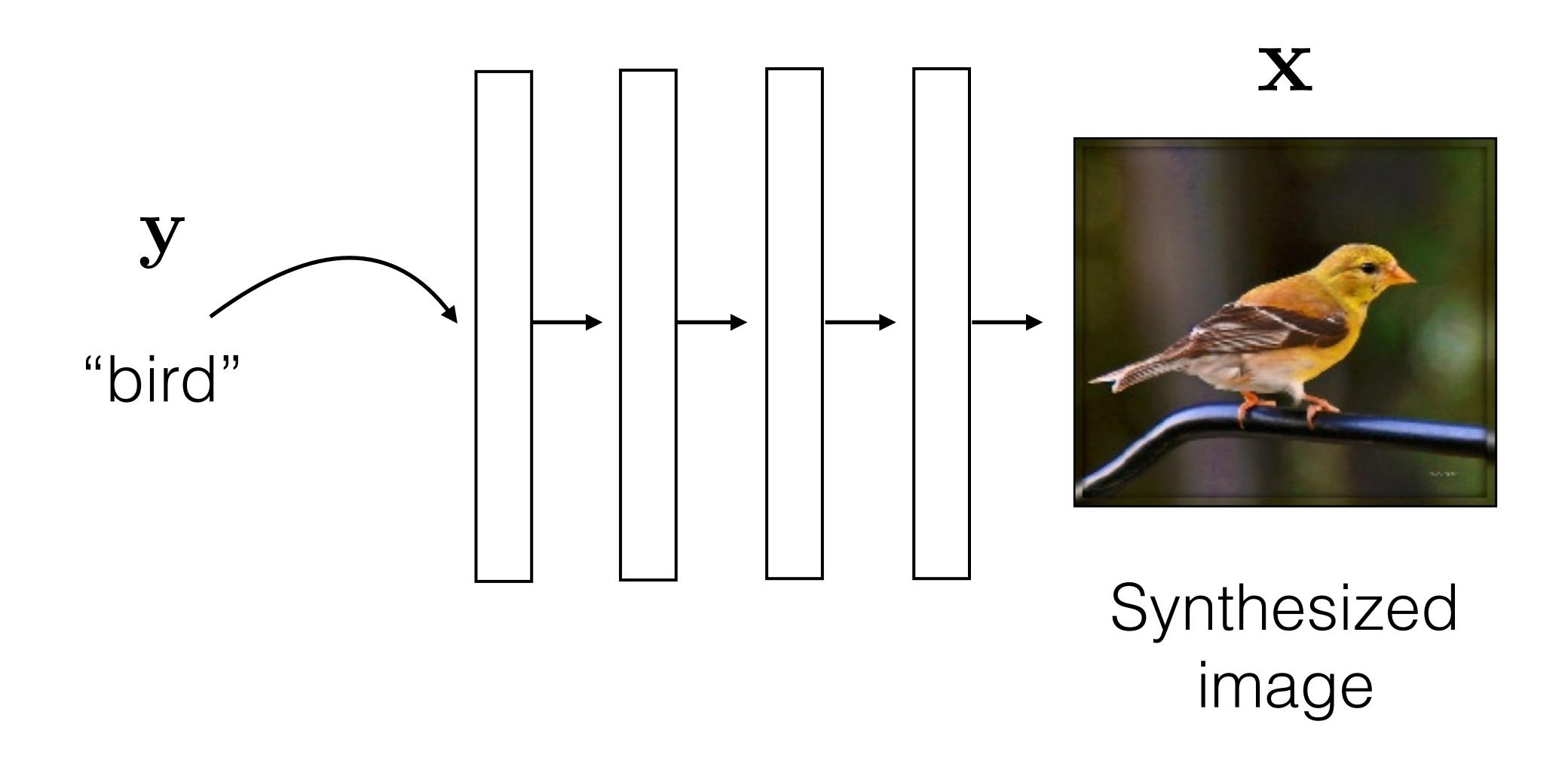
Model of high-dimensional unobserved variables $P(\mathbf{X}|\mathbf{Y}=\mathbf{y})$

Useful for lots of problems beyond sampling random images!

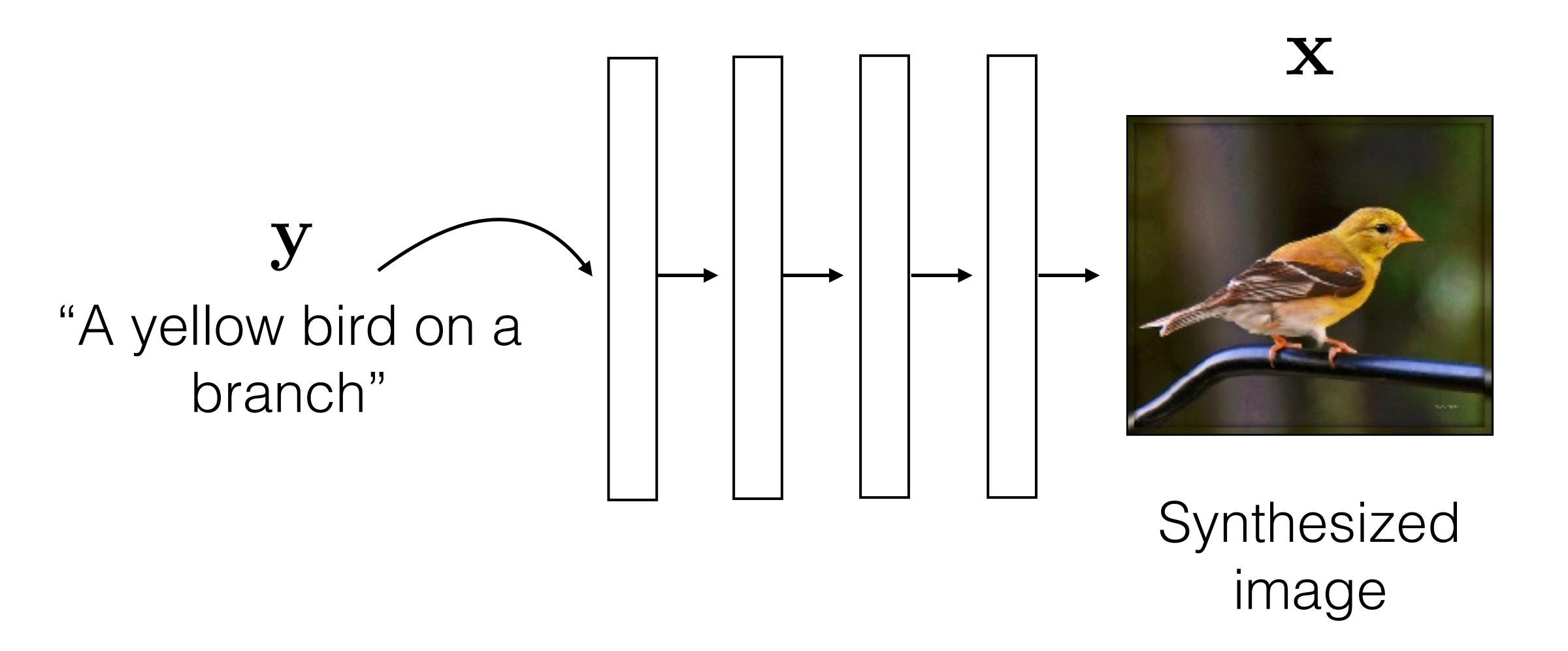
Generative Model



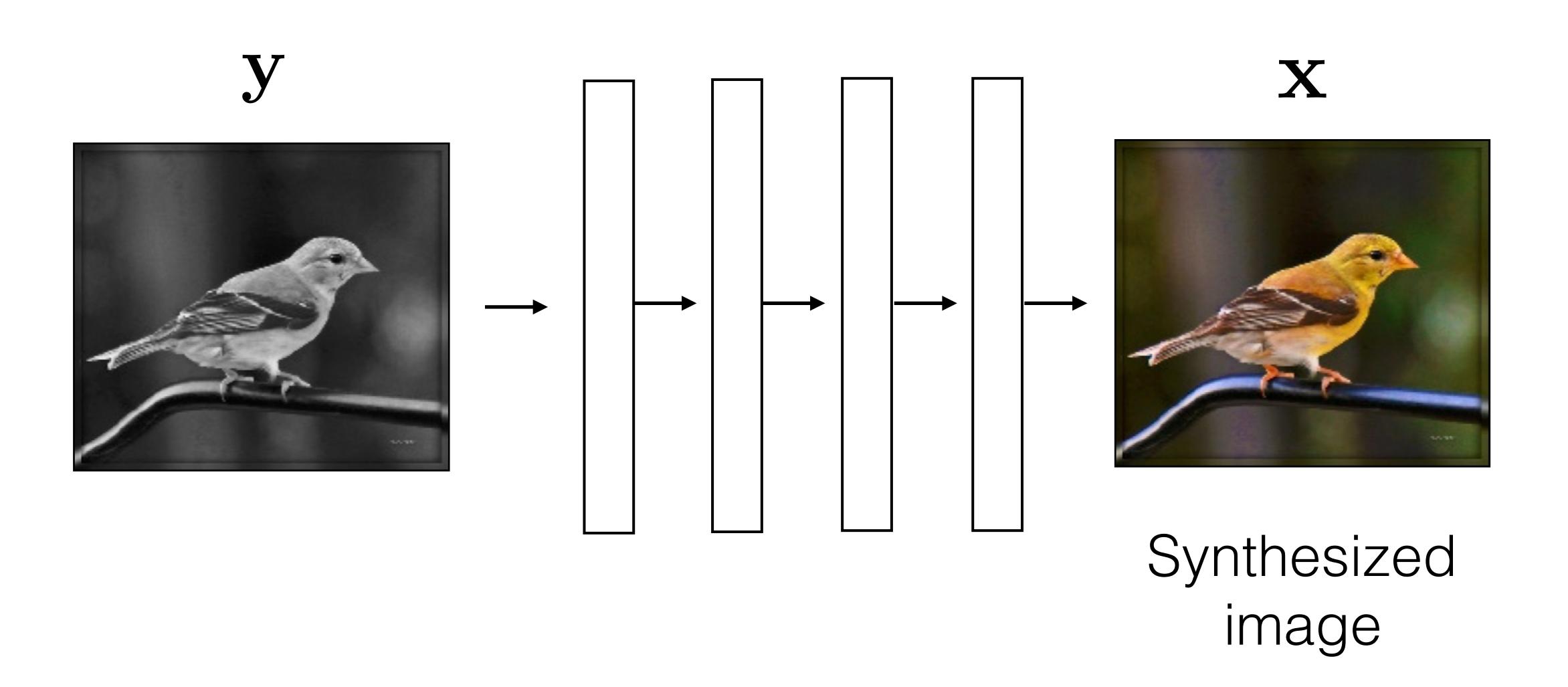
Conditional Generative Model



Conditional Generative Model



Conditional Generative Model



Three perspectives on GANs

- 1. Structured loss
- 2. Generative model

3. Domain-level supervision / mapping

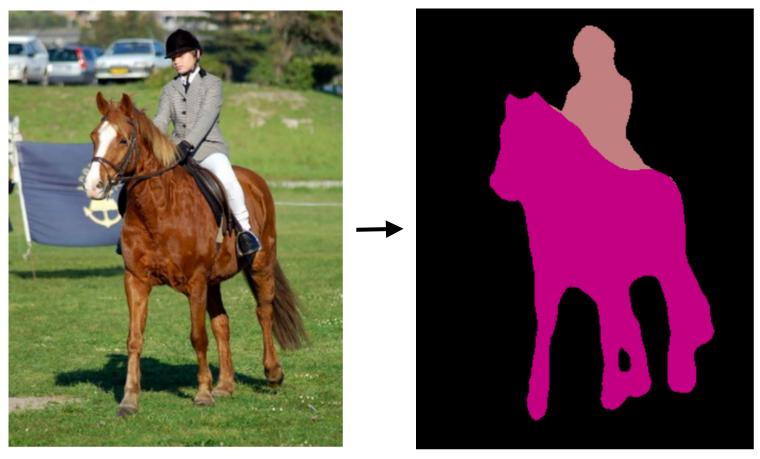
Three perspectives on GANs

1. Structured loss

- 2. Generative model
- 3. Domain-level supervision / mapping

Data prediction problems ("structured prediction")

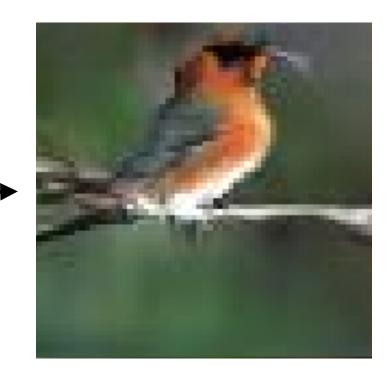
Object labeling



[Long et al. 2015, ...]

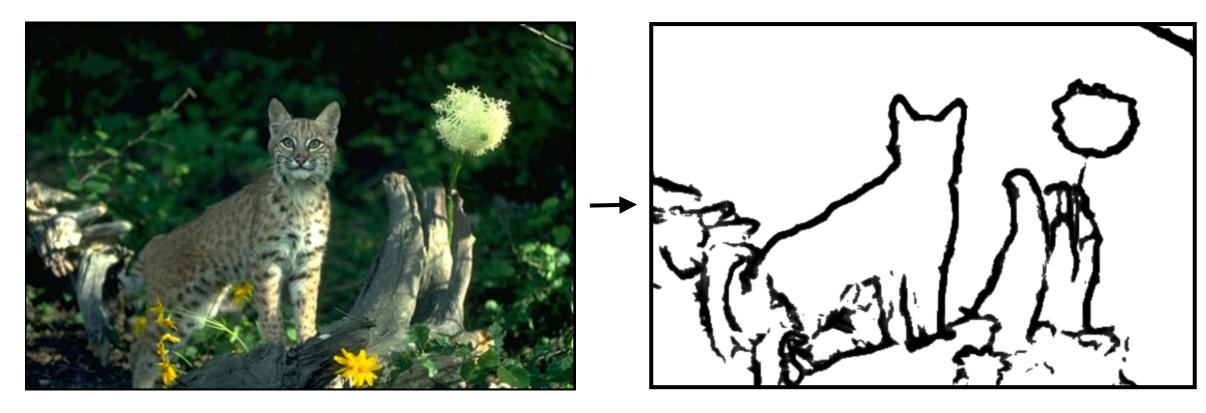
Text-to-photo

"this small bird has a pink breast and crown..."



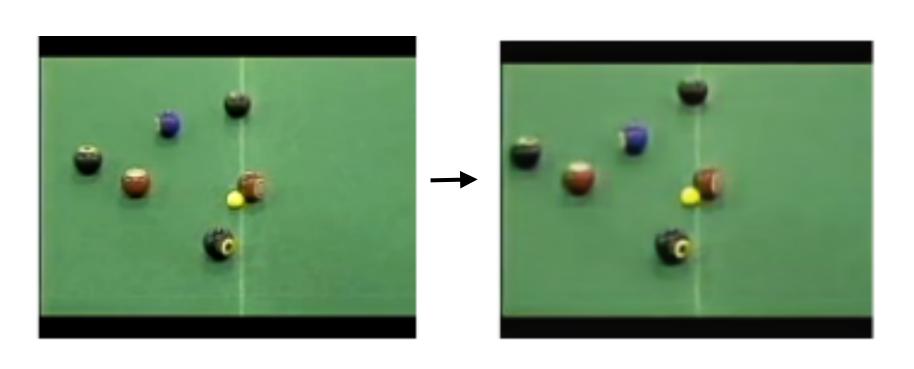
[Reed et al. 2014, ...]

Edge Detection



[Xie et al. 2015, ...]

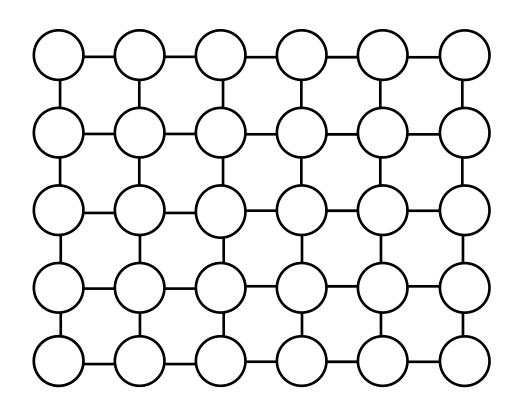
Future frame prediction



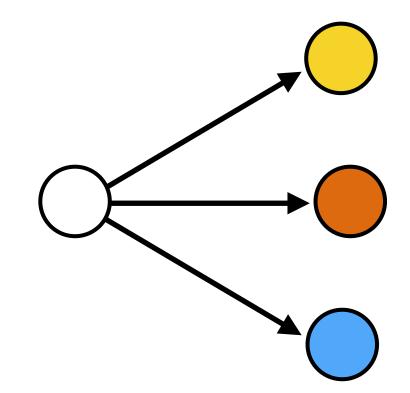
[Mathieu et al. 2016, ...]

Challenges in data prediction

1. Output is a high-dimensional, structured object

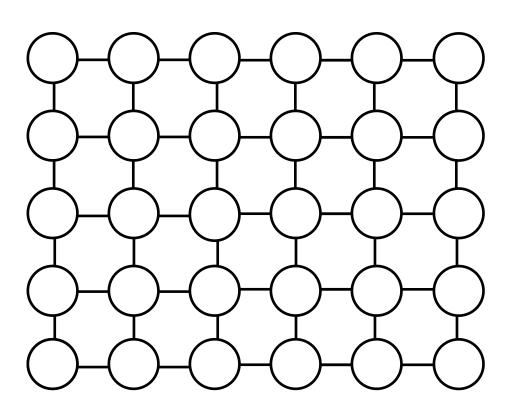


2. Uncertainty in the mapping, many plausible outputs



Properties of generative models

1. Model high-dimensional, structured output



2. Model uncertainty; a whole distribution of possible outputs

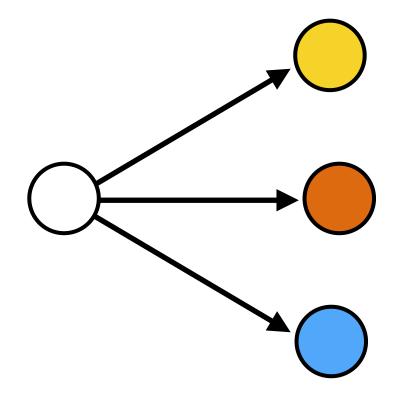


Image-to-Image Translation

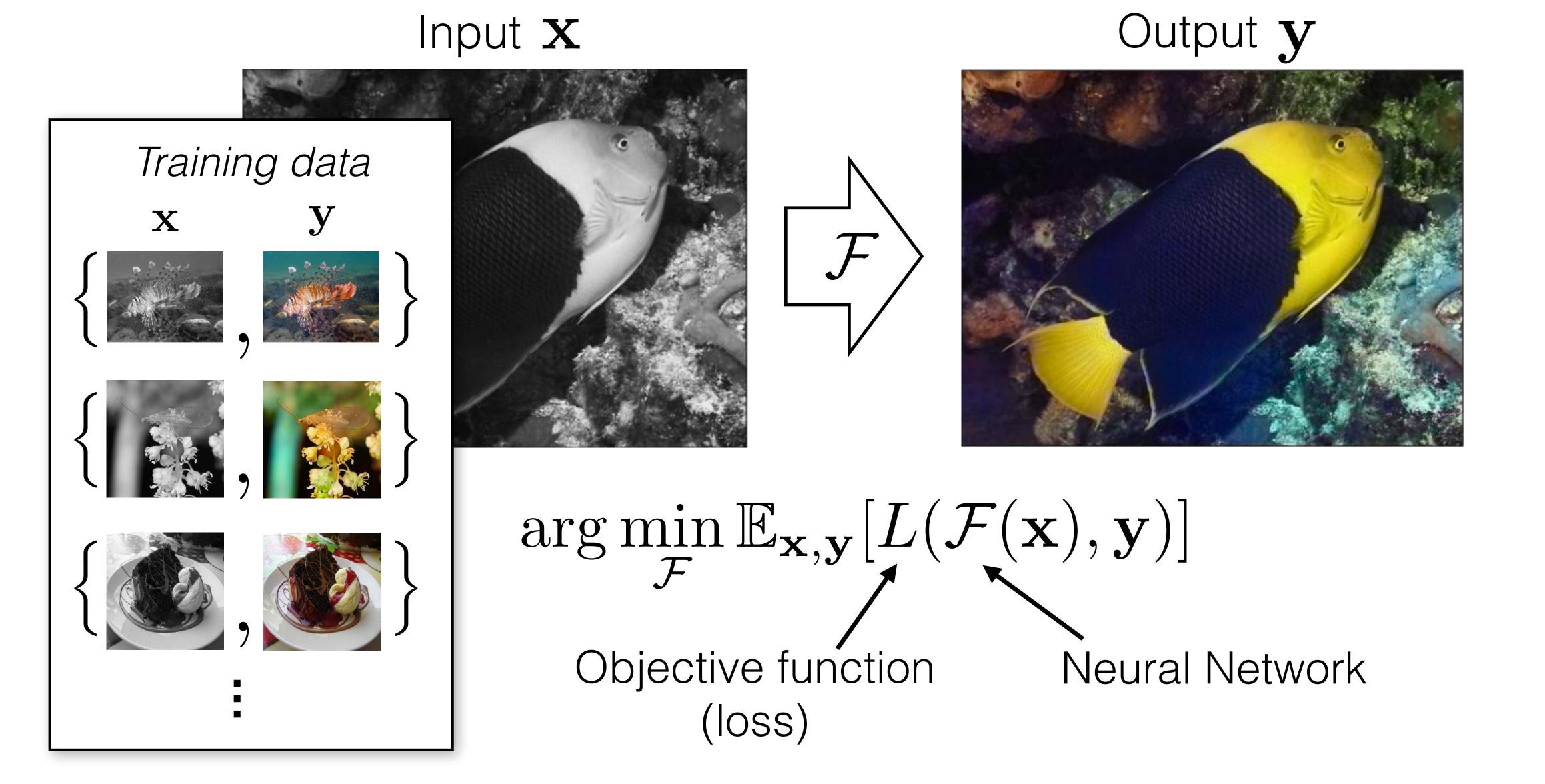
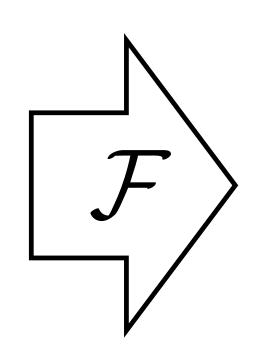


Image-to-Image Translation

Input X



Output **y**

$$\arg\min_{\mathcal{F}} \mathbb{E}_{\mathbf{x},\mathbf{y}}[L(\mathcal{F}(\mathbf{x}),\mathbf{y})]$$

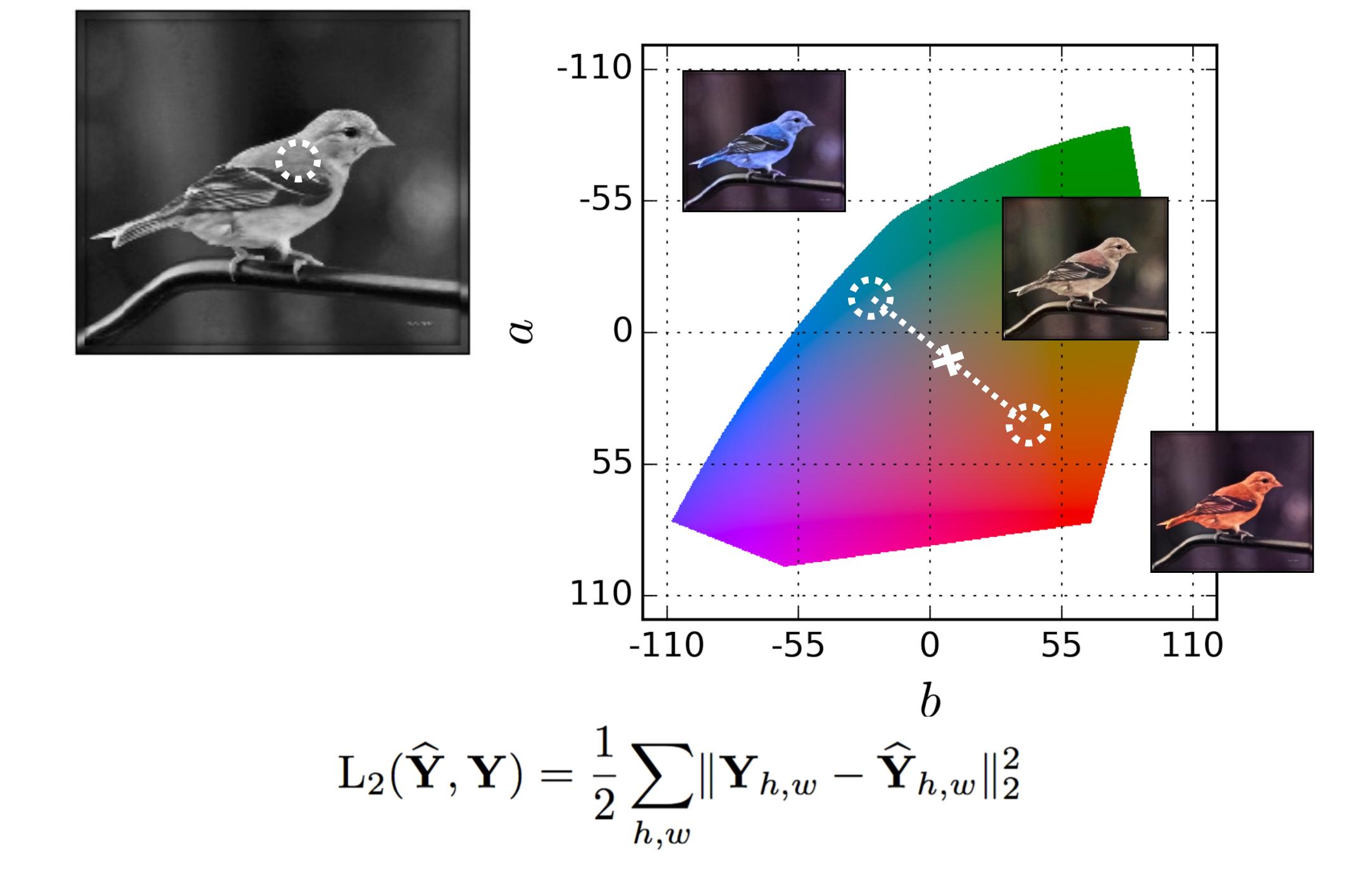
"What should I do" "How should I do it?"

Input

Output

Ground truth

$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} ||\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}||_2^2$$



Input

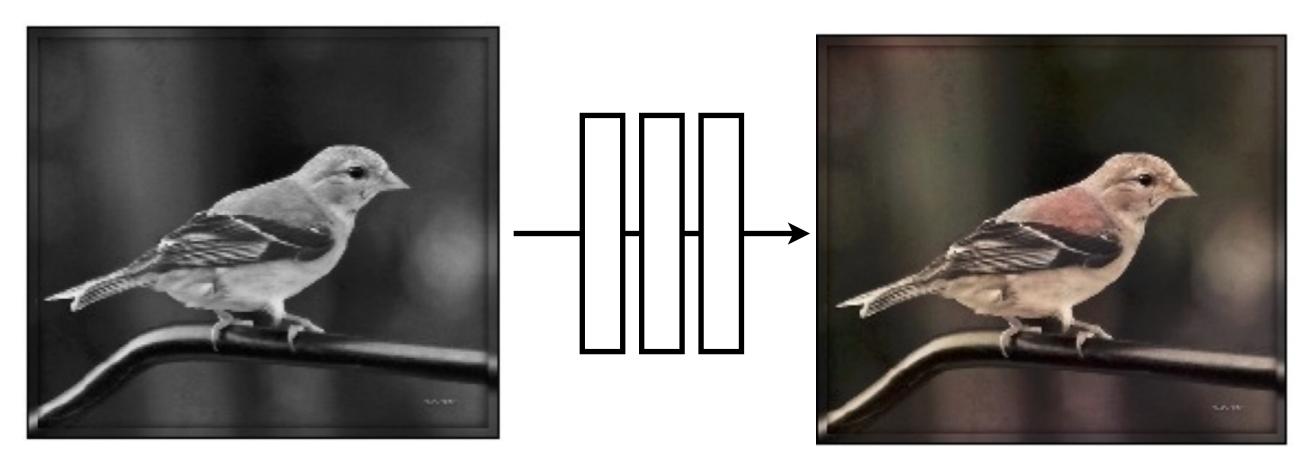
Zhang et al. 2016

Ground truth

Color distribution cross-entropy loss with colorfulness enhancing term.

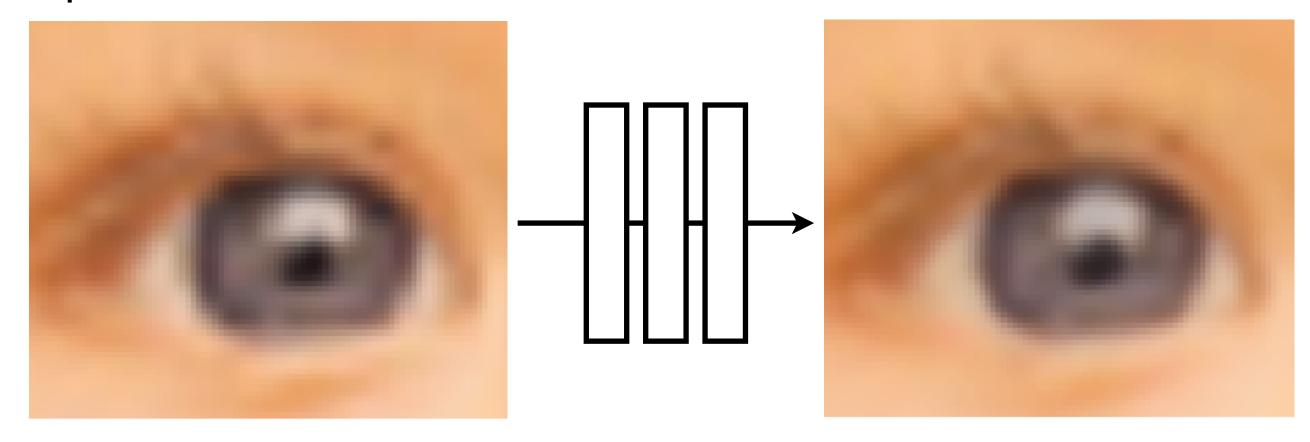
Be careful what you wish for!

Image colorization



[Zhang, Isola, Efros, ECCV 2016]

Super-resolution

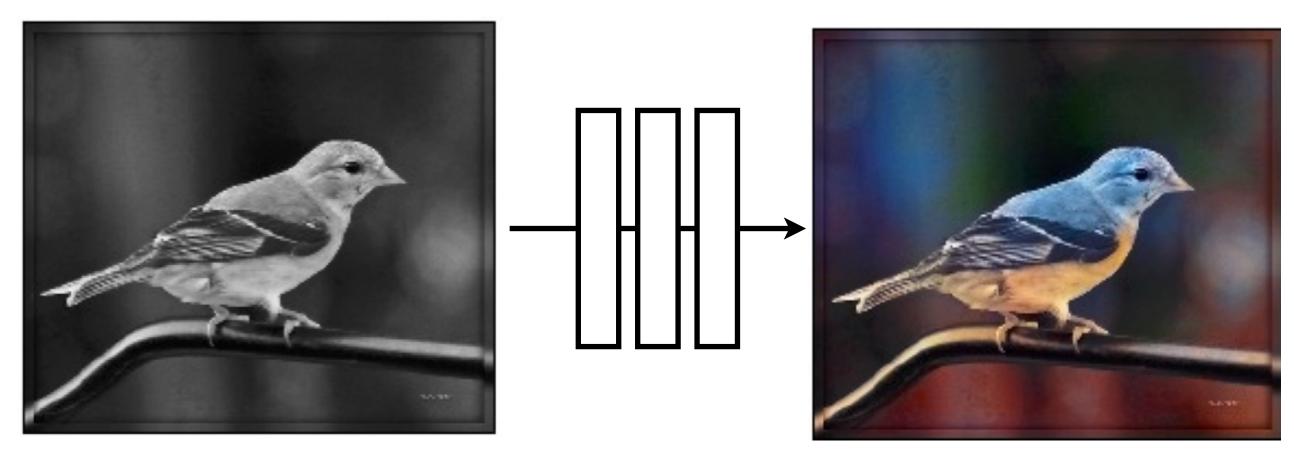


[Johnson, Alahi, Li, ECCV 2016]

L2 regression

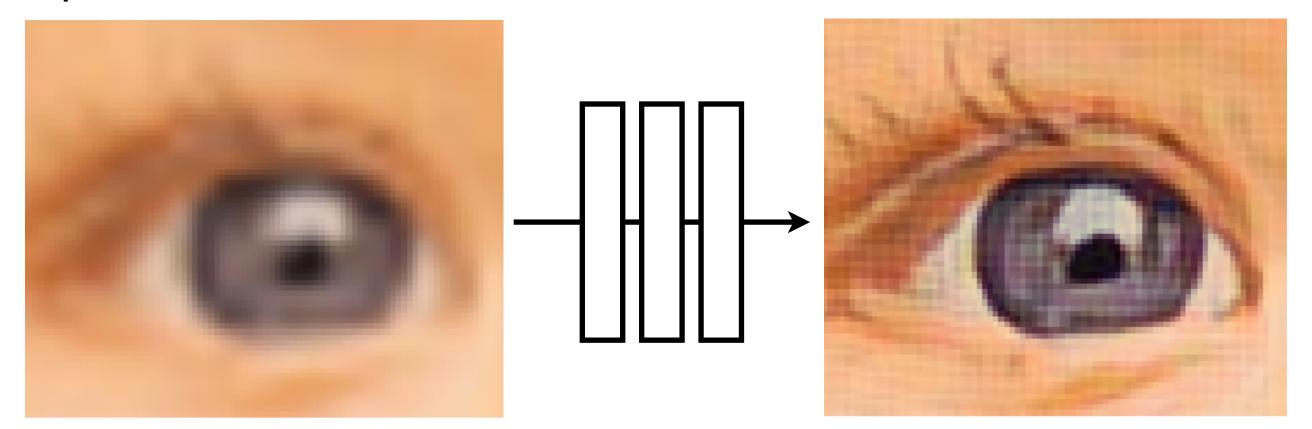
L2 regression

Image colorization



[Zhang, Isola, Efros, ECCV 2016]

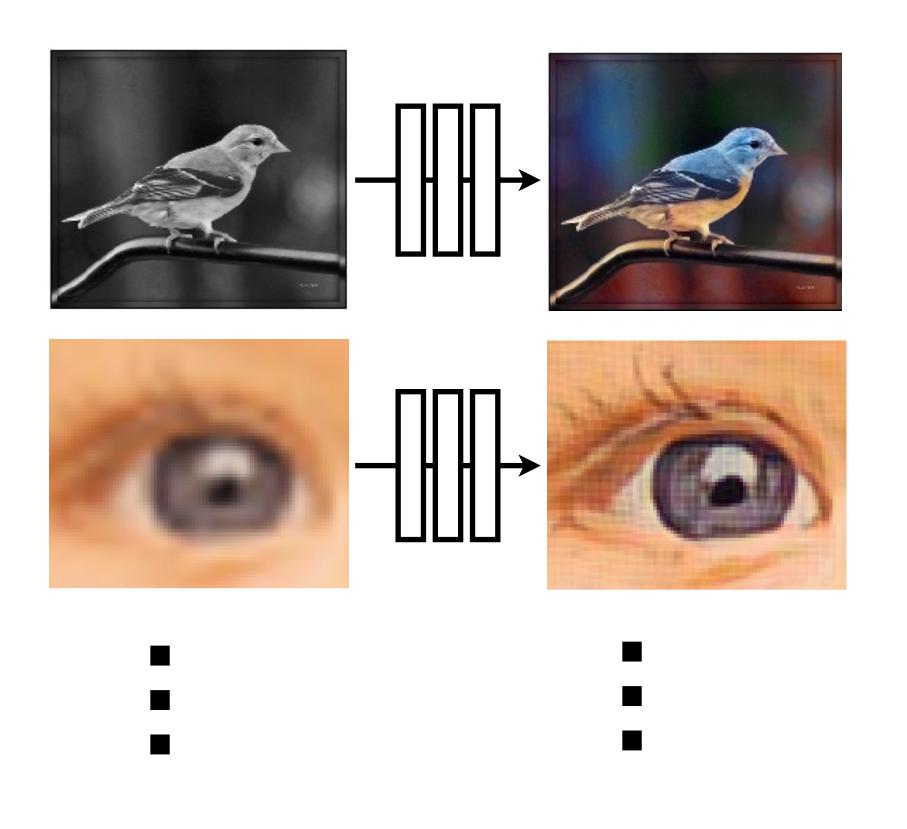
Super-resolution



[Johnson, Alahi, Li, ECCV 2016]

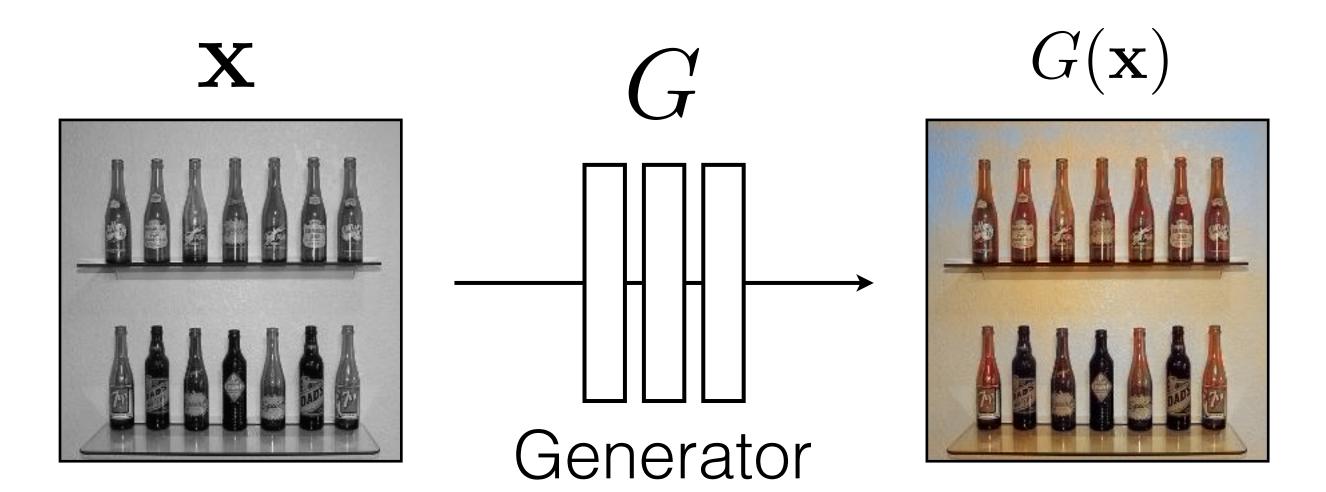
Cross entropy objective, with colorfulness term

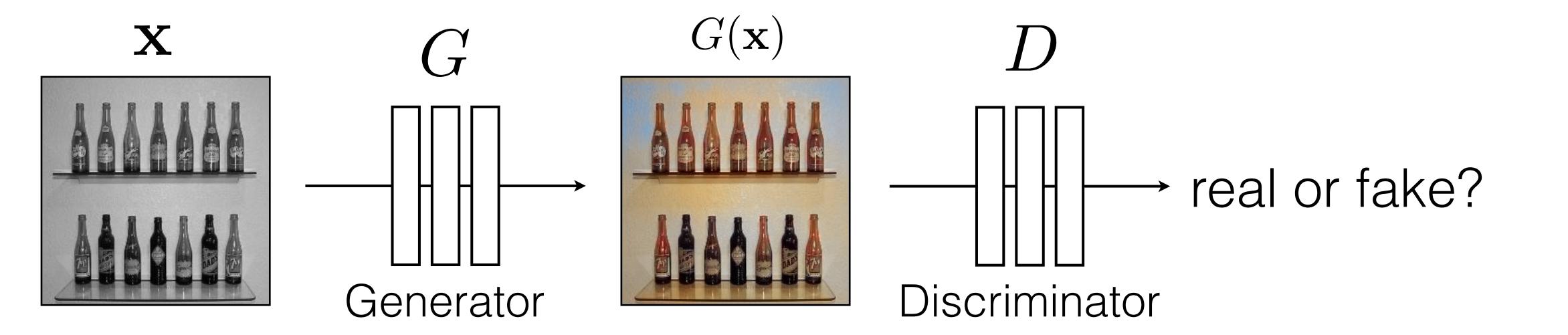
Deep feature covariance matching objective



Universal loss?

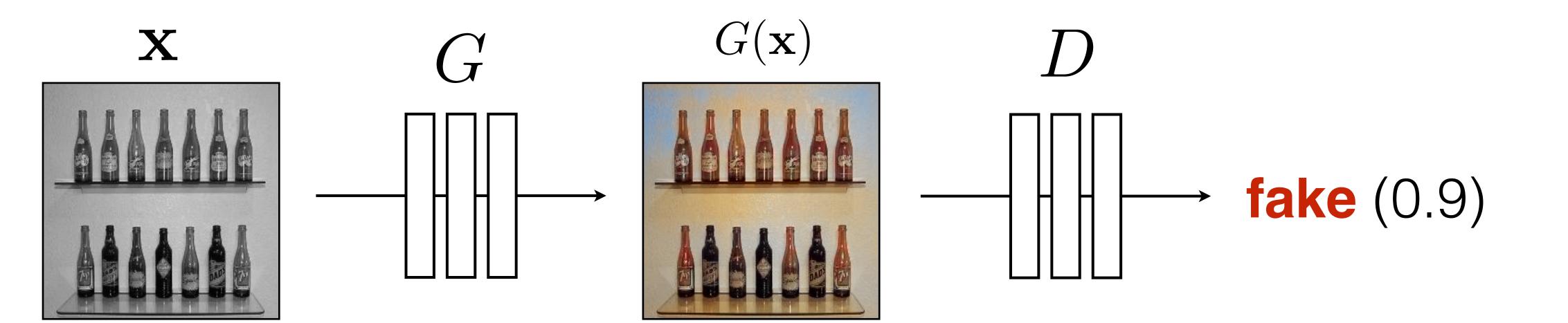
Generated images "Generative Adversarial Network" (GANs) Generated vs Real (classifier) Real photos [Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio 2014]

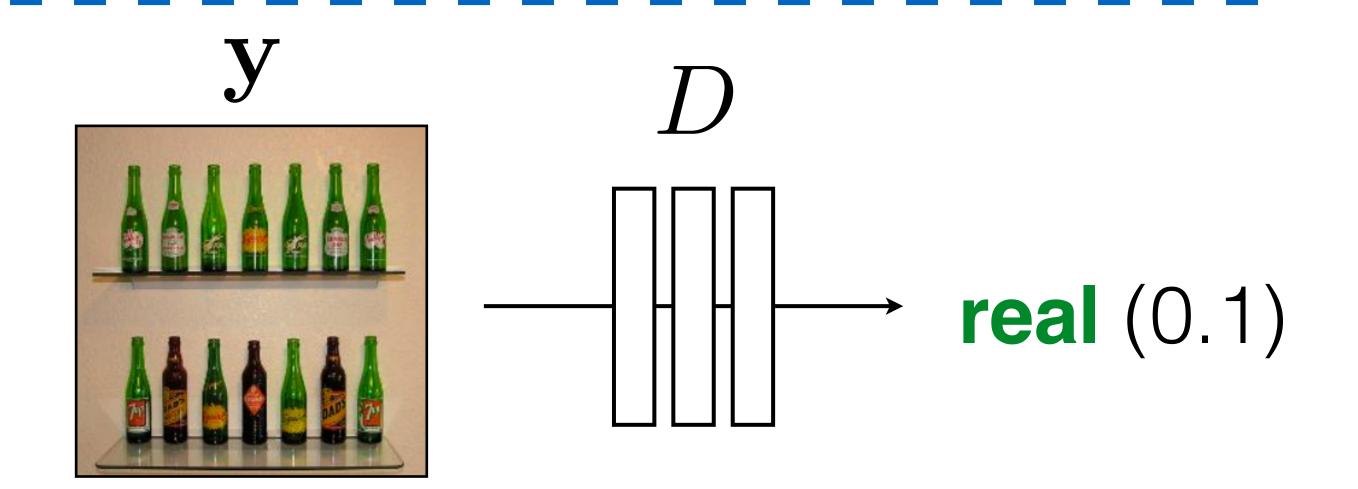




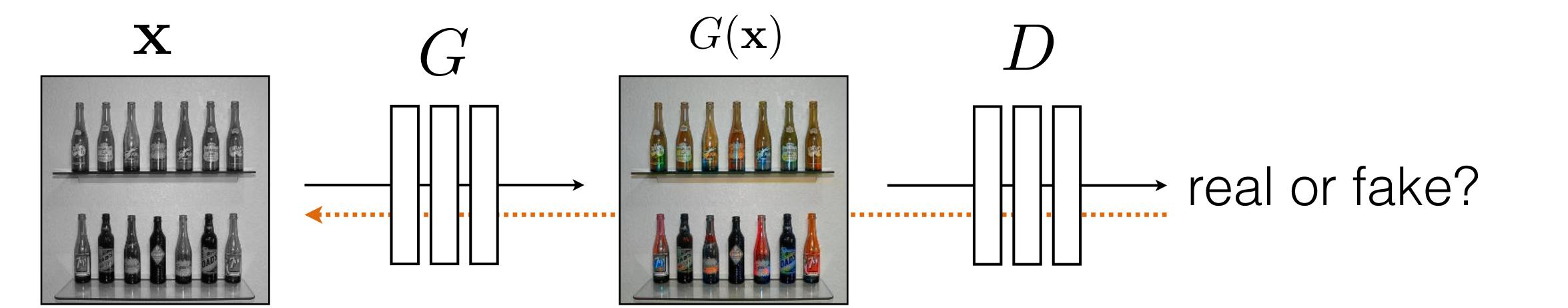
G tries to synthesize fake images that fool D

D tries to identify the fakes



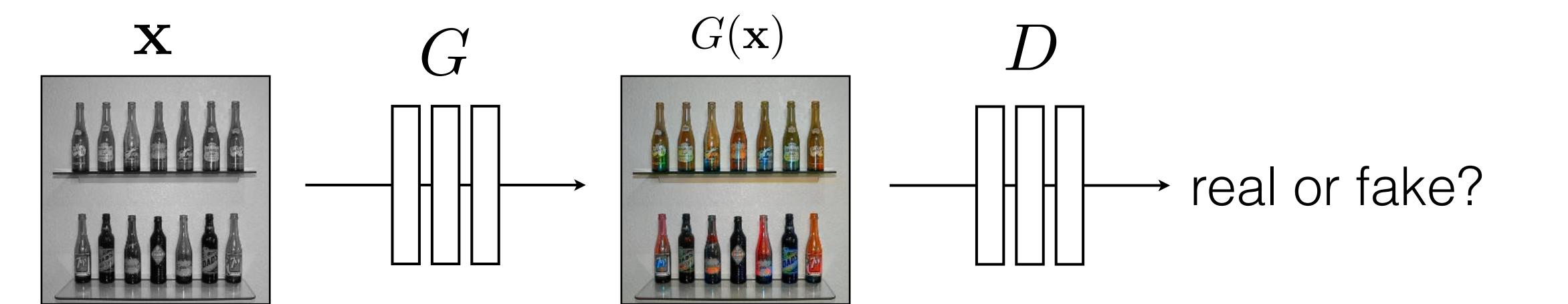


$$\underset{D}{\operatorname{arg\,max}} \ \mathbb{E}_{\mathbf{x},\mathbf{y}} [\ \log D(G(\mathbf{x})) \ + \ \log(1 - D(\mathbf{y})) \]$$



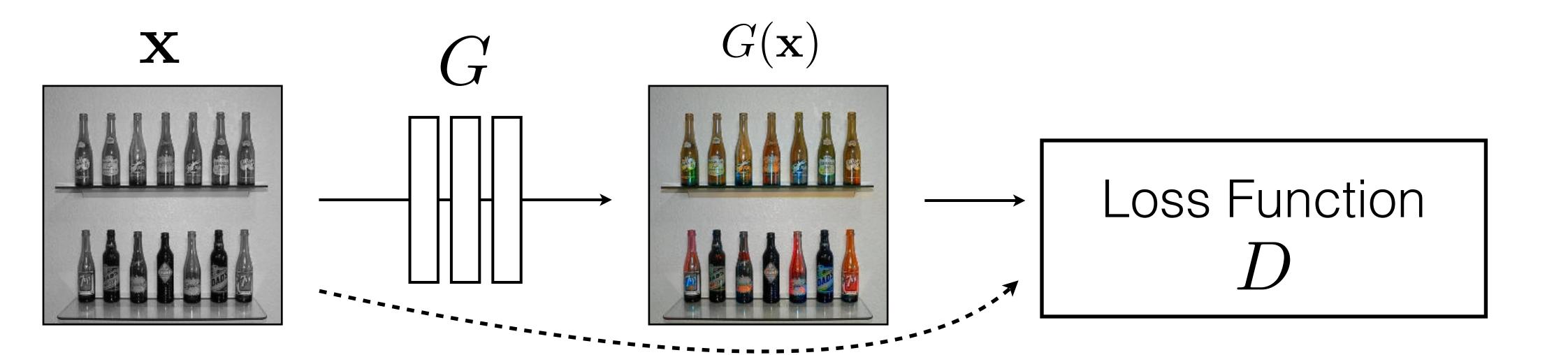
G tries to synthesize fake images that fool D:

$$\underset{G}{\operatorname{arg}} \quad \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y})) \right]$$



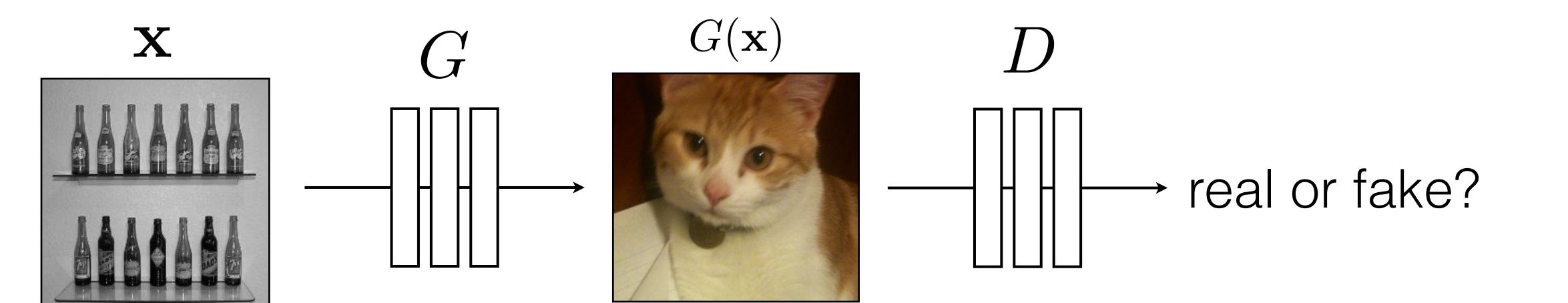
G tries to synthesize fake images that fool the best D:

$$\arg \min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

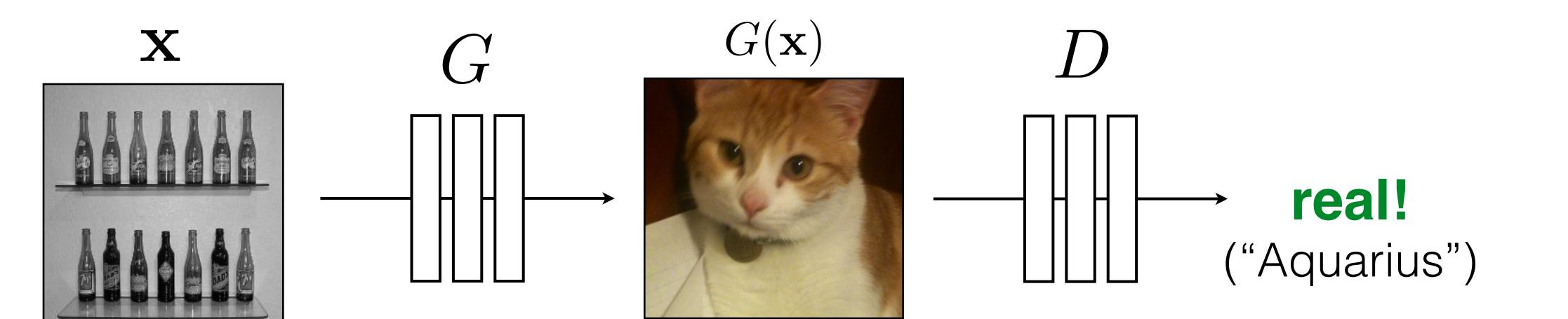


G's perspective: D is a loss function.

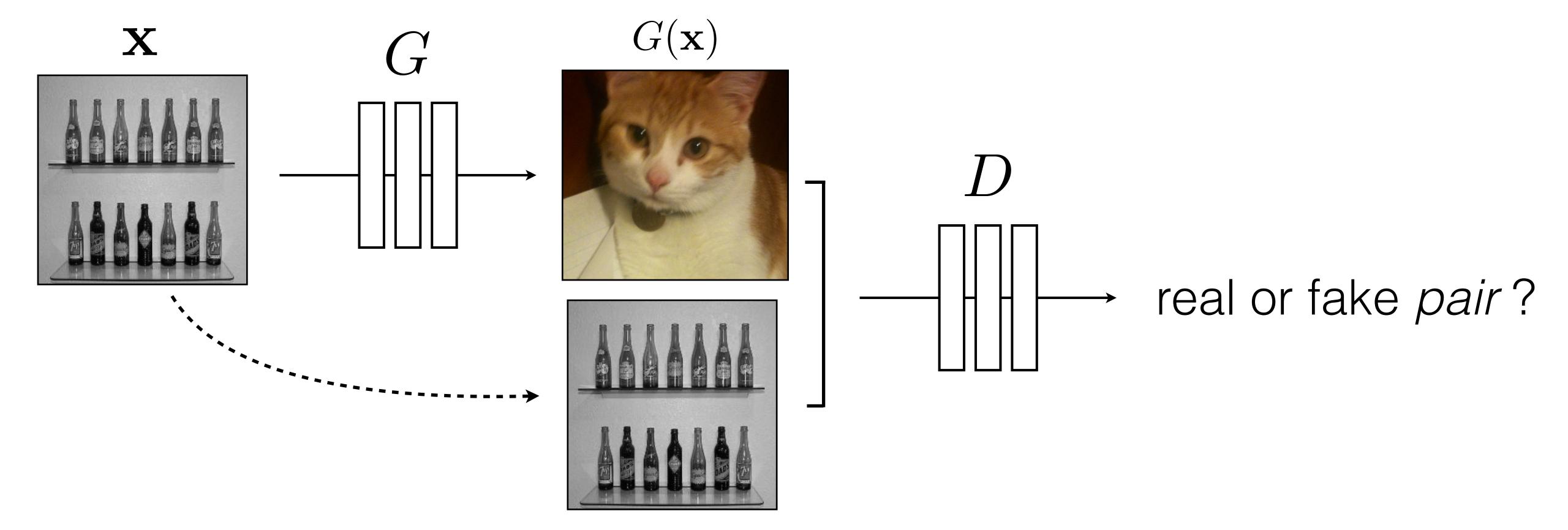
Rather than being hand-designed, it is learned.



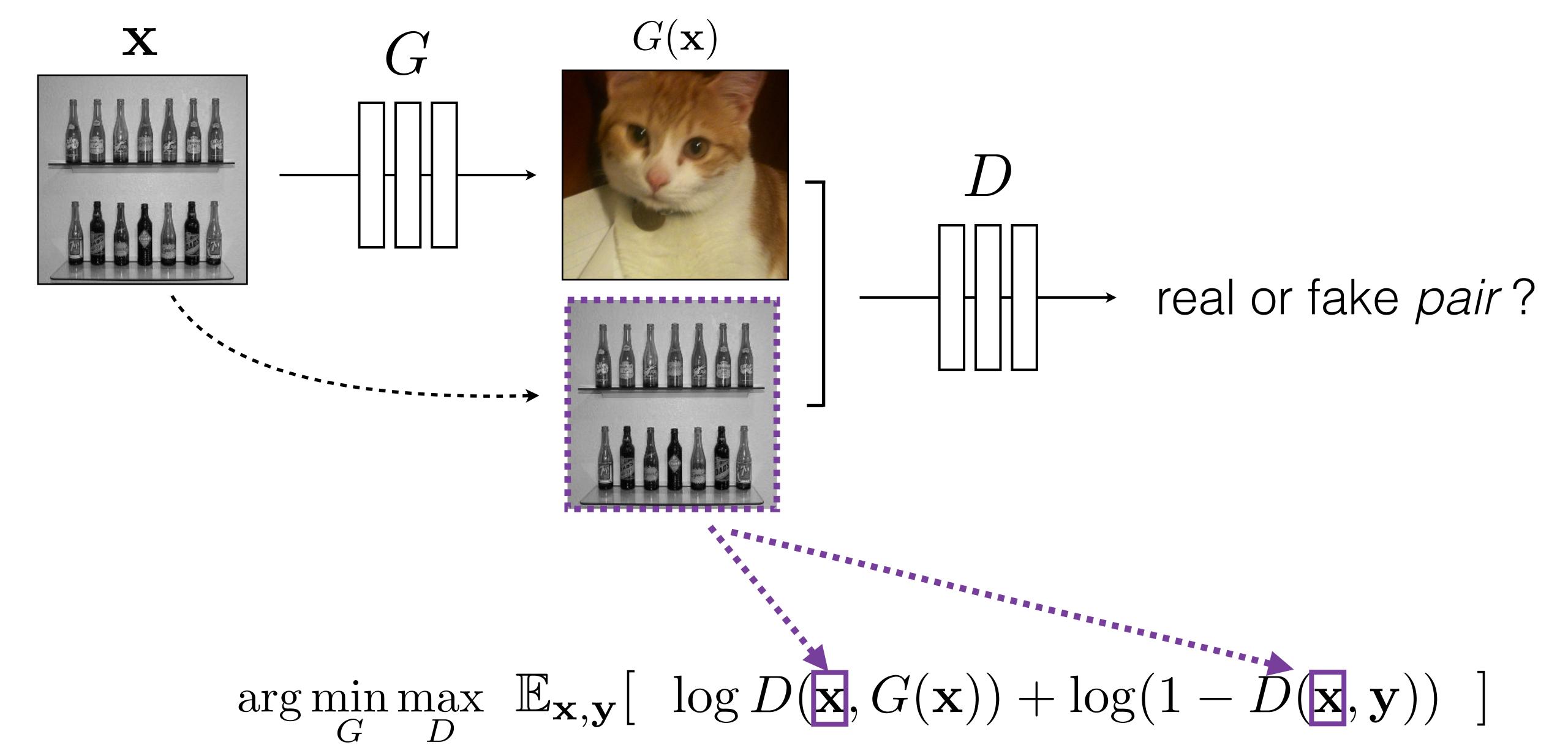
$$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

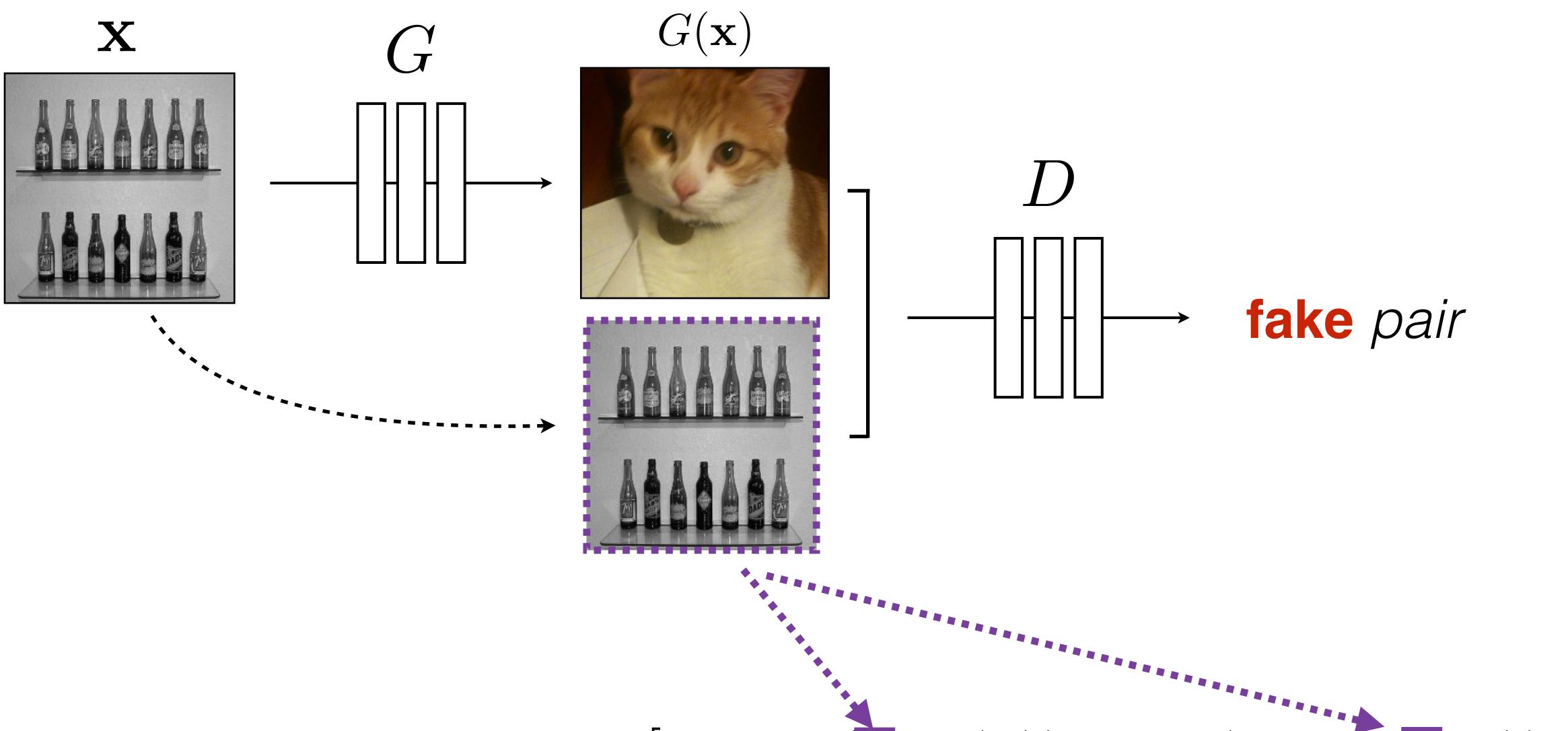


$$\underset{G}{\operatorname{arg \, min \, max}} \, \mathbb{E}_{\mathbf{x},\mathbf{y}} [\, \log D(G(\mathbf{x})) + \, \log(1 - D(\mathbf{y})) \,]$$

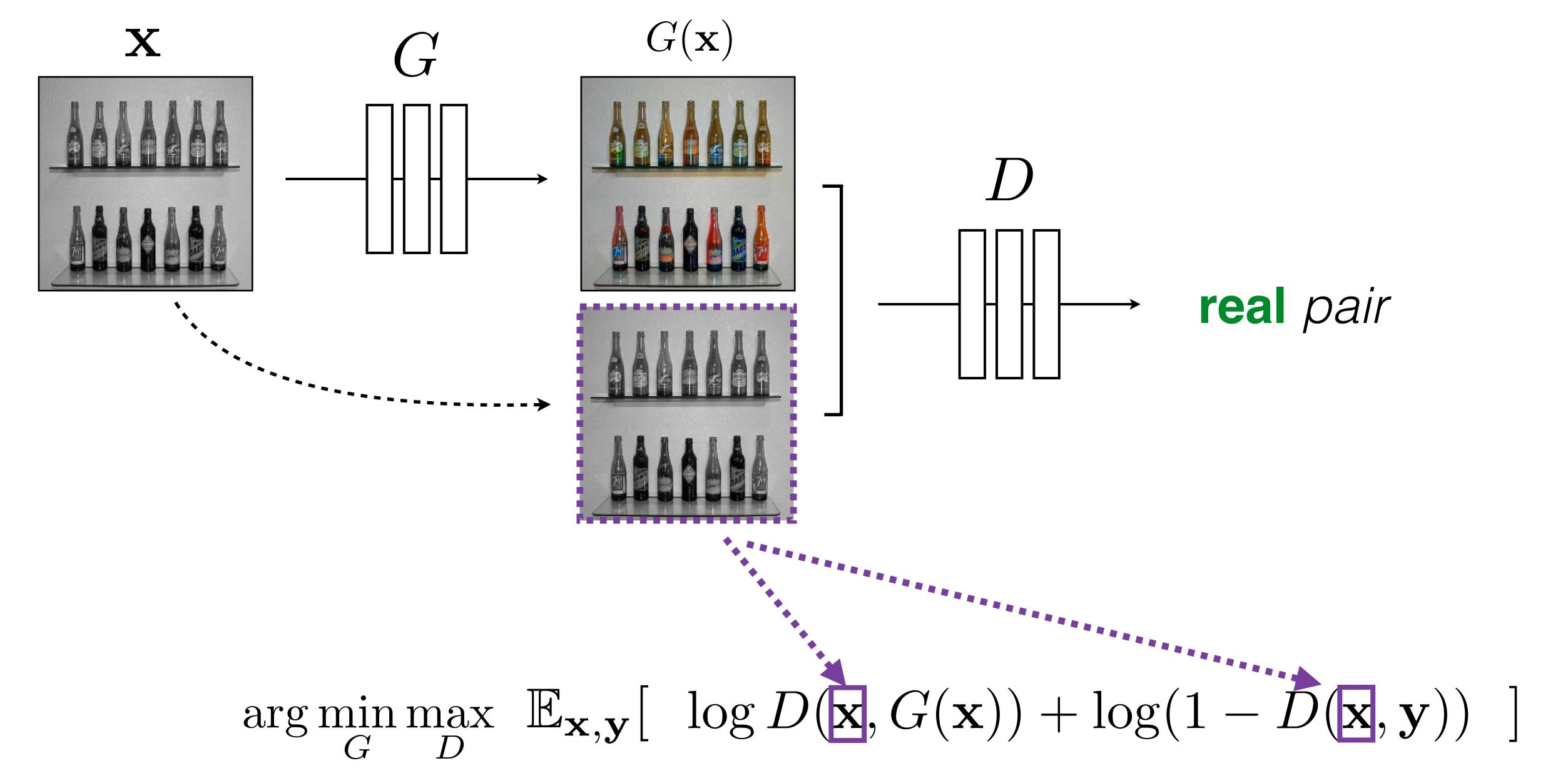


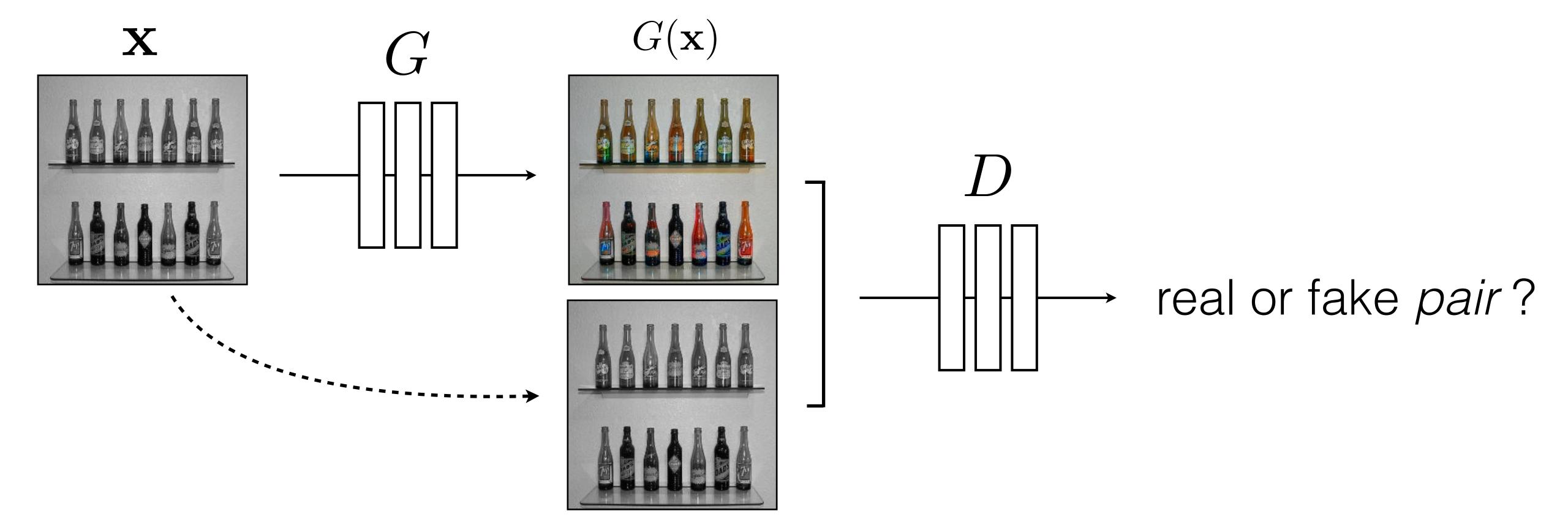
$$\operatorname{arg\,min\,max}_{G} \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y})) \right]$$





$$\arg\min_{G}\max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log D(\mathbf{x},G(\mathbf{x})) + \log(1-D(\mathbf{x},\mathbf{y}))]$$





$$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(\mathbf{x}, G(\mathbf{x})) + \log(1 - D(\mathbf{x}, \mathbf{y}))]$$

Training Details: Loss function

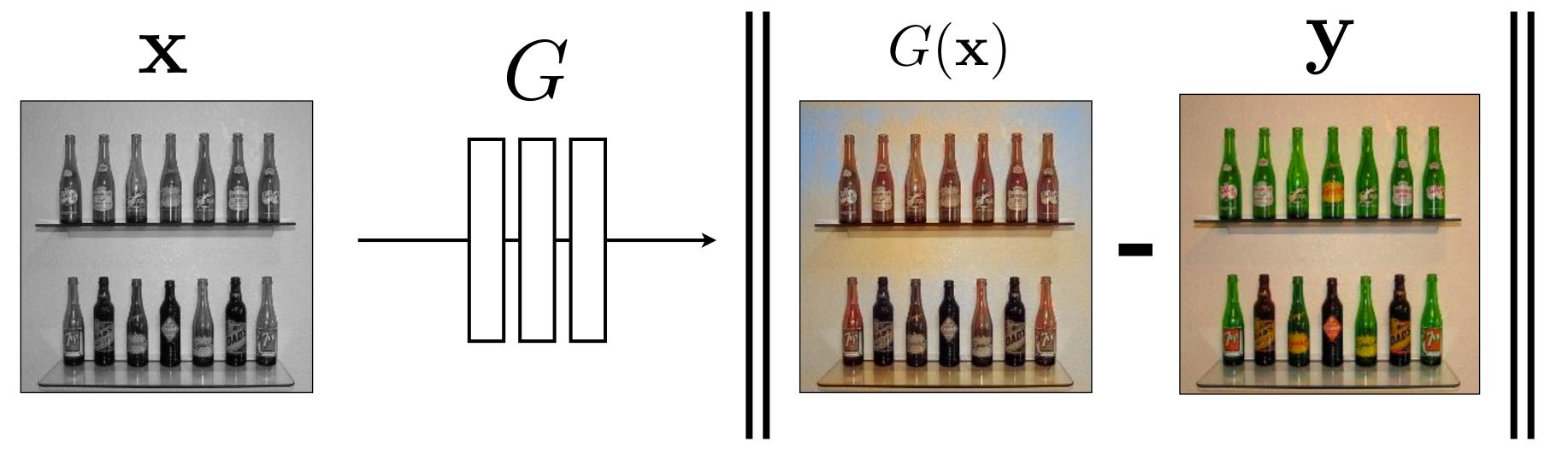
Conditional GAN

$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G).$$

Training Details: Loss function

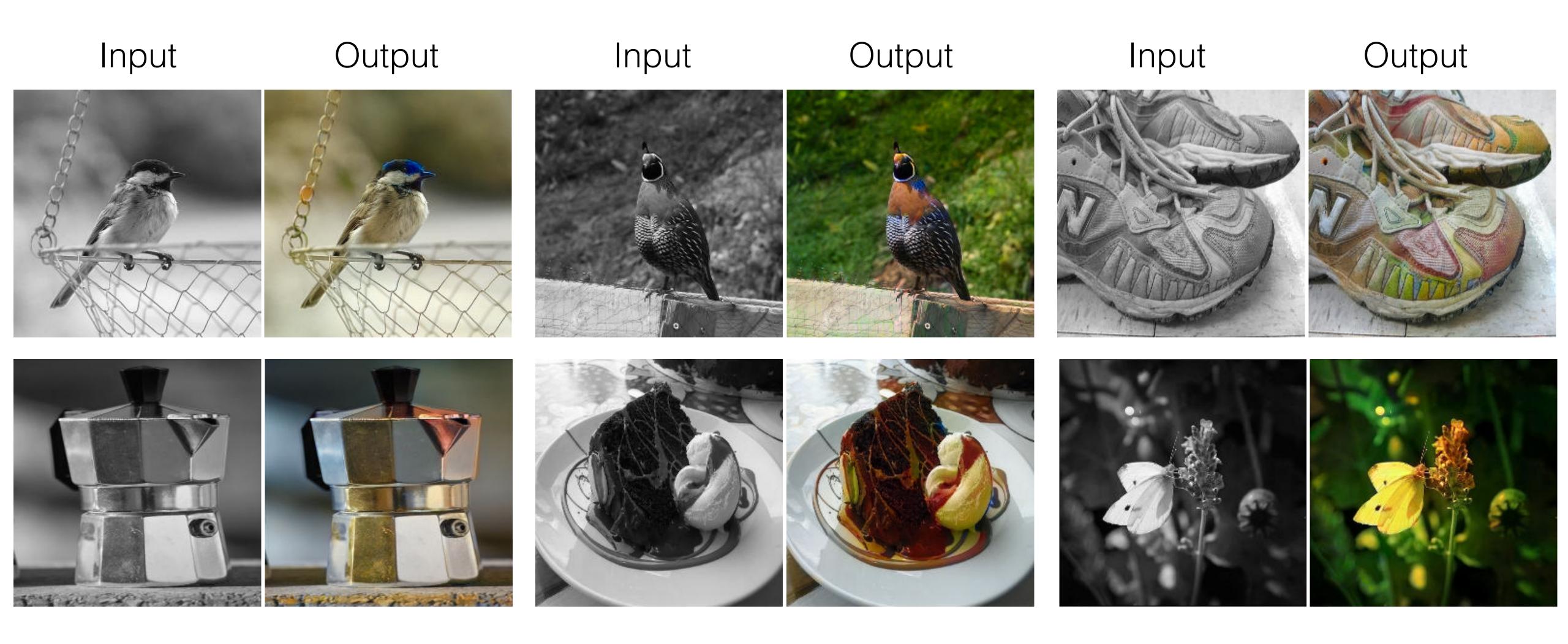
Conditional GAN

$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G).$$



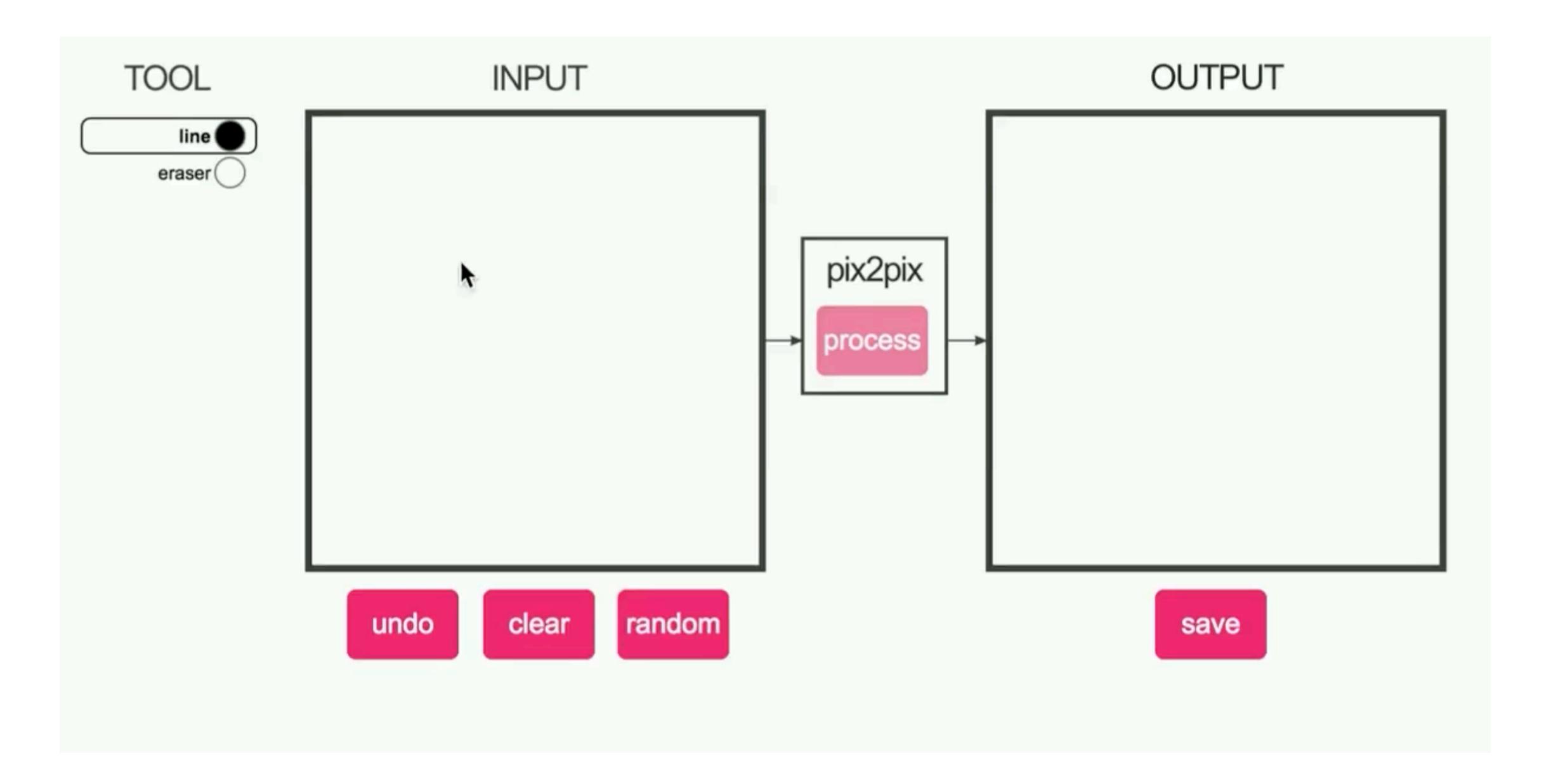
Stable training + fast convergence

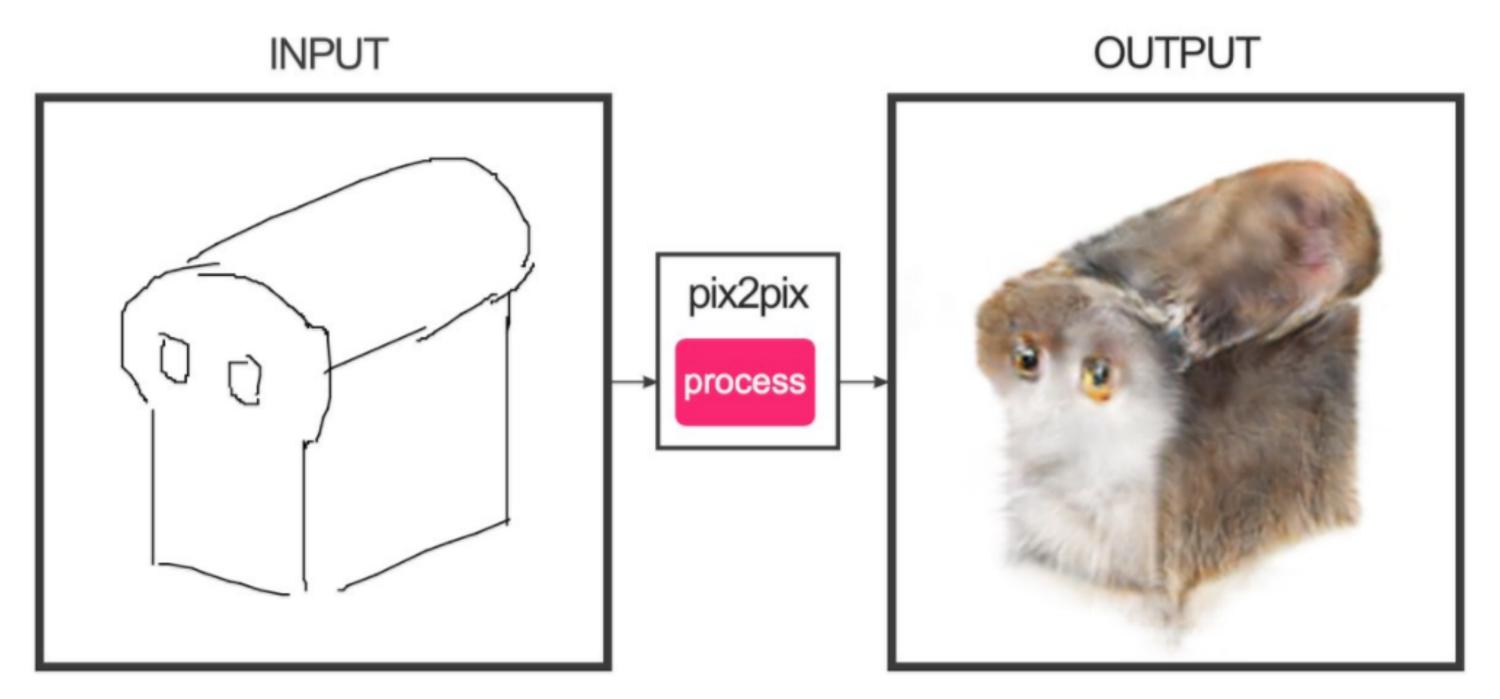
BW -- Color



Data from [Russakovsky et al. 2015]

#edges2cats [Chris Hesse]

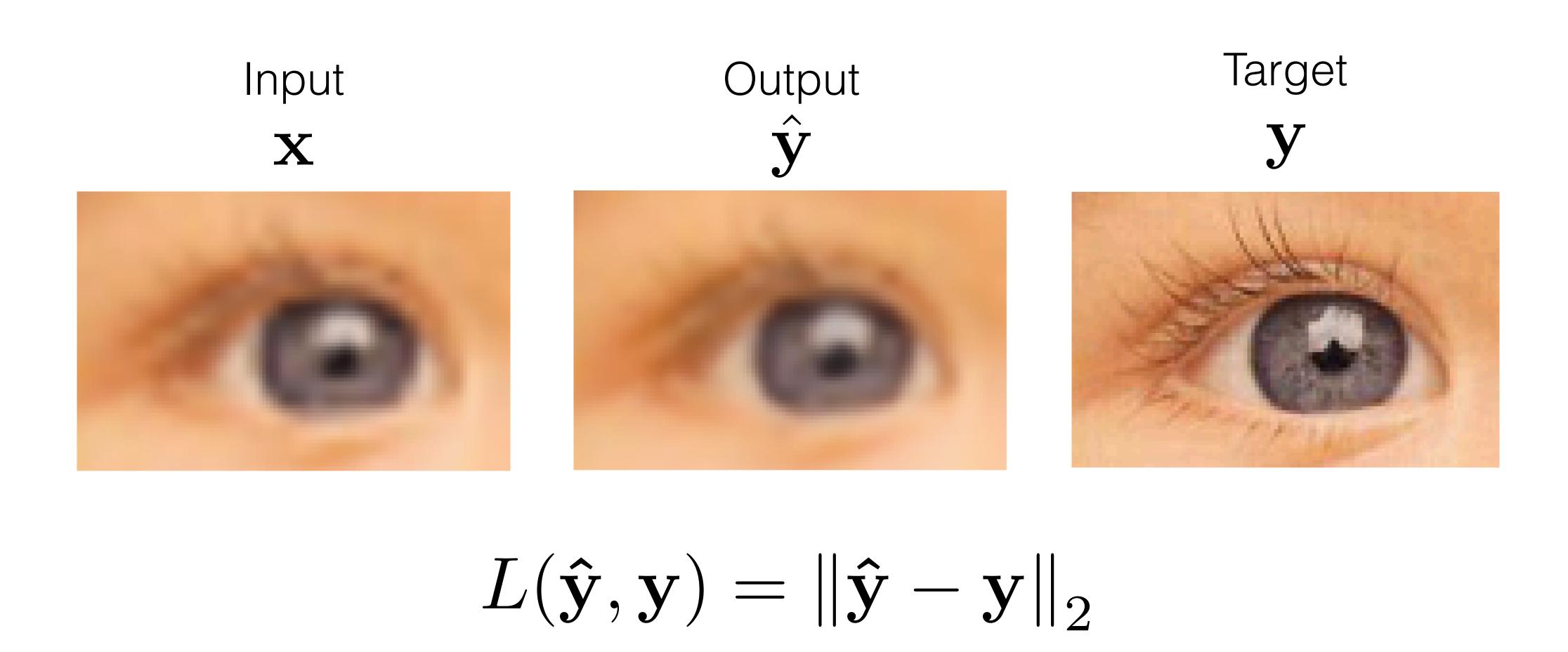




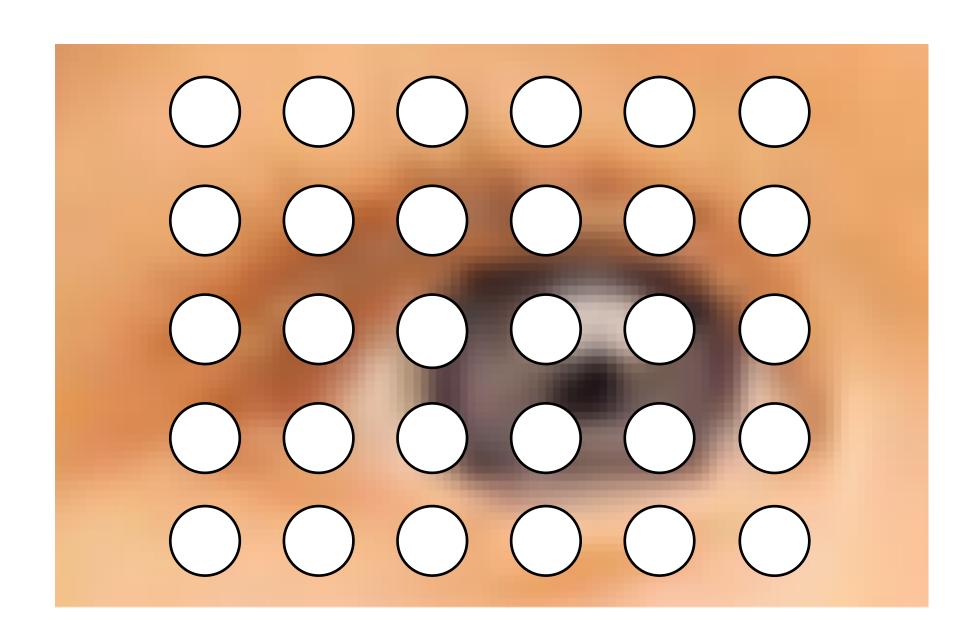
Ivy Tasi @ivymyt

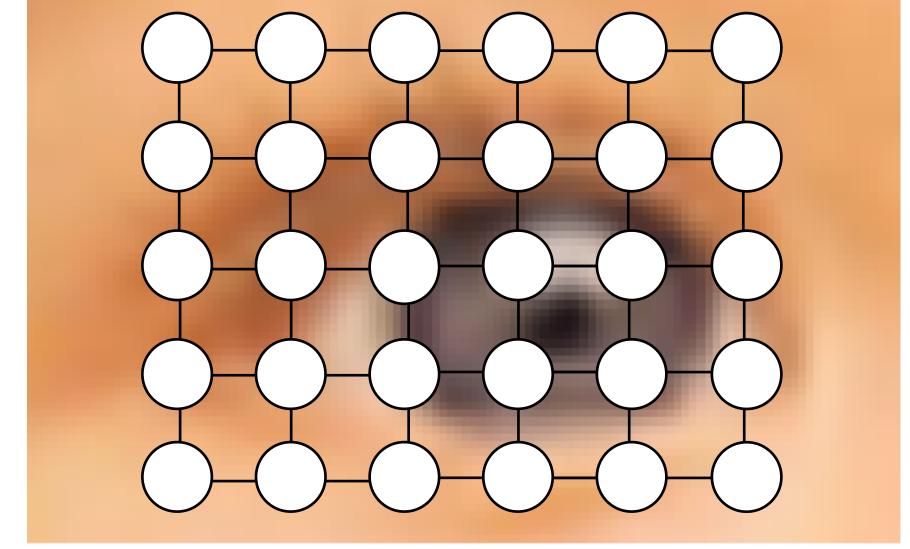
Vitaly Vidmirov @vvid

Structured Prediction



Structured Prediction



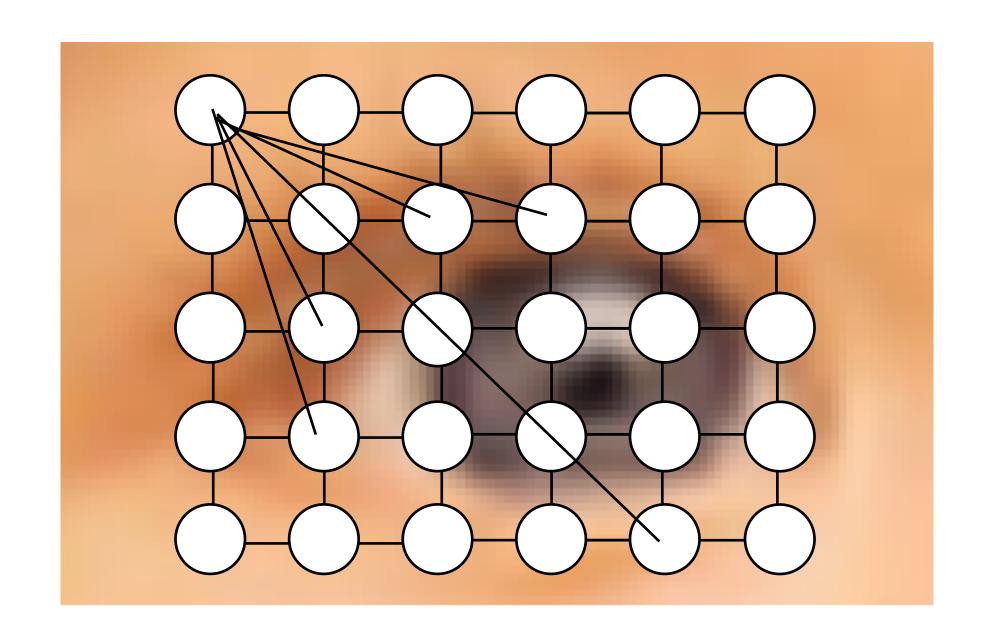


Each pixel treated as independent

$$\prod_{i} p(y_i|\mathbf{x})$$

$$\frac{1}{Z} \prod_{i,j} p(y_i, y_j | \mathbf{x})$$

Structured Prediction



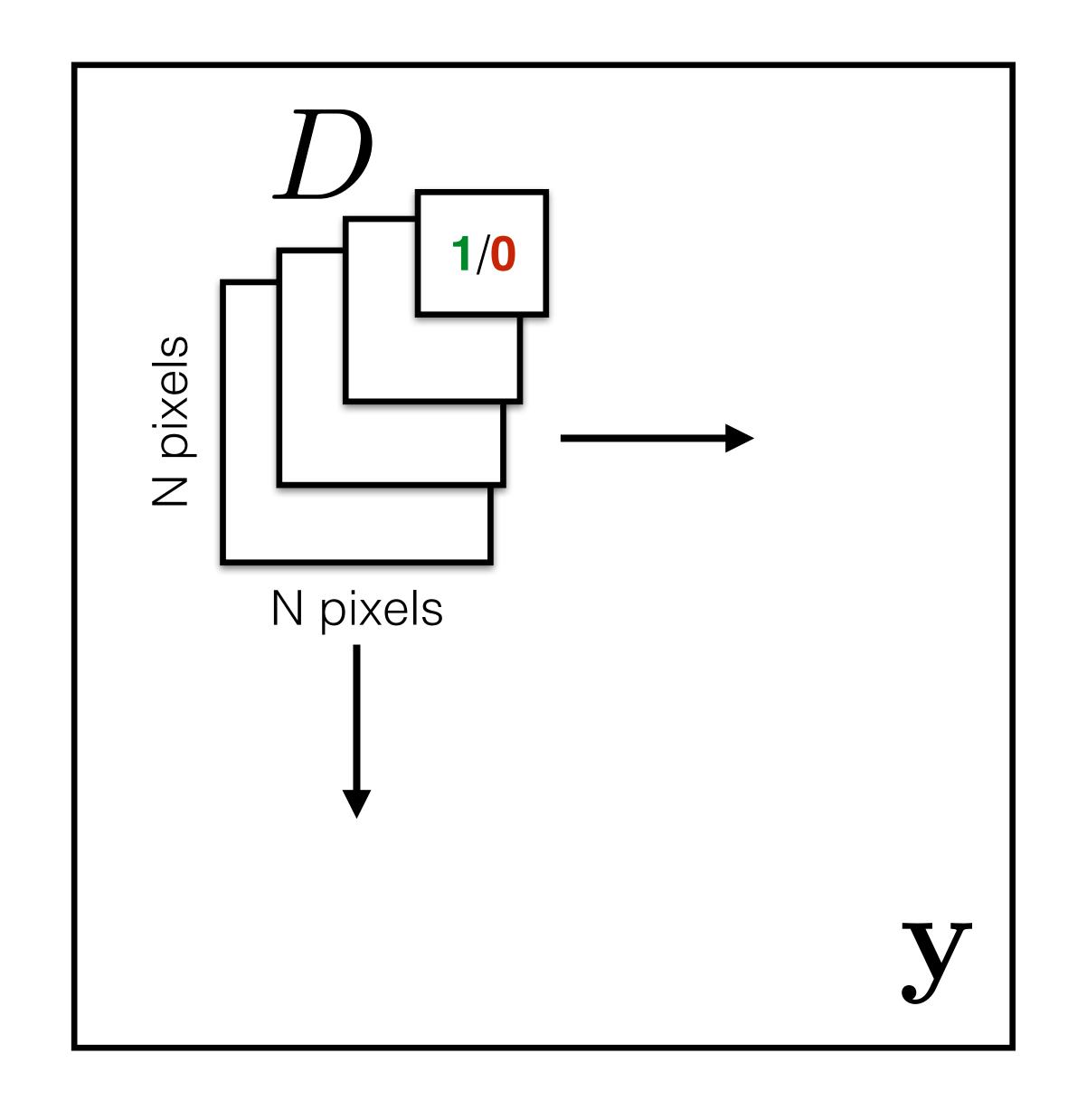
Model *joint* configuration of all pixels

$$p(\mathbf{y}|\mathbf{x})$$

A GAN, with sufficient capacity, samples from the full joint distribution when perfectly optimized.

Most generative models have this property! Give them **sufficient capacity** and **infinite data**, and they are the complete solution to prediction problems.

Shrinking the capacity: Patch Discriminator

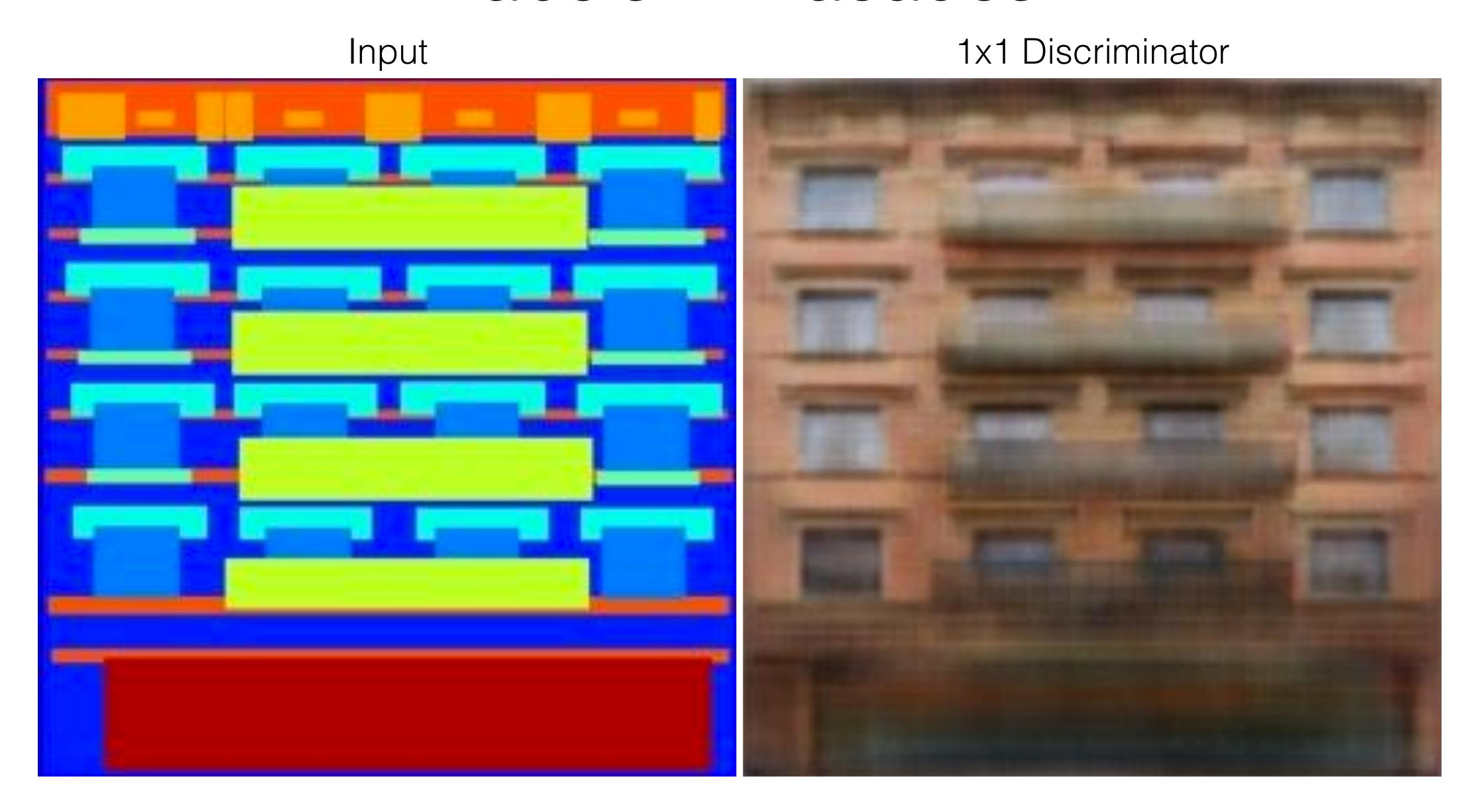


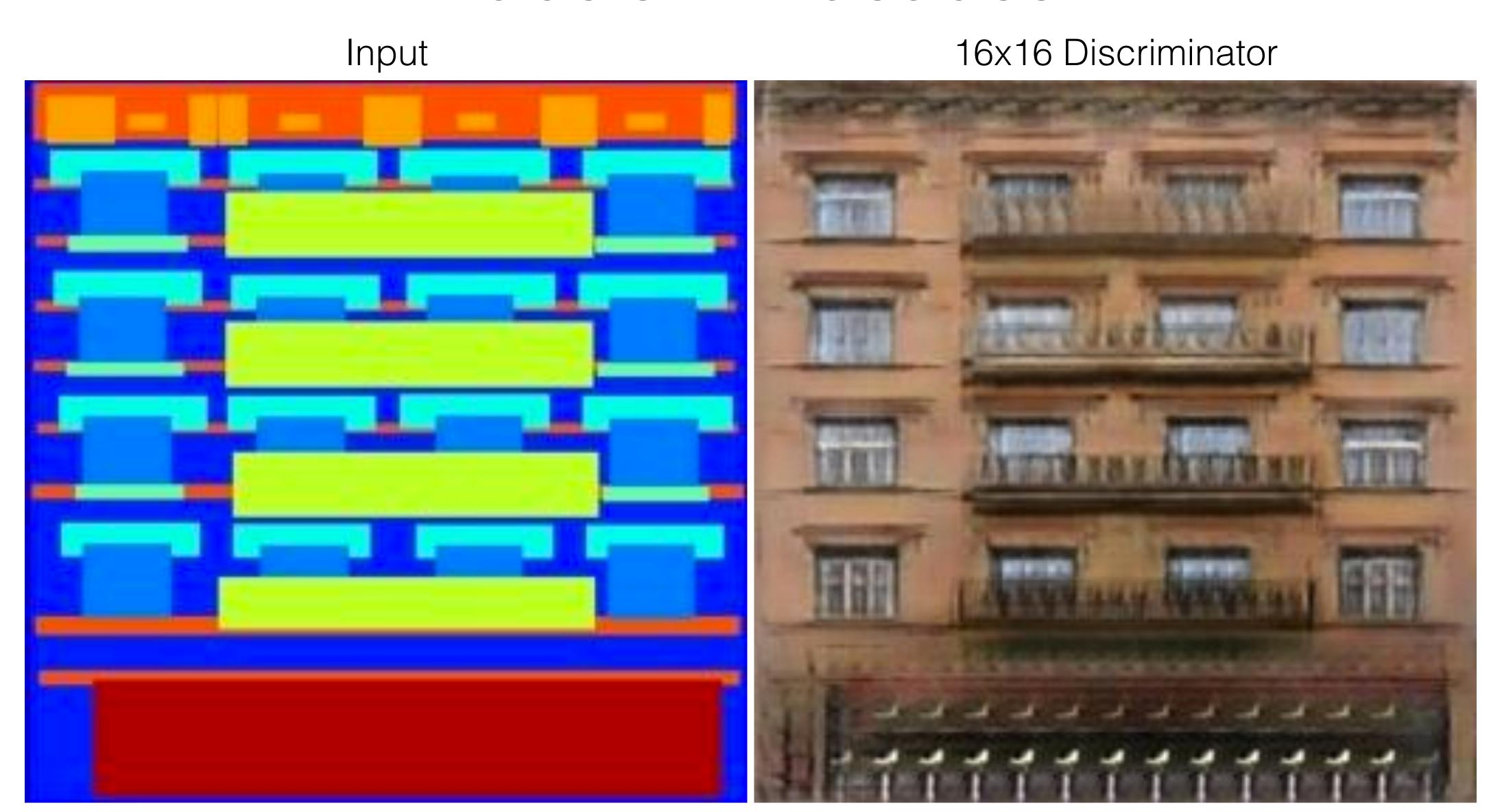
Rather than penalizing if output *image* looks fake, penalize if each overlapping *patch* in output looks fake

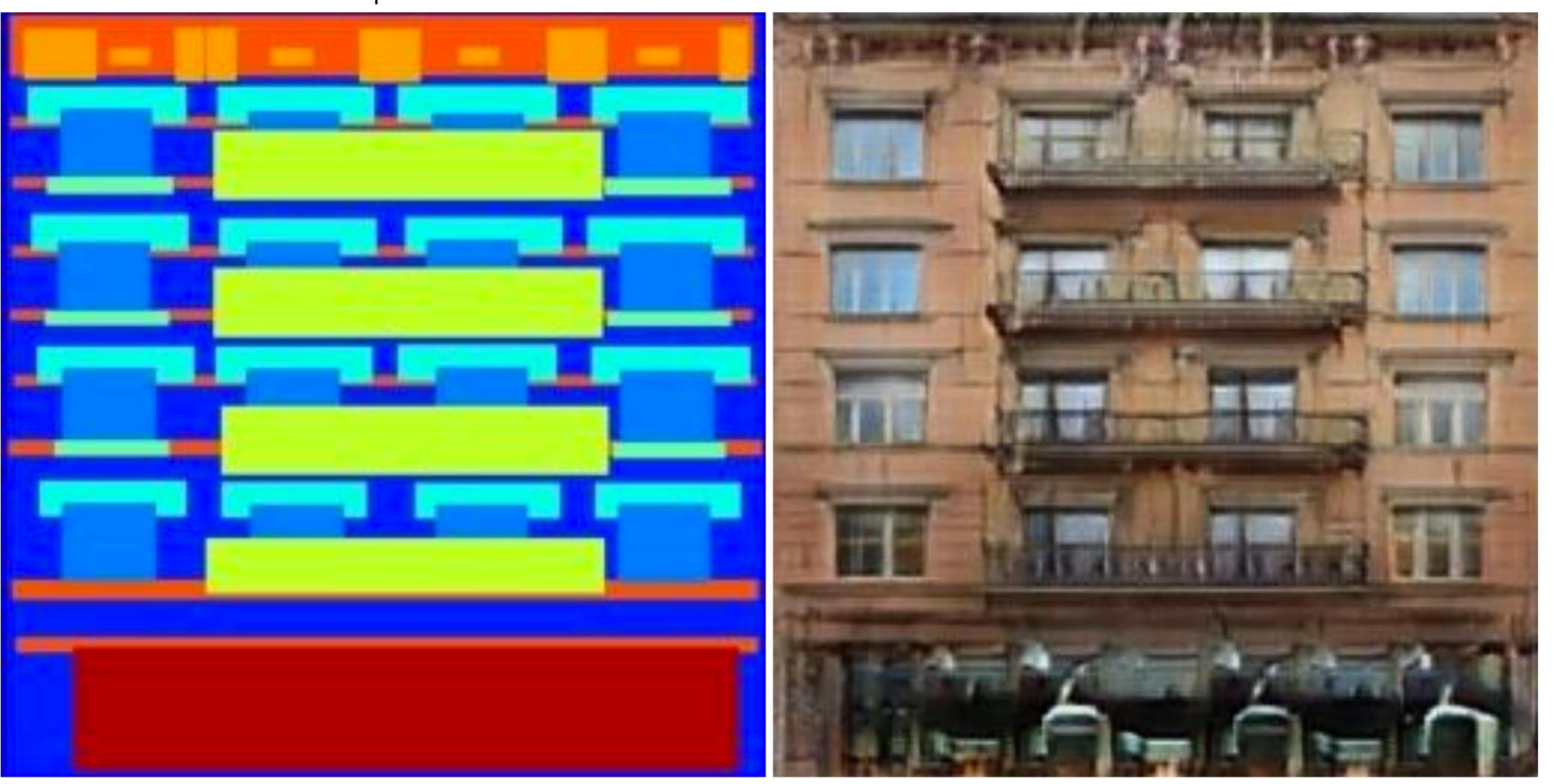
[Li & Wand 2016]

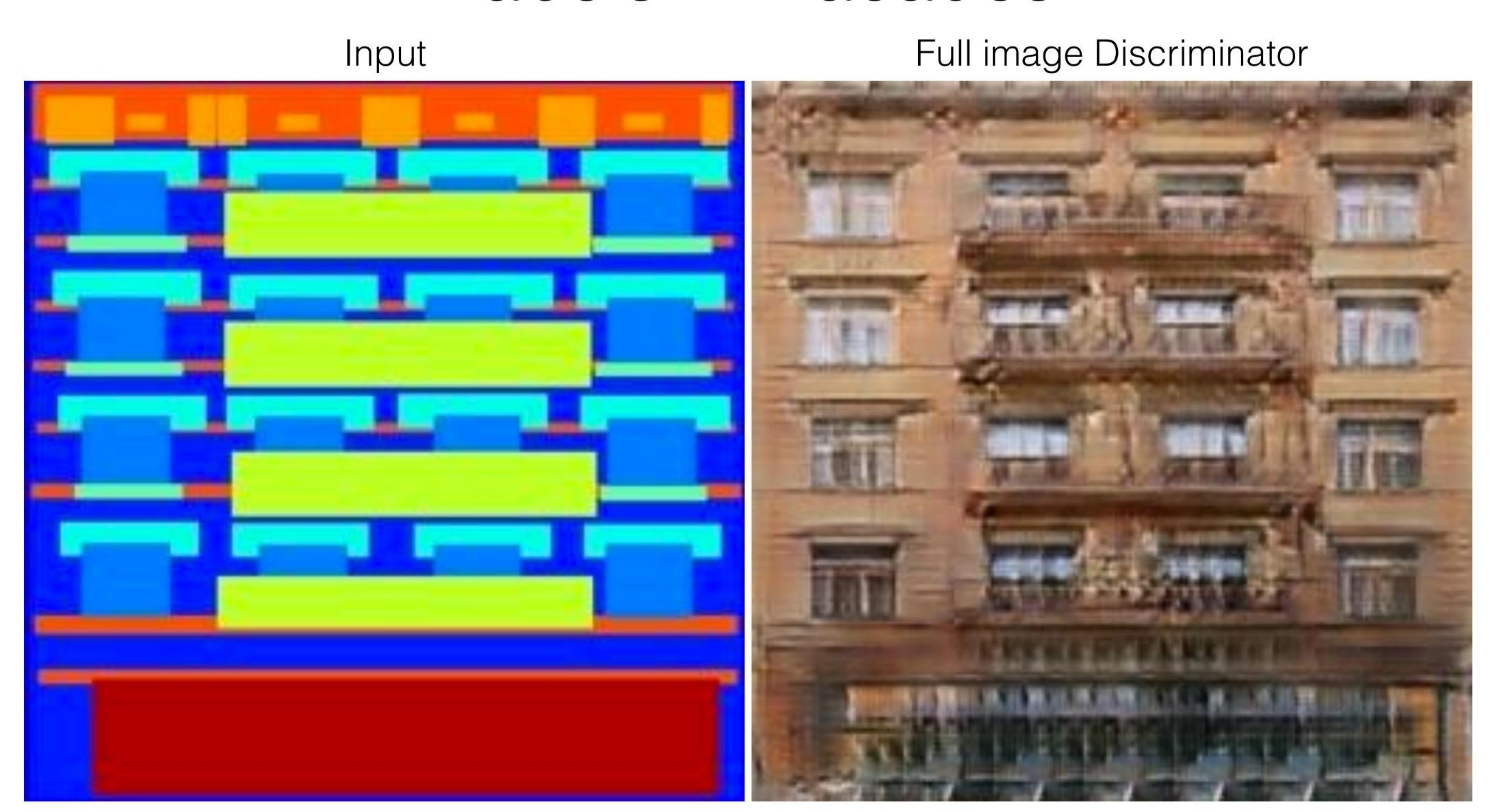
[Shrivastava et al. 2017]

[Isola et al. 2017]

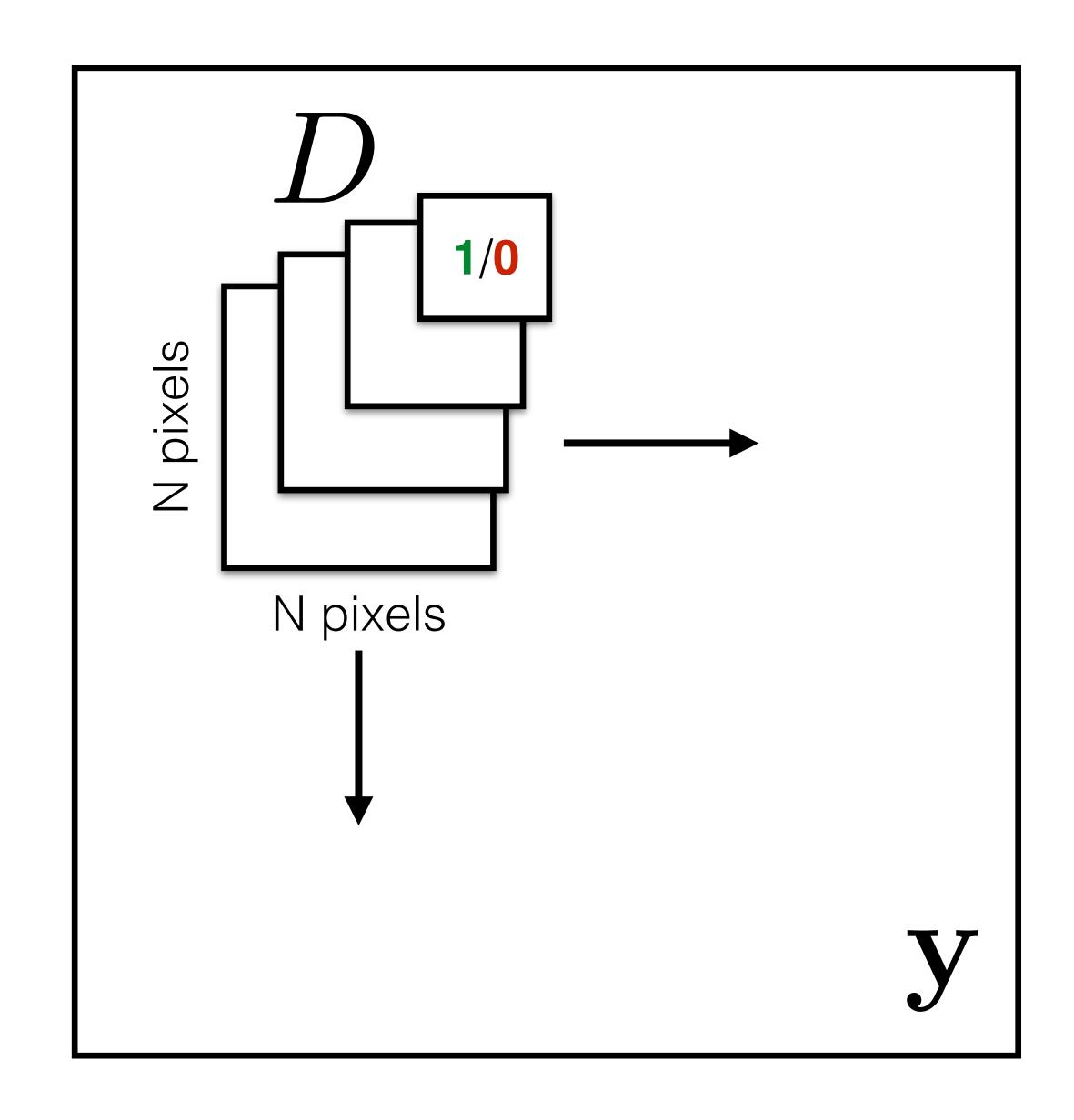








Patch Discriminator



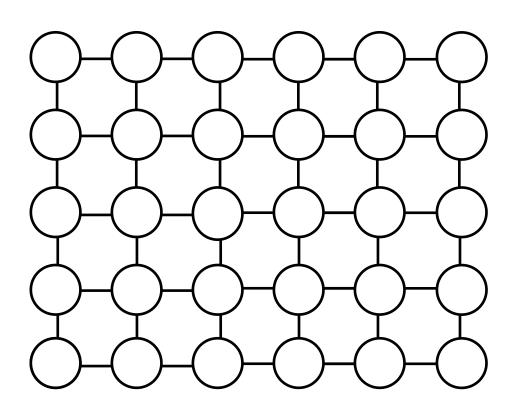
Rather than penalizing if output *image* looks fake, penalize if each overlapping *patch* in output looks fake

- Faster, fewer parameters
- More supervised observations
- Applies to arbitrarily large images

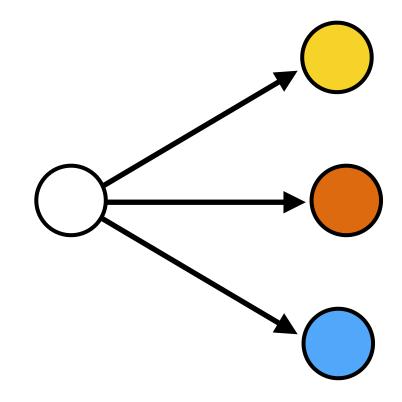
Properties of generative models

1. Model high-dimensional, structured output

-> Use a deep net, D, to model output!



2. Model uncertainty; a whole distribution of possible outputs



Three perspectives on GANs

1. Structured loss

- 2. Generative model
- 3. Domain-level supervision / mapping

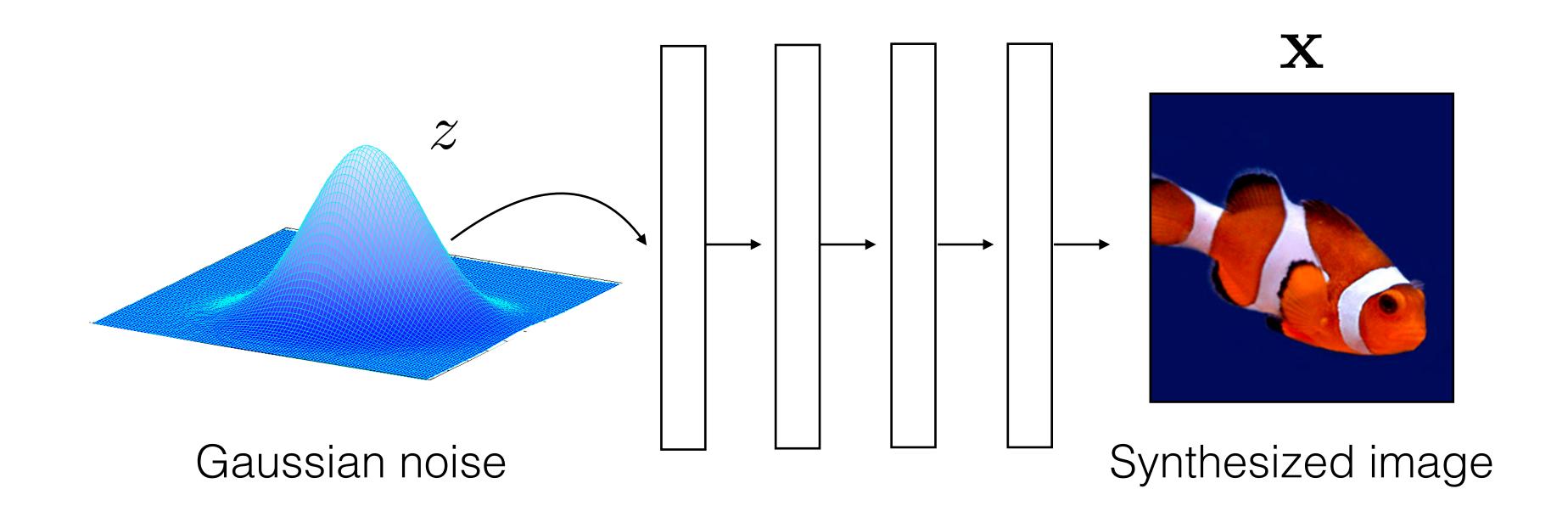
Three perspectives on GANs

1. Structured loss

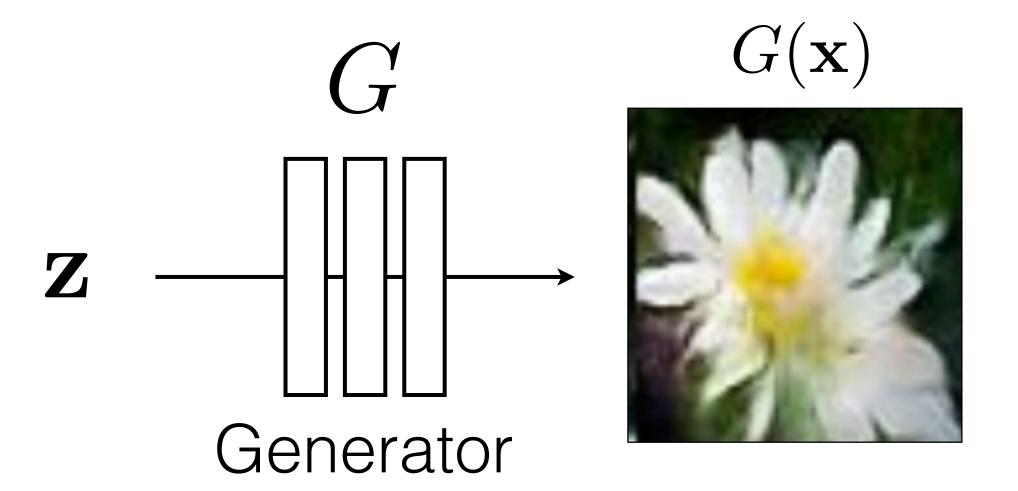
2. Generative model

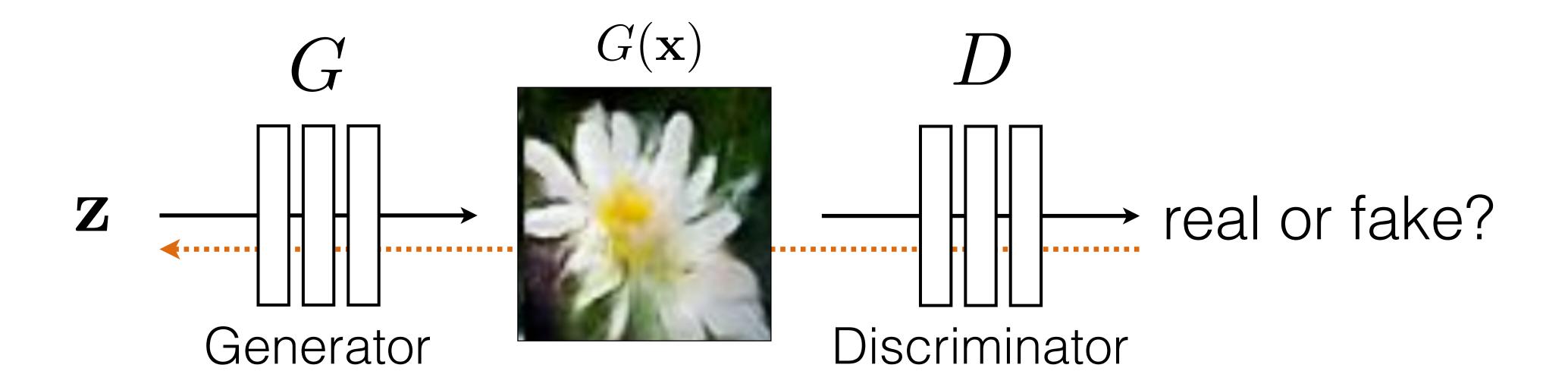
3. Domain-level supervision / mapping

Can we generate images from scratch?



 $z \sim \mathcal{N}(\vec{0}, 1)$



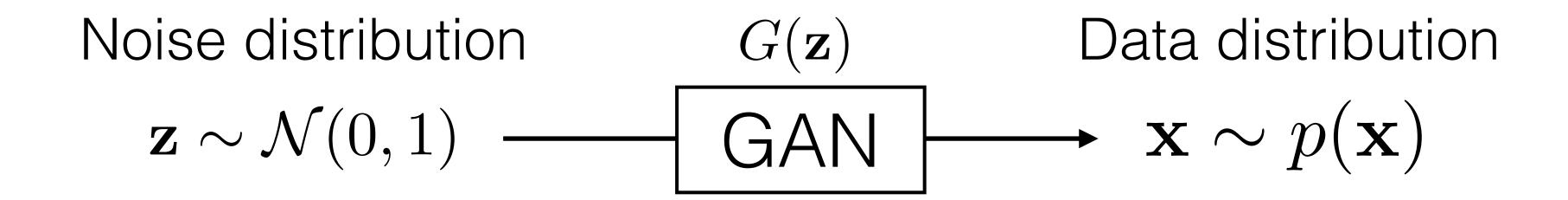


G tries to synthesize fake images that fool D

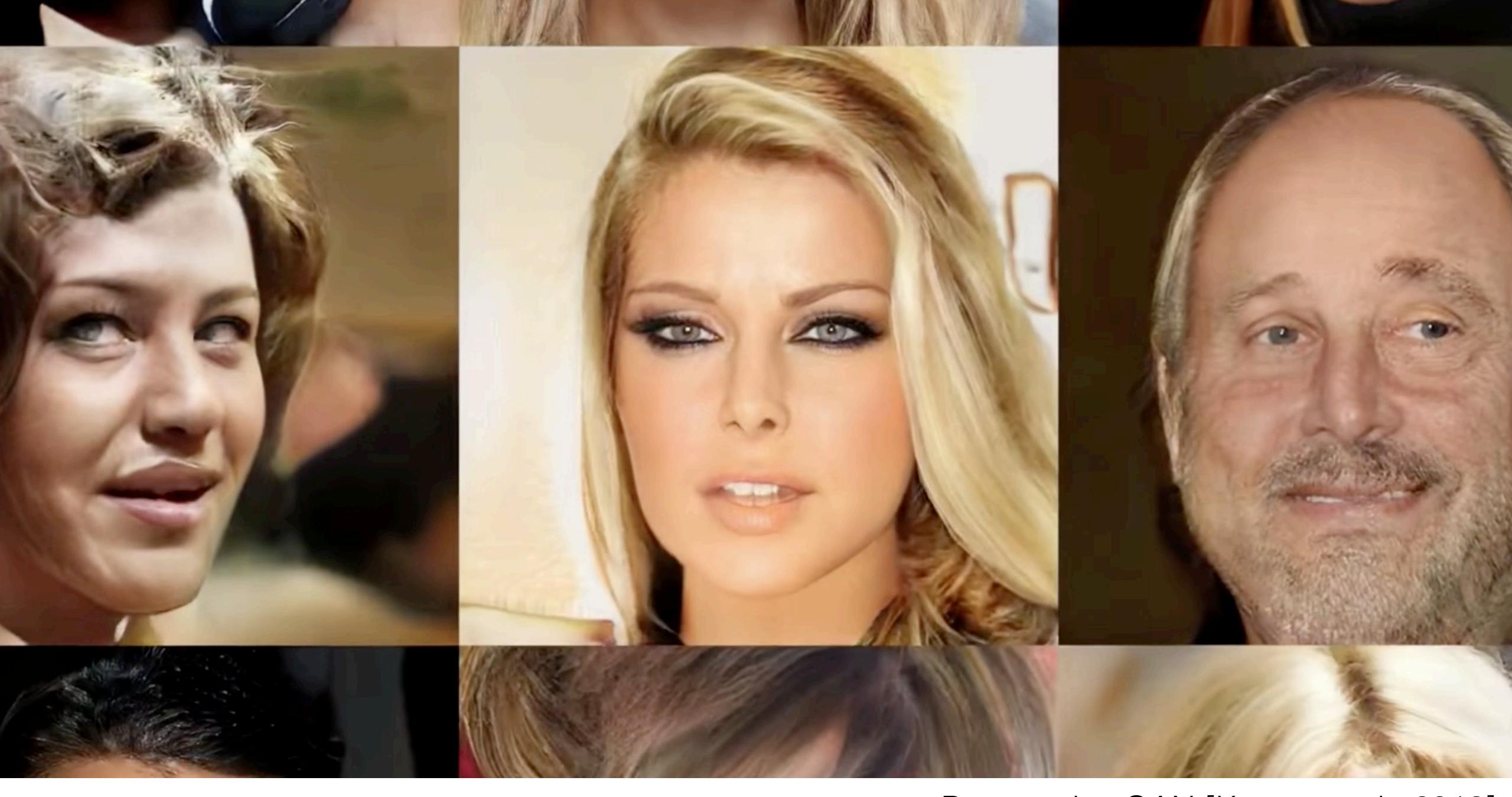
D tries to identify the fakes

GANs are implicit generative models

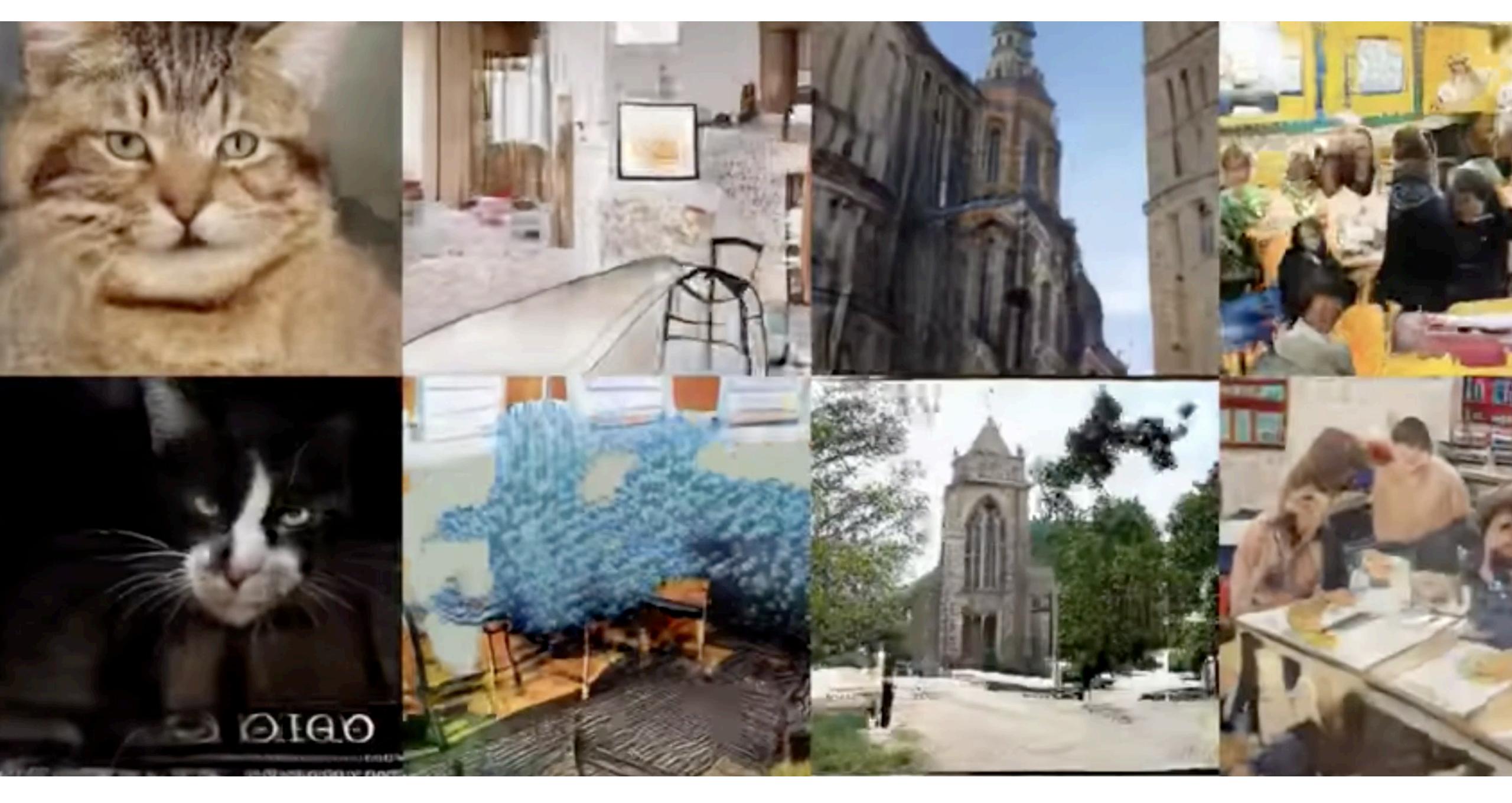
 $p(\mathbf{x})$ — "generative model" of the data \mathbf{x}



 $G(\mathbf{z}) \sim p(\mathbf{x})$ ——— Samples from a perfectly optimized GAN are samples from the data distribution



Progressive GAN [Karras et al., 2018]



Progressive GAN [Karras et al., 2018]

Proposition 1. For G fixed, the optimal discriminator D is

$$D_G^*(\boldsymbol{x}) = \frac{p_{data}(\boldsymbol{x})}{p_{data}(\boldsymbol{x}) + p_g(\boldsymbol{x})}$$

Proof

$$V(G, D) = \int_{\boldsymbol{x}} p_{\text{data}}(\boldsymbol{x}) \log(D(\boldsymbol{x})) d\boldsymbol{x} + \int_{z} p_{\boldsymbol{z}}(\boldsymbol{z}) \log(1 - D(g(\boldsymbol{z}))) d\boldsymbol{z}$$
$$= \int_{\boldsymbol{x}} p_{\text{data}}(\boldsymbol{x}) \log(D(\boldsymbol{x})) + p_{g}(\boldsymbol{x}) \log(1 - D(\boldsymbol{x})) d\boldsymbol{x}$$

For any $(a,b) \in \mathbb{R}^2 \setminus \{0,0\}$, the function $y \to a \log(y) + b \log(1-y)$ achieves its maximum in [0,1] at $\frac{a}{a+b}$. The discriminator does not need to be defined outside of $Supp(p_{\text{data}}) \cup Supp(p_g)$, concluding the proof.

 $p_g = p_{data}$ is the unique global minimizer of the GAN objective.

Proof

$$C(G) = \max_{D} V(G, D)$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_G^*(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}} [\log (1 - D_G^*(G(\boldsymbol{z})))]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_G^*(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_g} [\log (1 - D_G^*(\boldsymbol{x}))]$$

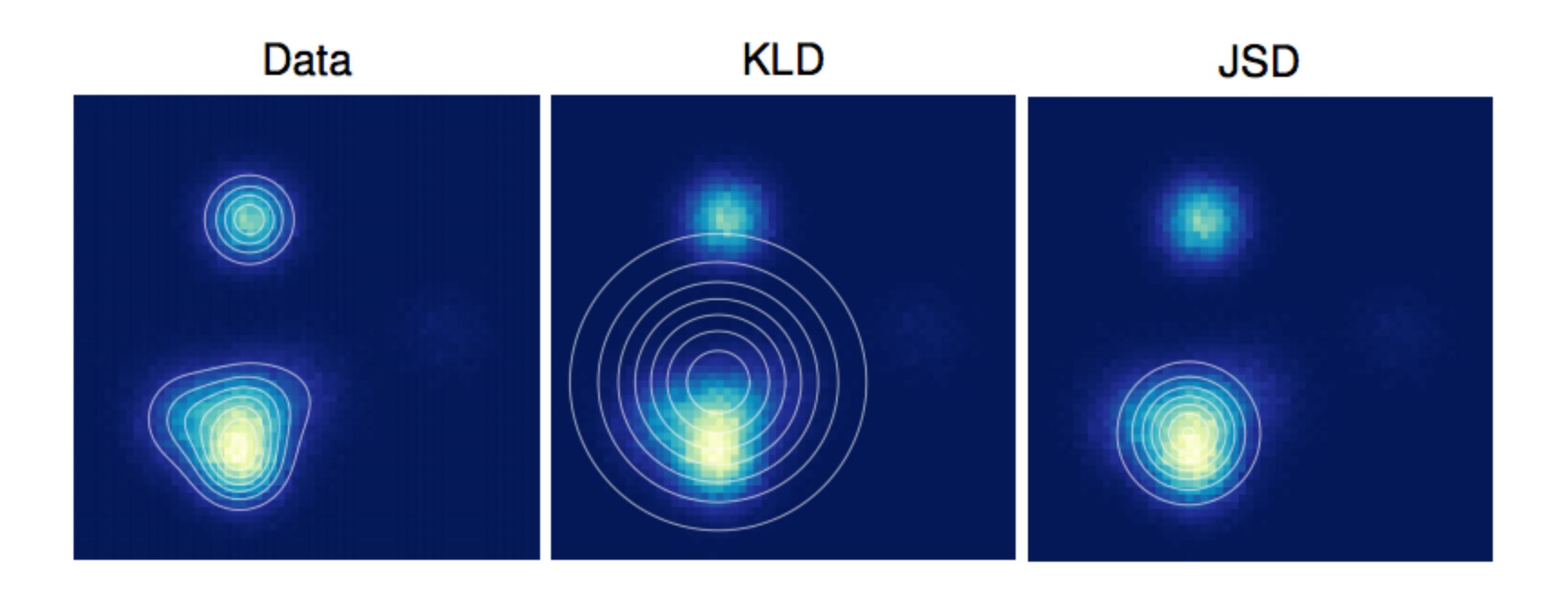
$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\boldsymbol{x})}{P_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})} \right] + \mathbb{E}_{\boldsymbol{x} \sim p_g} \left[\log \frac{p_g(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})} \right]$$

$$C(G) = -\log(4) + KL\left(p_{\text{data}} \left\| \frac{p_{\text{data}} + p_g}{2} \right) + KL\left(p_g \left\| \frac{p_{\text{data}} + p_g}{2} \right) \right)$$

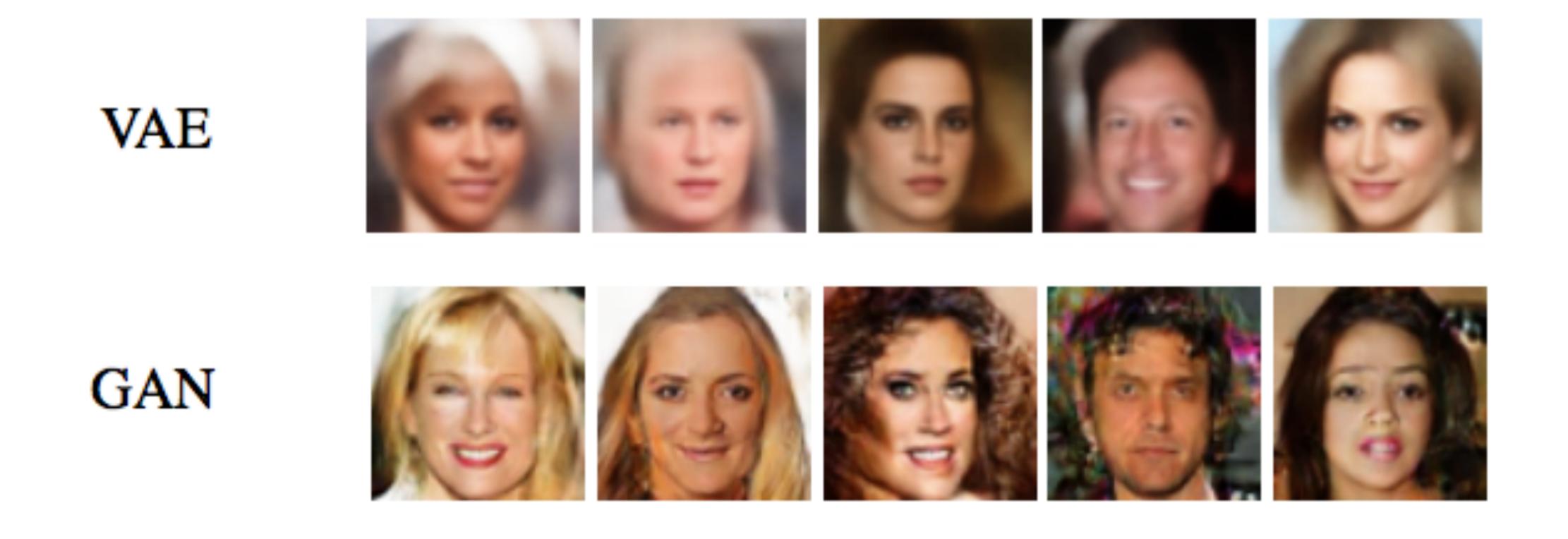
$$C(G) = -\log(4) + 2 \cdot JSD \left(p_{\text{data}} \| p_g \right)$$

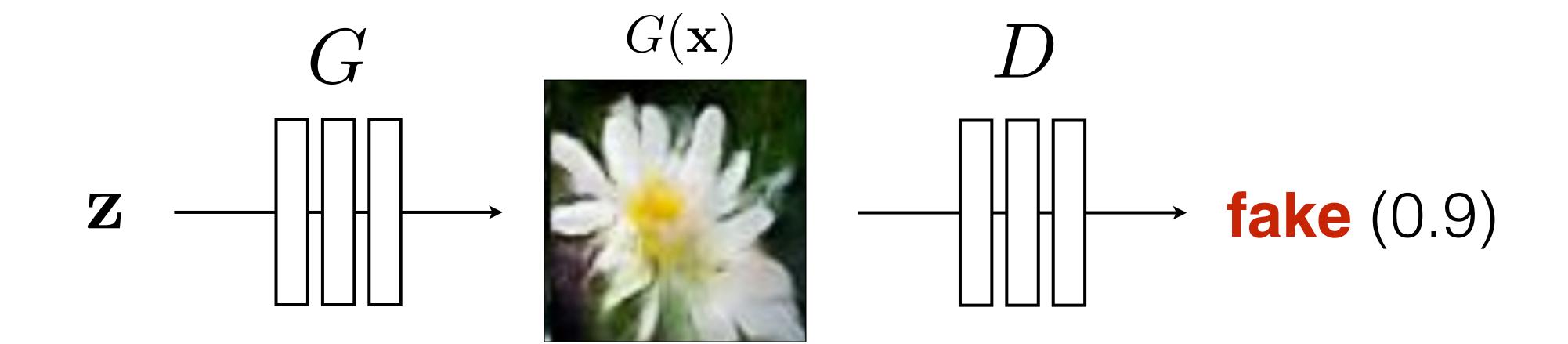
$$\geq 0, \quad 0 \iff p_g = p_{data} \quad \Box$$

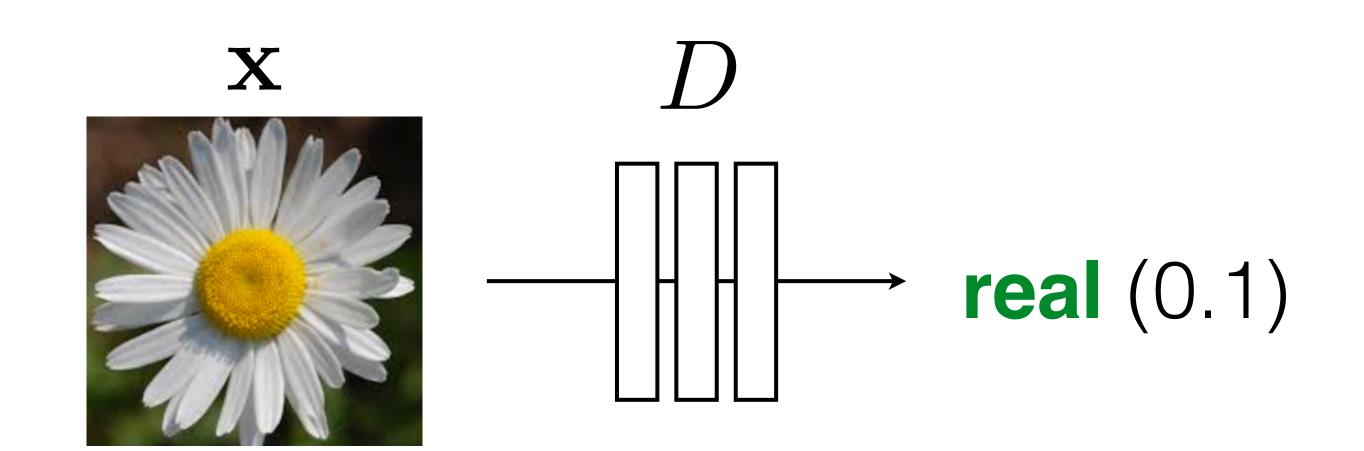
Behavior under model misspecification



Mode covering versus mode seeking

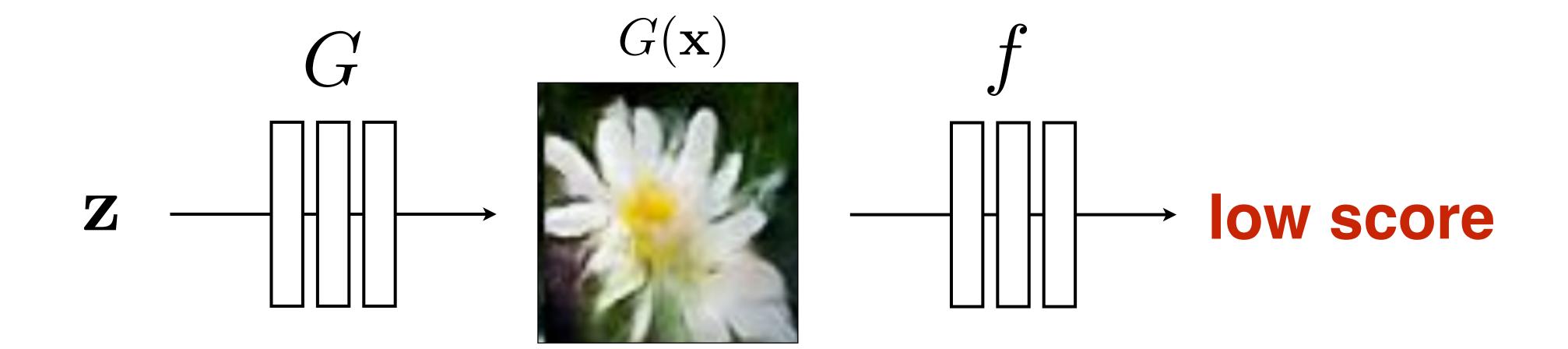


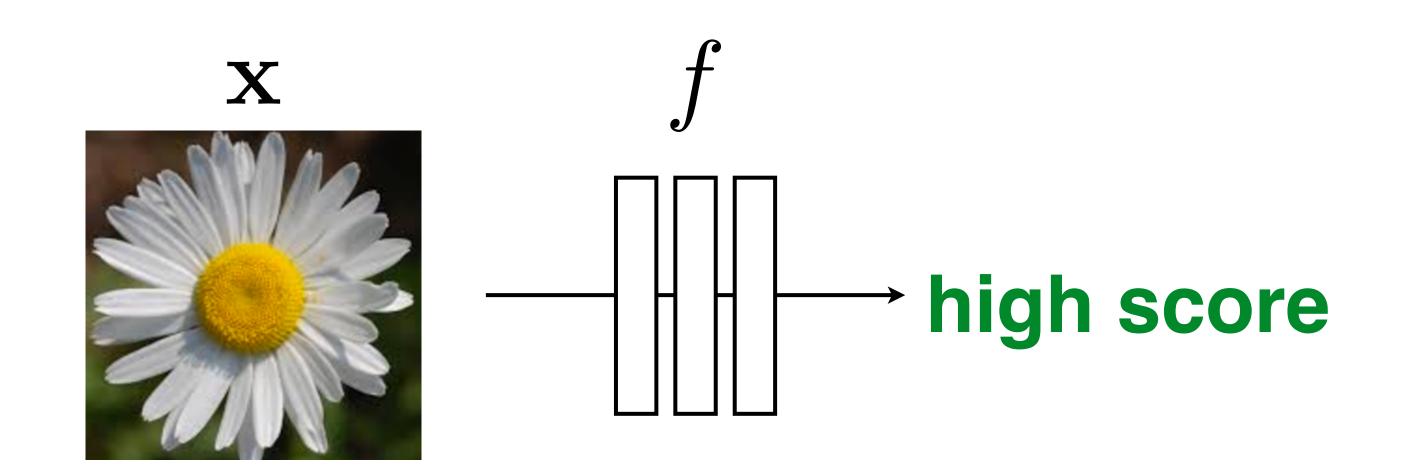




$$\underset{D}{\operatorname{arg\,max}} \, \mathbb{E}_{\mathbf{z},\mathbf{x}} [\, \log D(G(\mathbf{z})) \, + \, \log (1 - D(\mathbf{x})) \,]$$

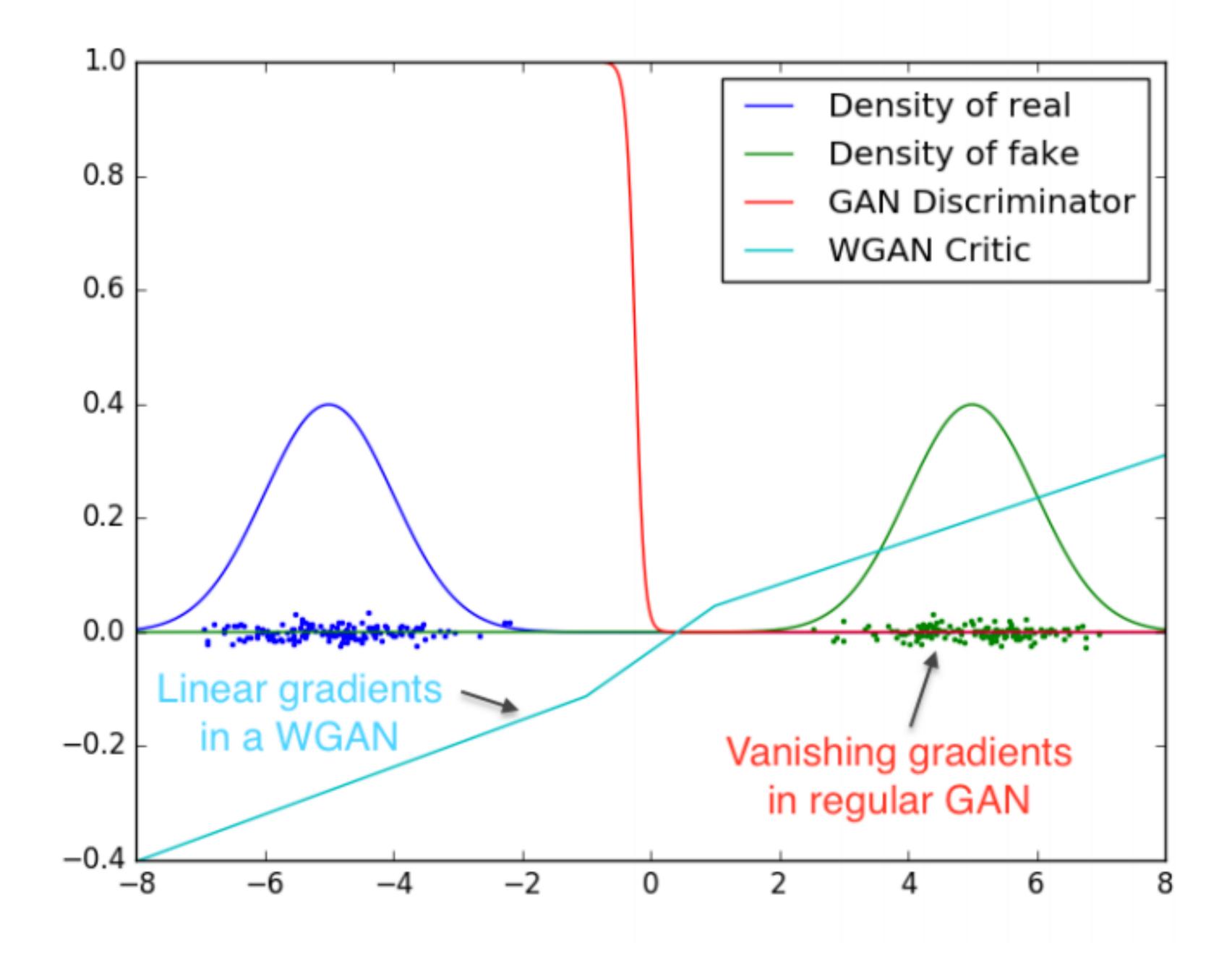
[Goodfellow et al., 2014]



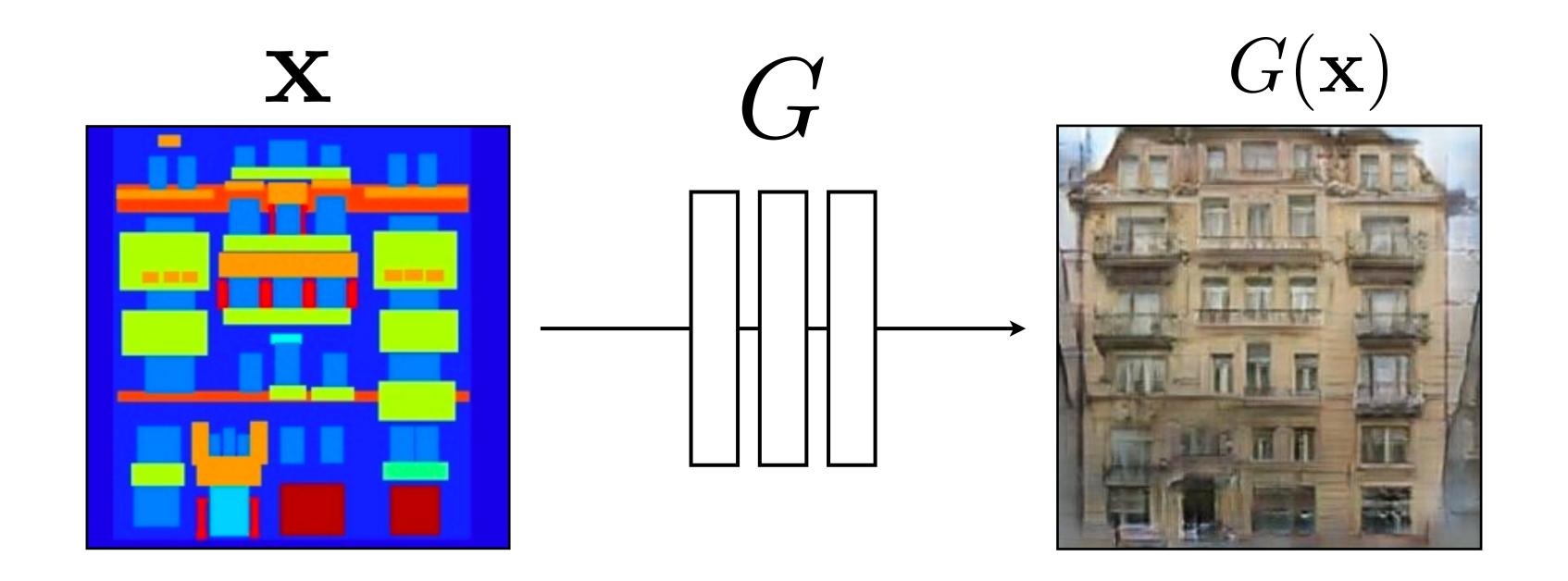


$$\operatorname{arg\,max}_{f} \mathbb{E}_{\mathbf{z},\mathbf{x}}[-f(G(\mathbf{z})) + f(\mathbf{x})]$$

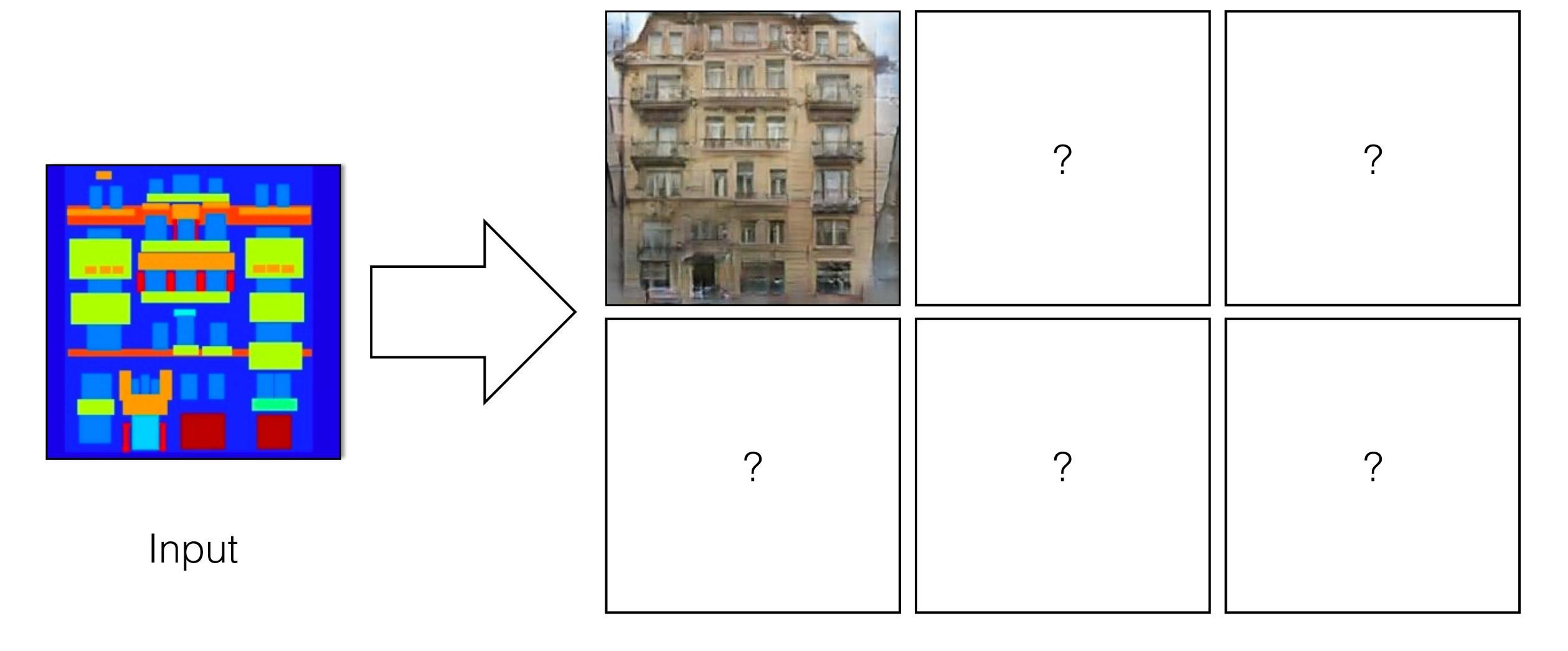
EBGAN, WGAN, LSGAN, etc



Modeling multiple possible outputs

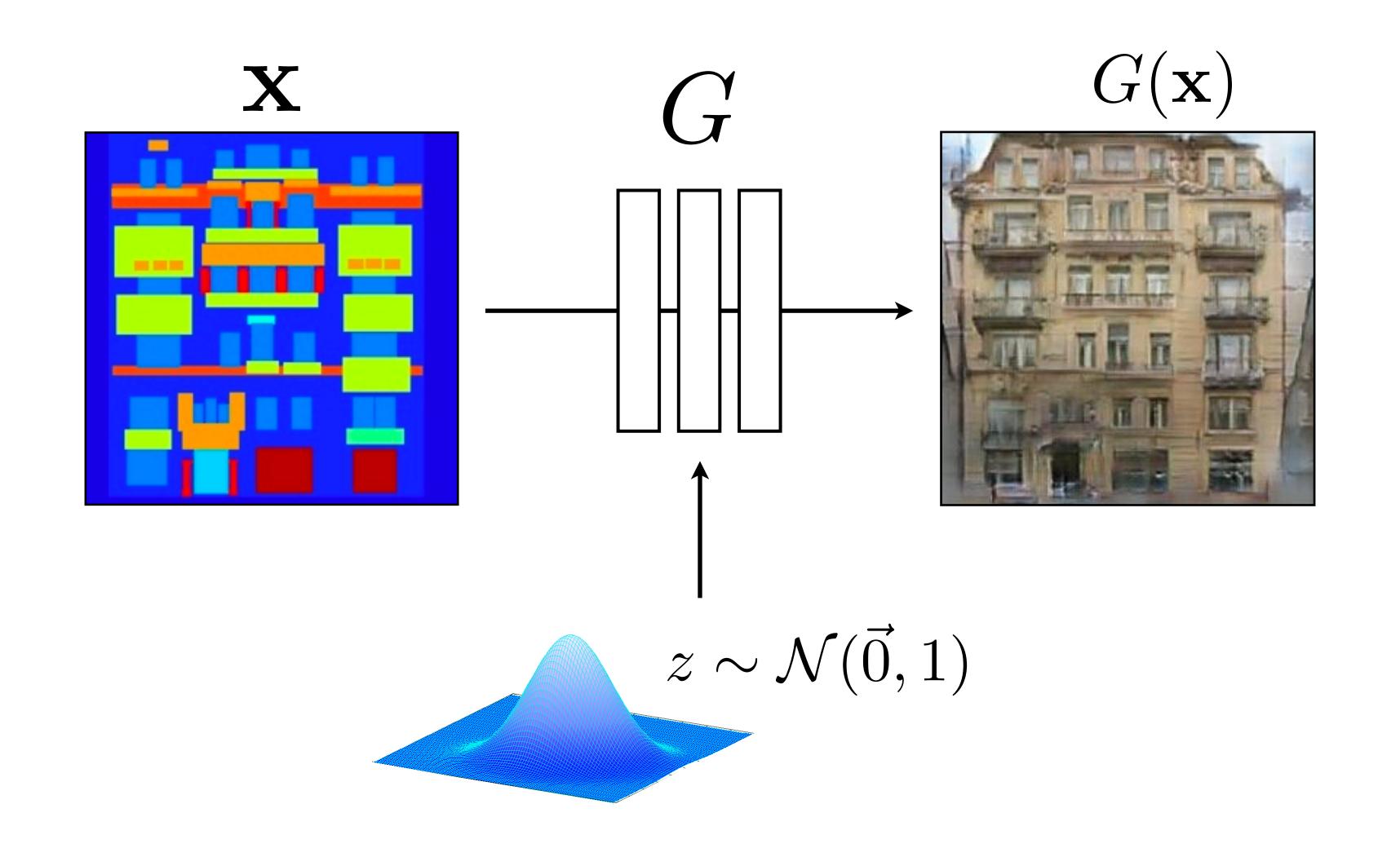


Modeling multiple possible outputs



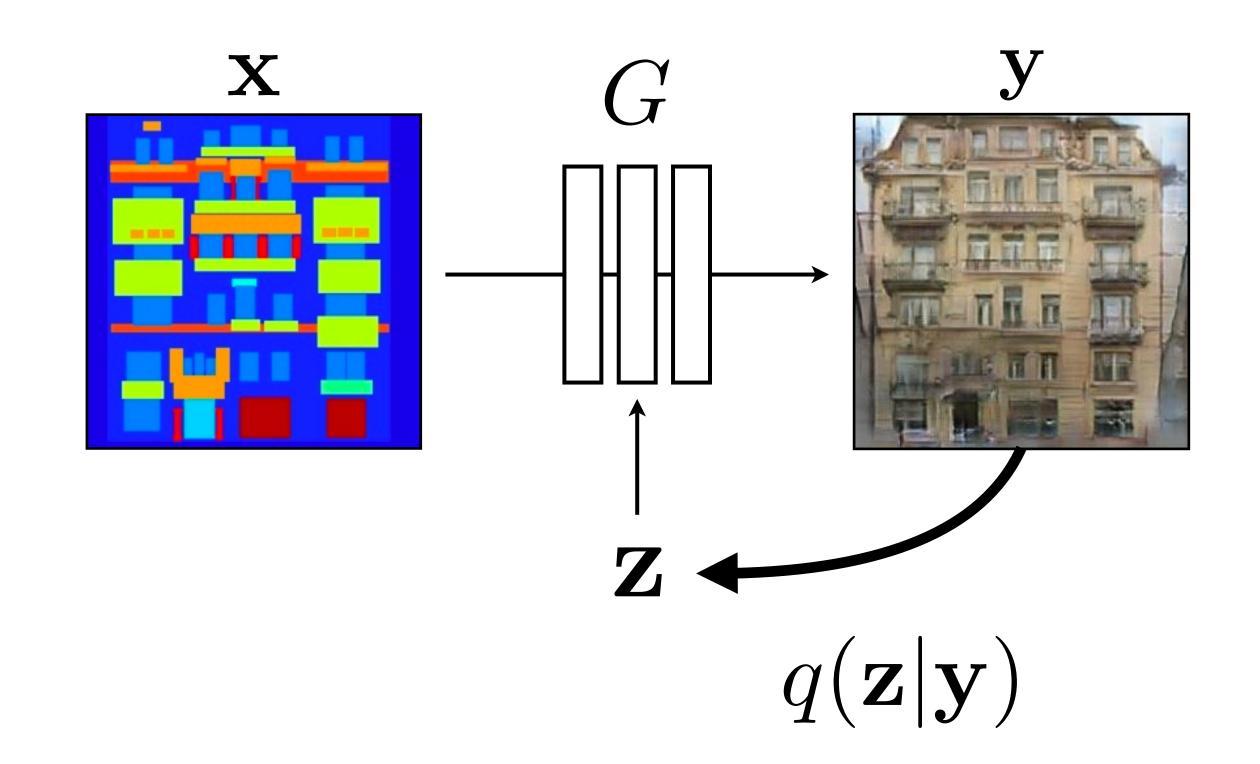
Possible outputs

Modeling multiple possible outputs

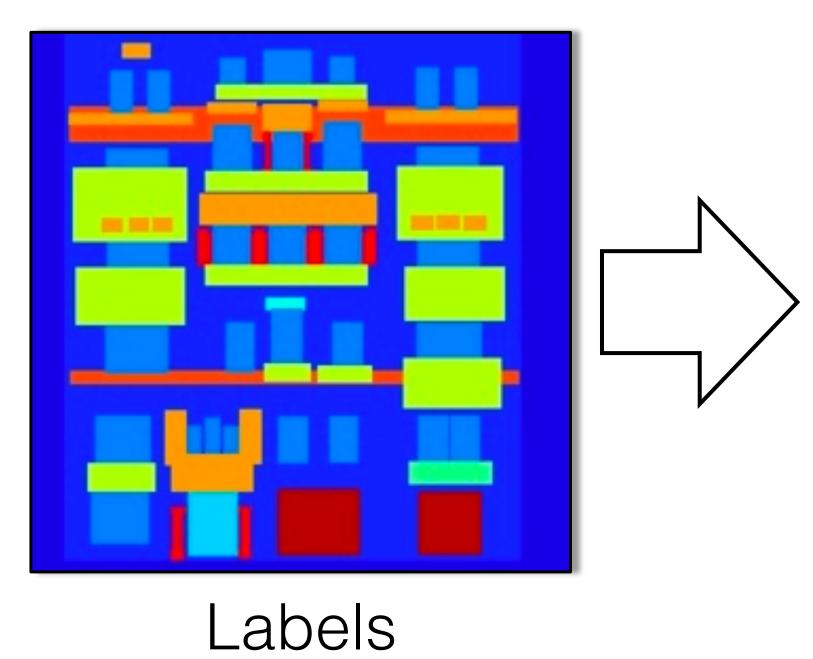


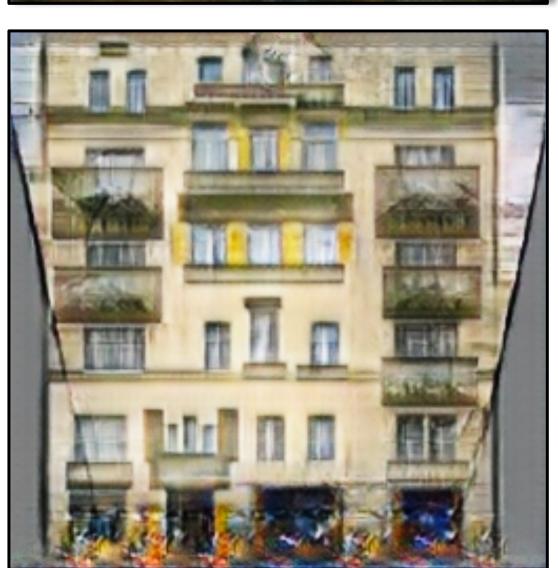
InfoGAN [Chen et al. 2016]

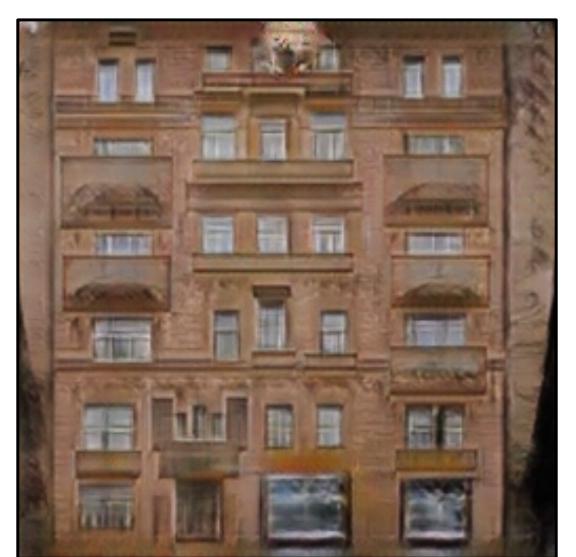
BiCycleGAN [Zhu et al., NIPS 2017]

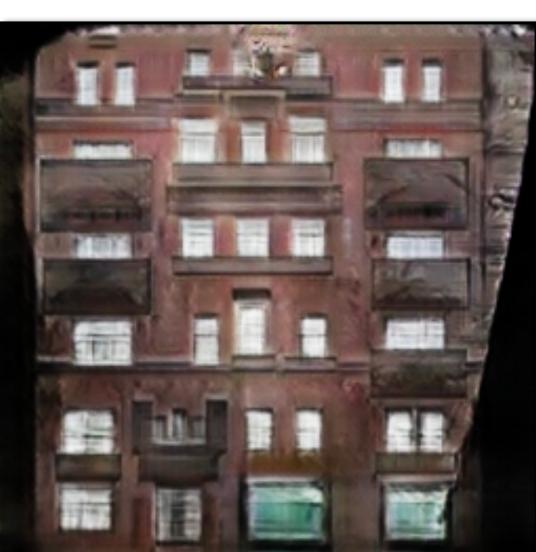


Encourages z to relay information about the target.





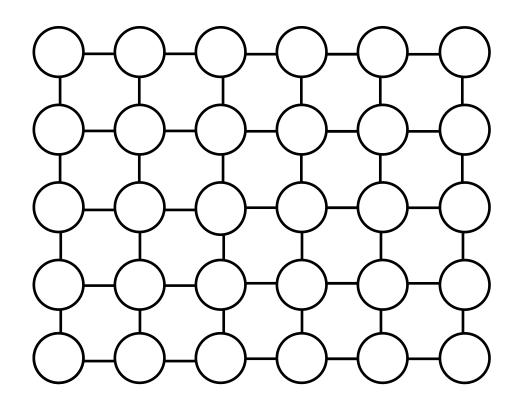




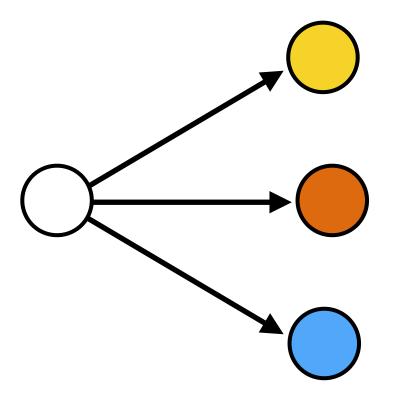
Randomly generated facades

Properties of generative models

- 1. Model high-dimensional, structured output
 - -> Use a deep net, D, to model output!



- 2. Model uncertainty; a whole distribution of possible outputs
 - —> Generator is stochastic, learns to match data distribution



Three perspectives on GANs

1. Structured loss

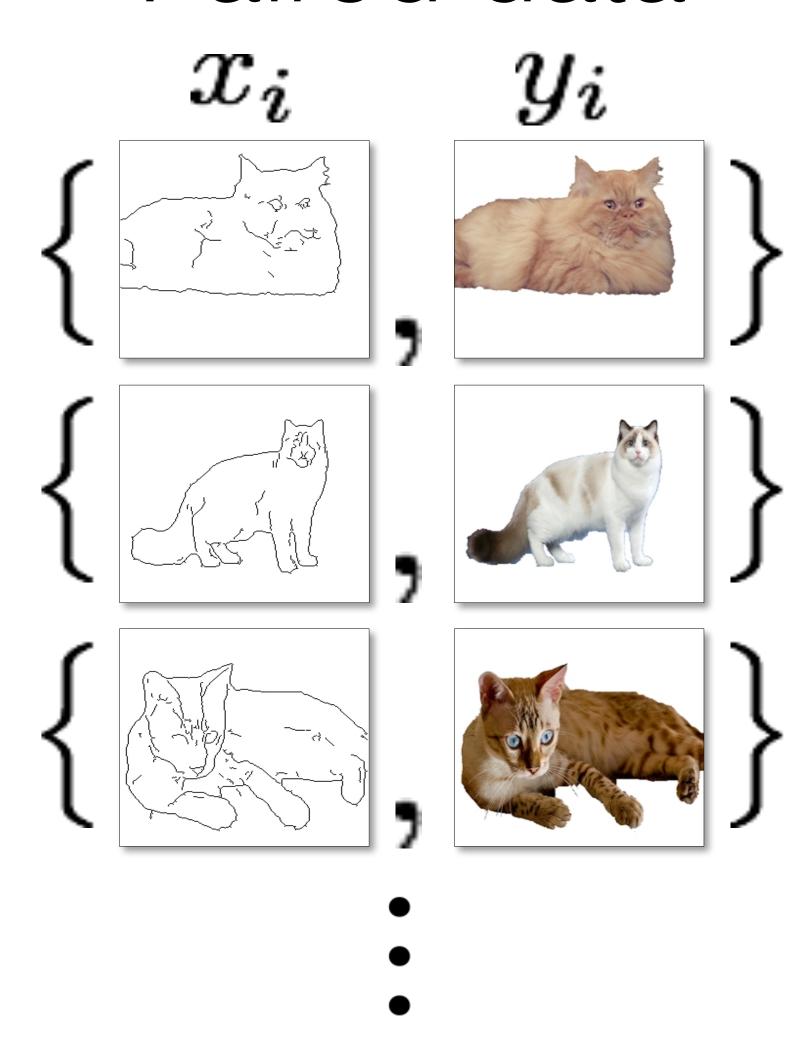
2. Generative model

3. Domain-level supervision / mapping

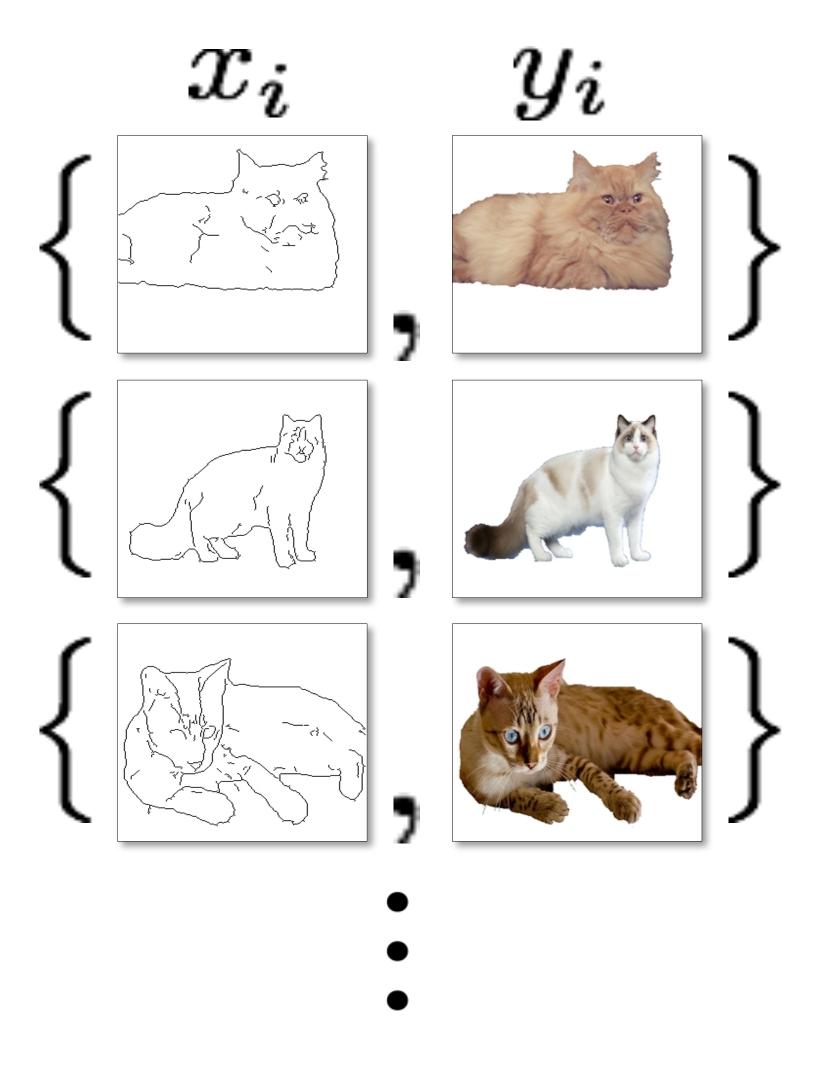
Three perspectives on GANs

- 1. Structured loss
- 2. Generative model
- 3. Domain-level supervision / mapping

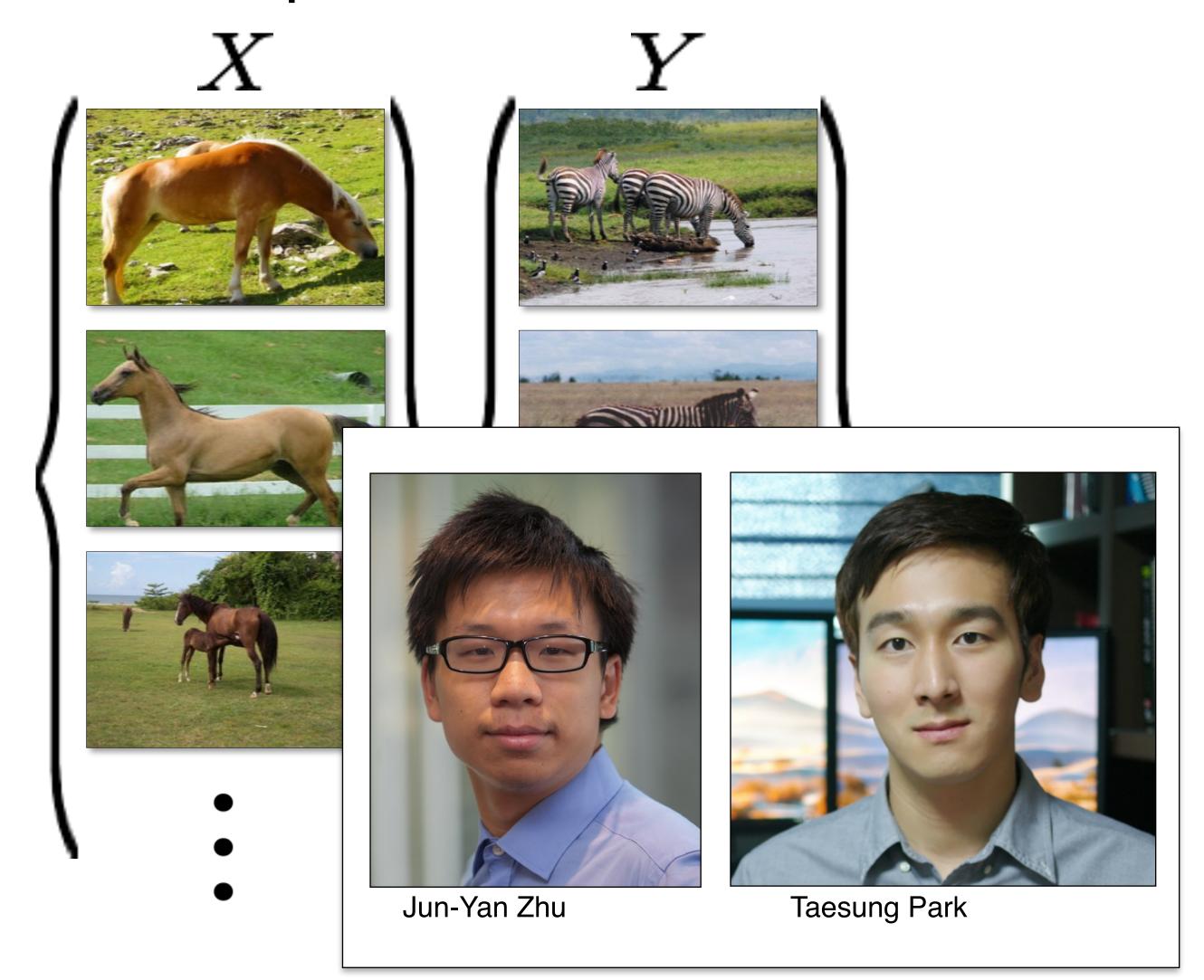
Paired data

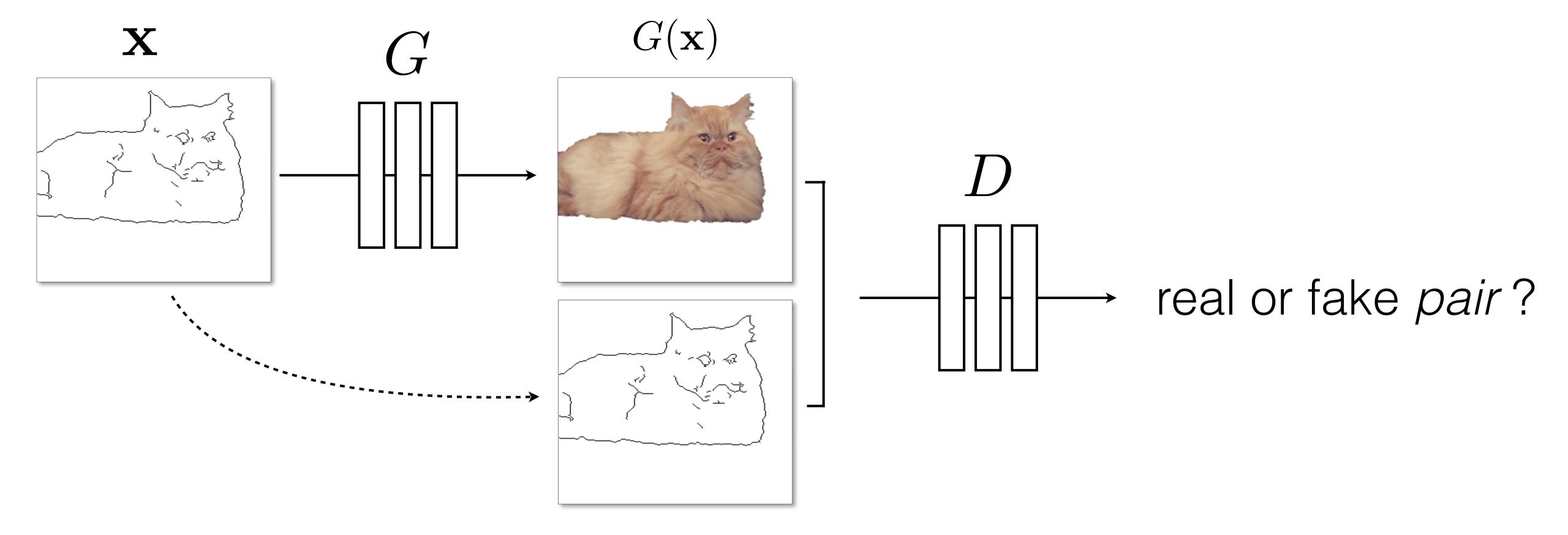


Paired data

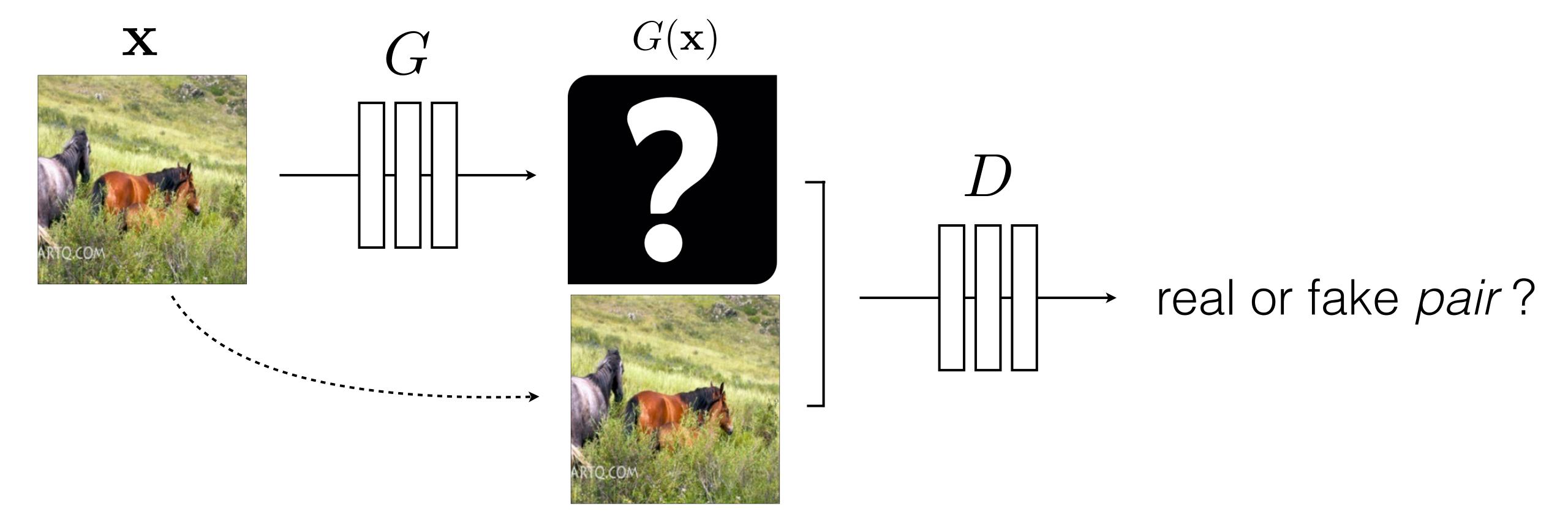


Unpaired data



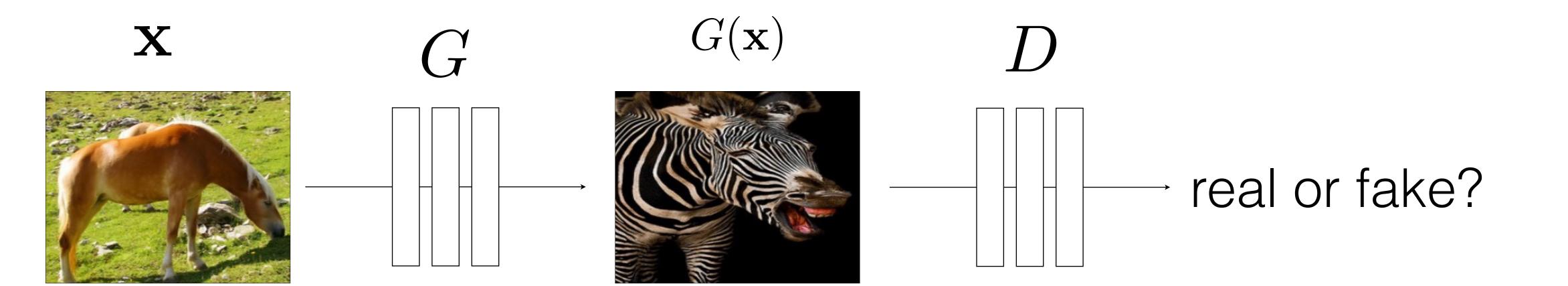


$$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(\mathbf{x}, G(\mathbf{x})) + \log(1 - D(\mathbf{x}, \mathbf{y}))]$$



$$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(\mathbf{x}, G(\mathbf{x})) + \log(1 - D(\mathbf{x}, \mathbf{y}))]$$

No input-output pairs!



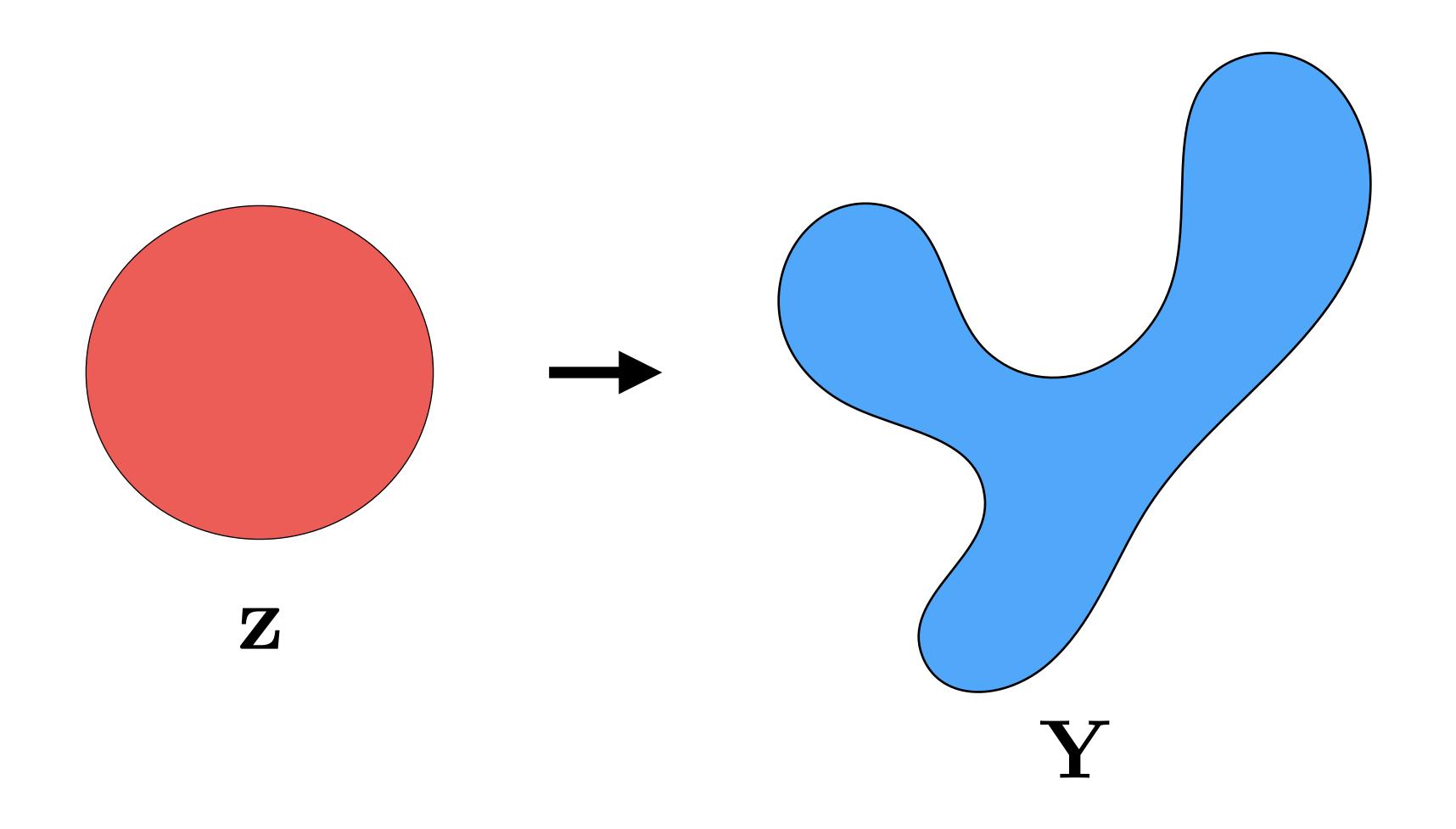
$$\operatorname{arg\,min\,max}_{G} \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y})) \right]$$

Usually loss functions check if output matches a target instance

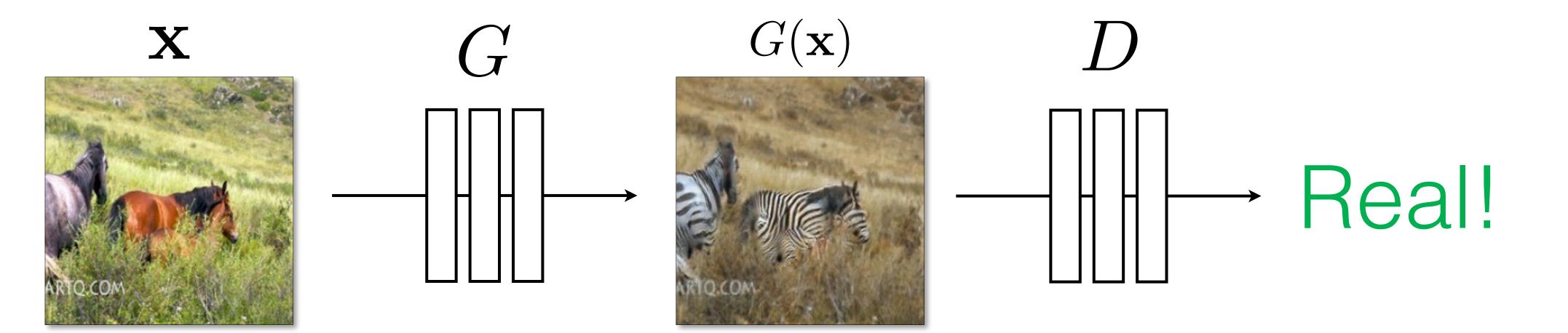
GAN loss checks if output is part of an admissible set

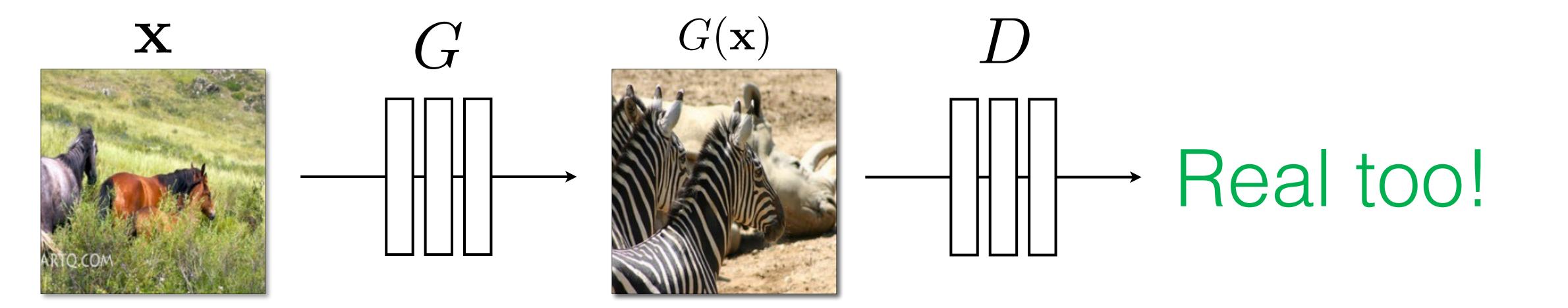
Gaussian

Target distribution



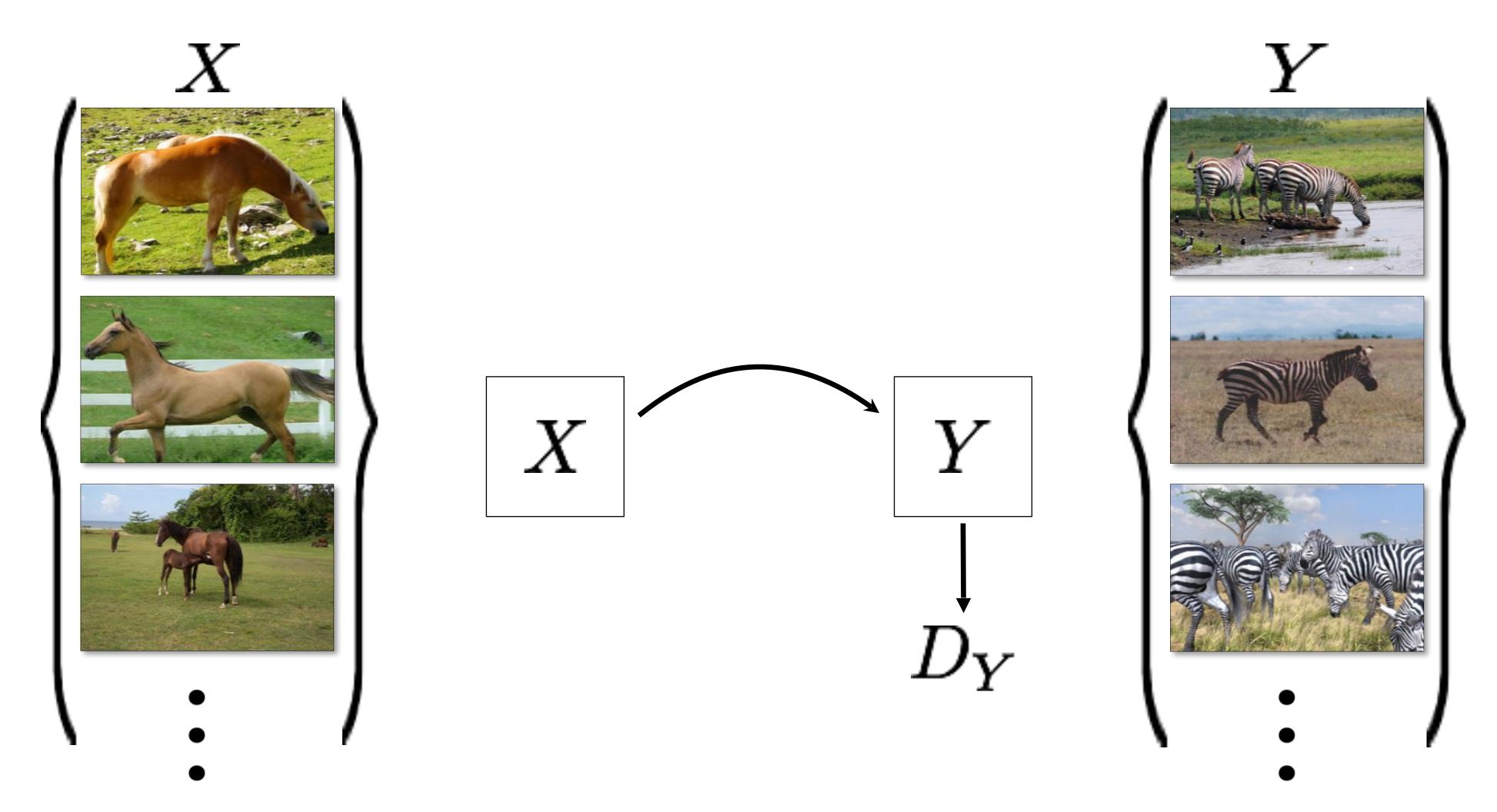
Horses Zebras





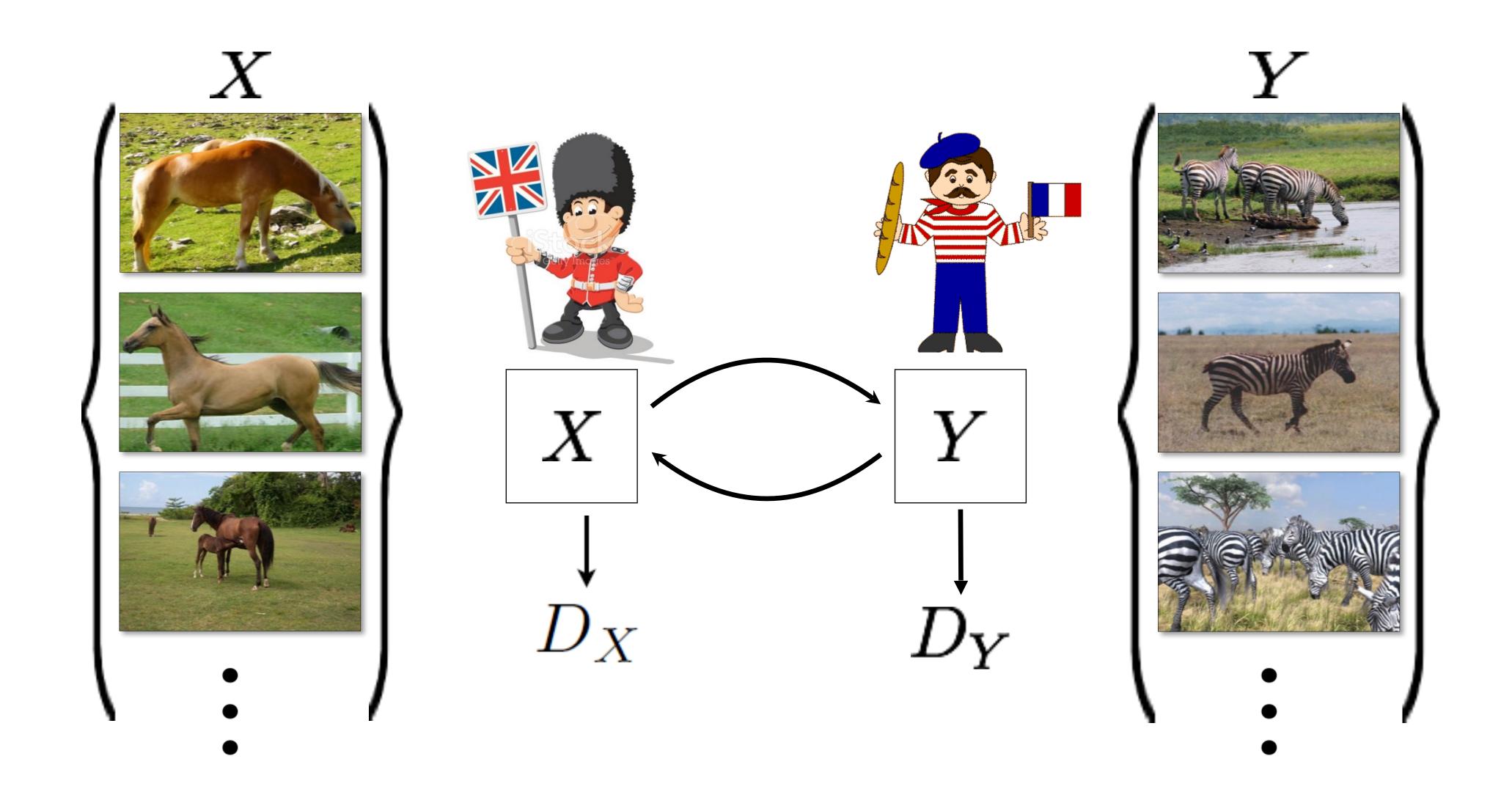
Nothing to force output to correspond to input

Cycle-Consistent Adversarial Networks

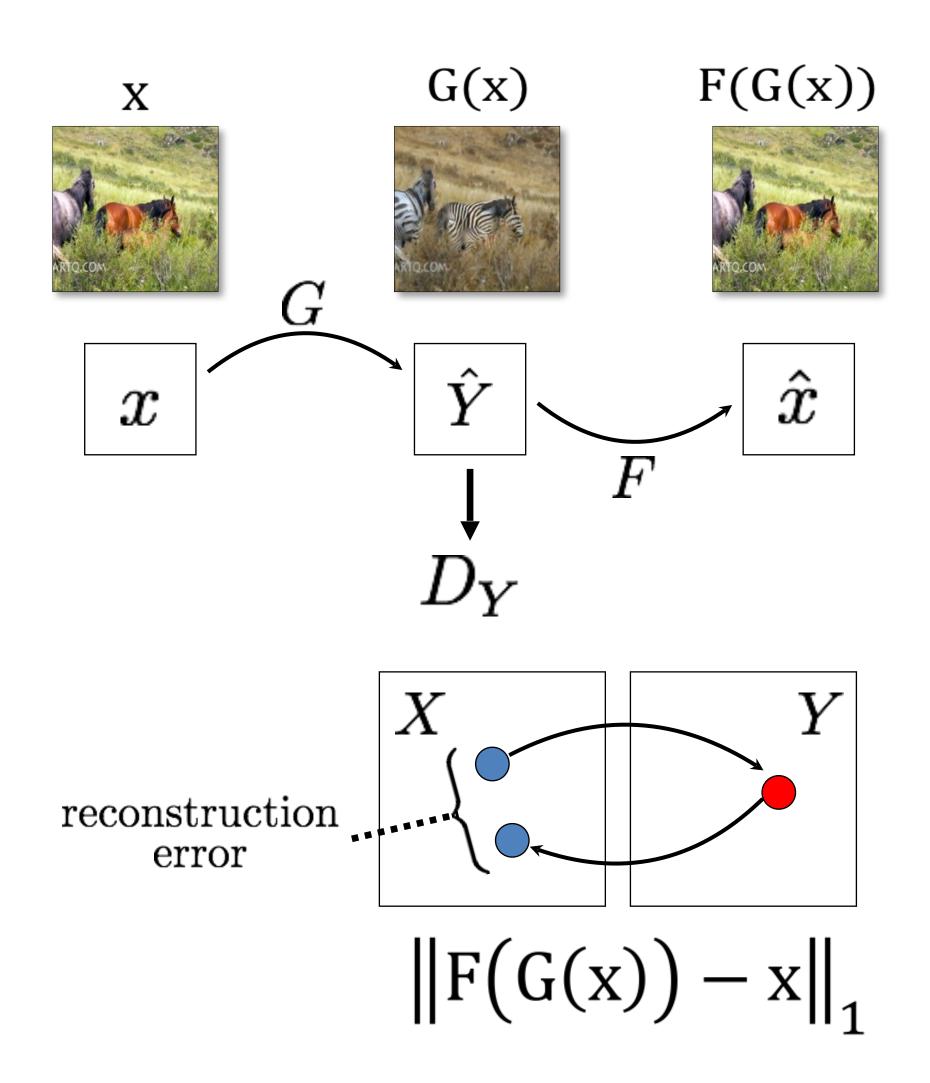


[Zhu et al. 2017], [Yi et al. 2017], [Kim et al. 2017]

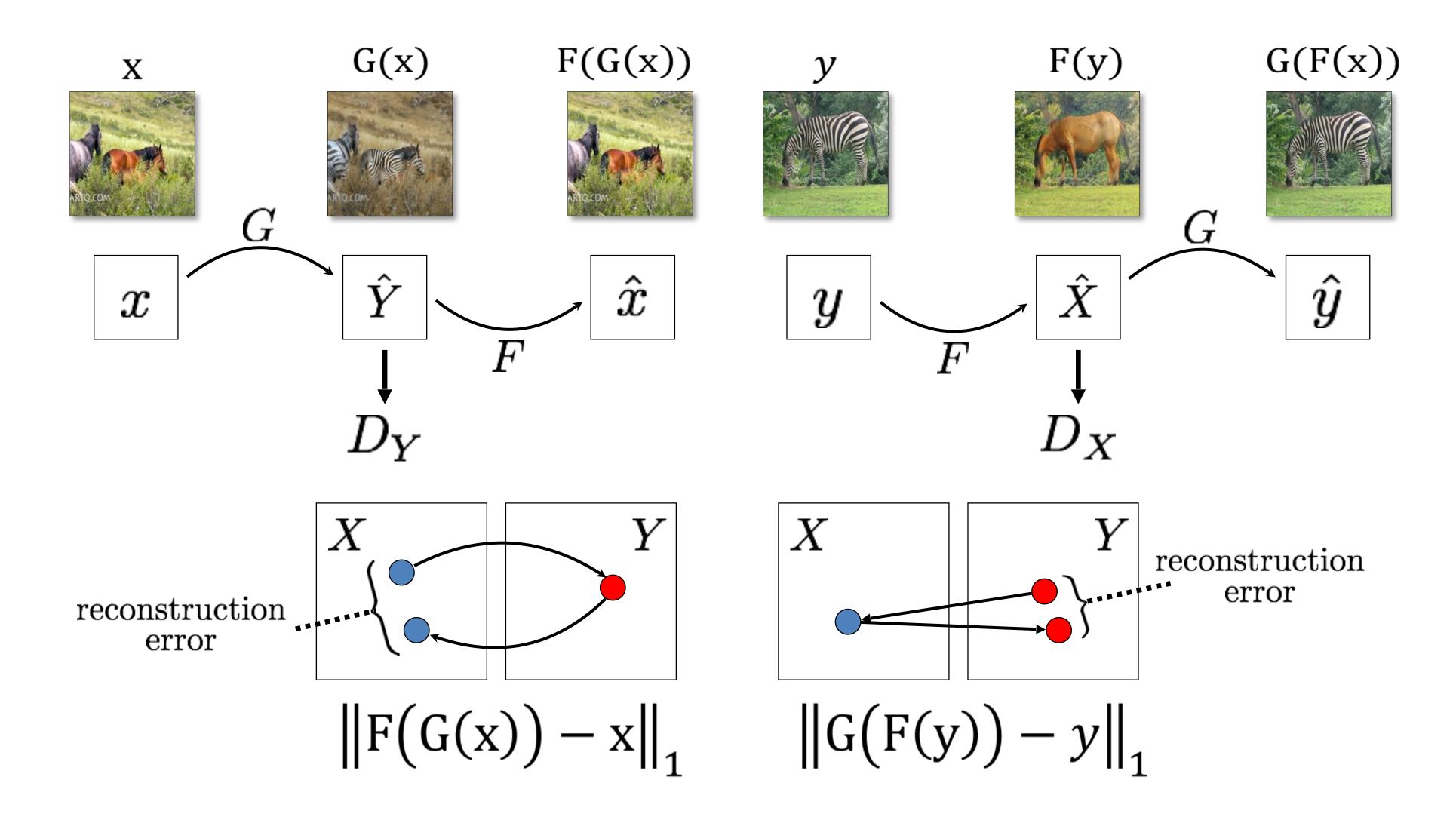
Cycle-Consistent Adversarial Networks

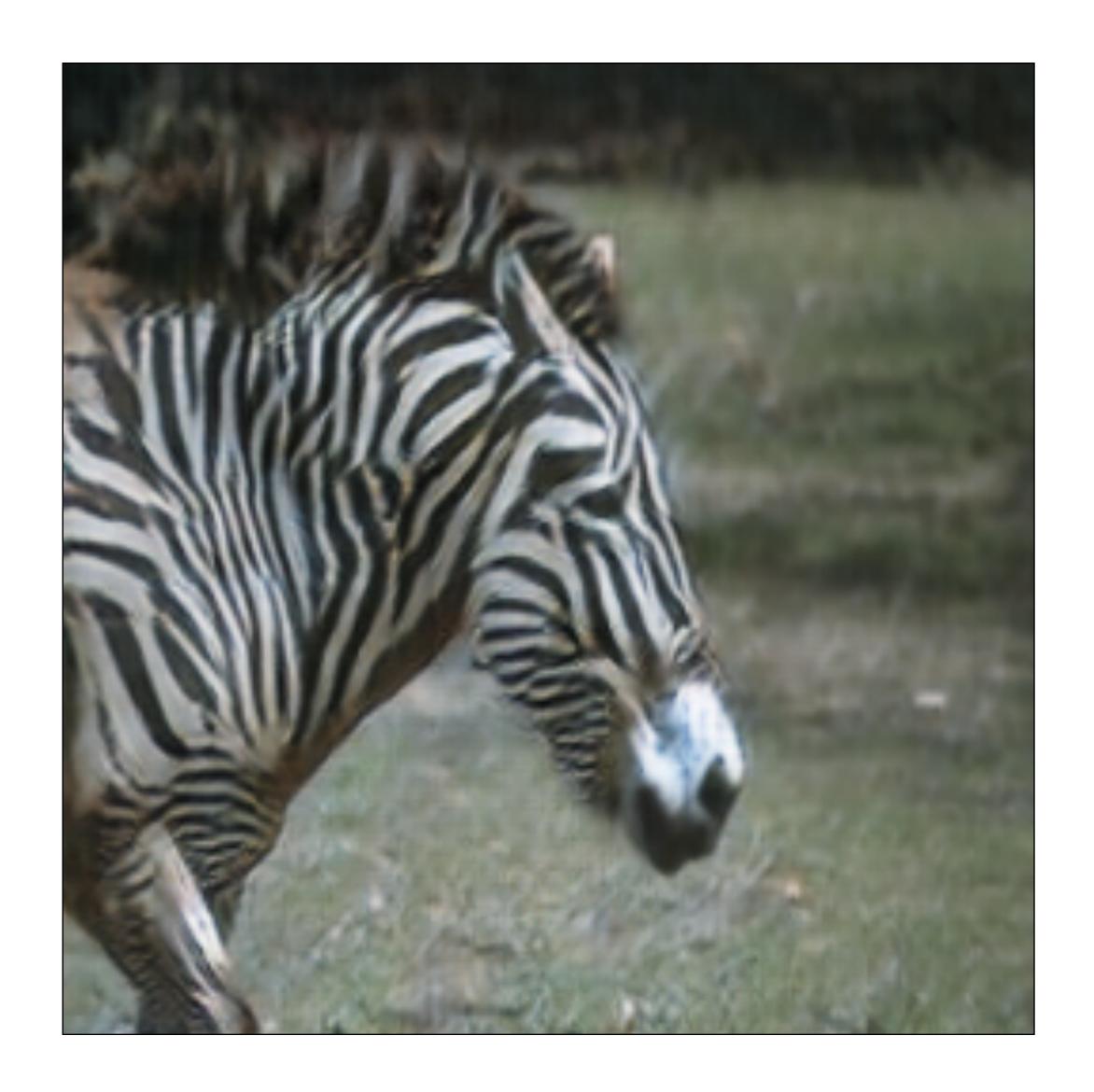


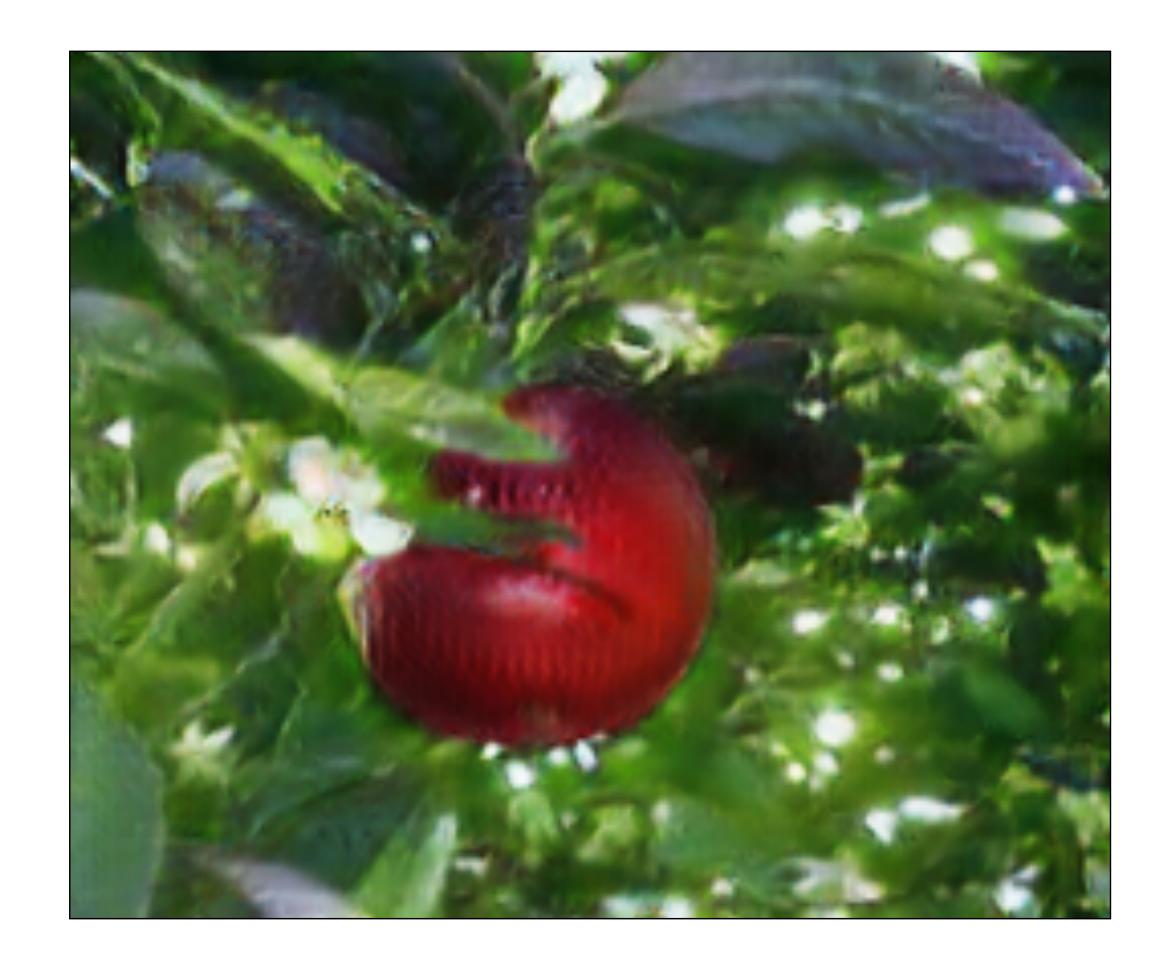
Cycle Consistency Loss



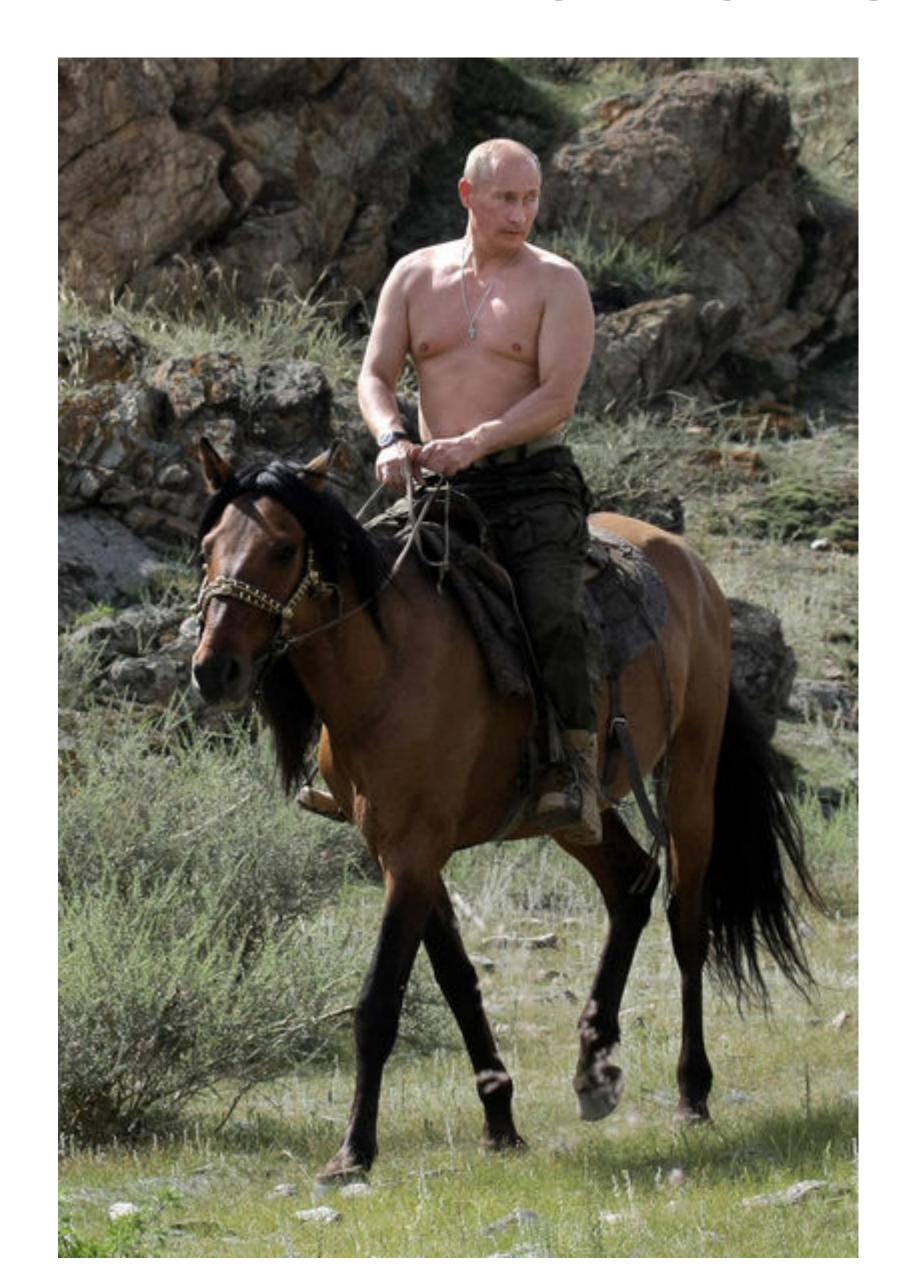
Cycle Consistency Loss



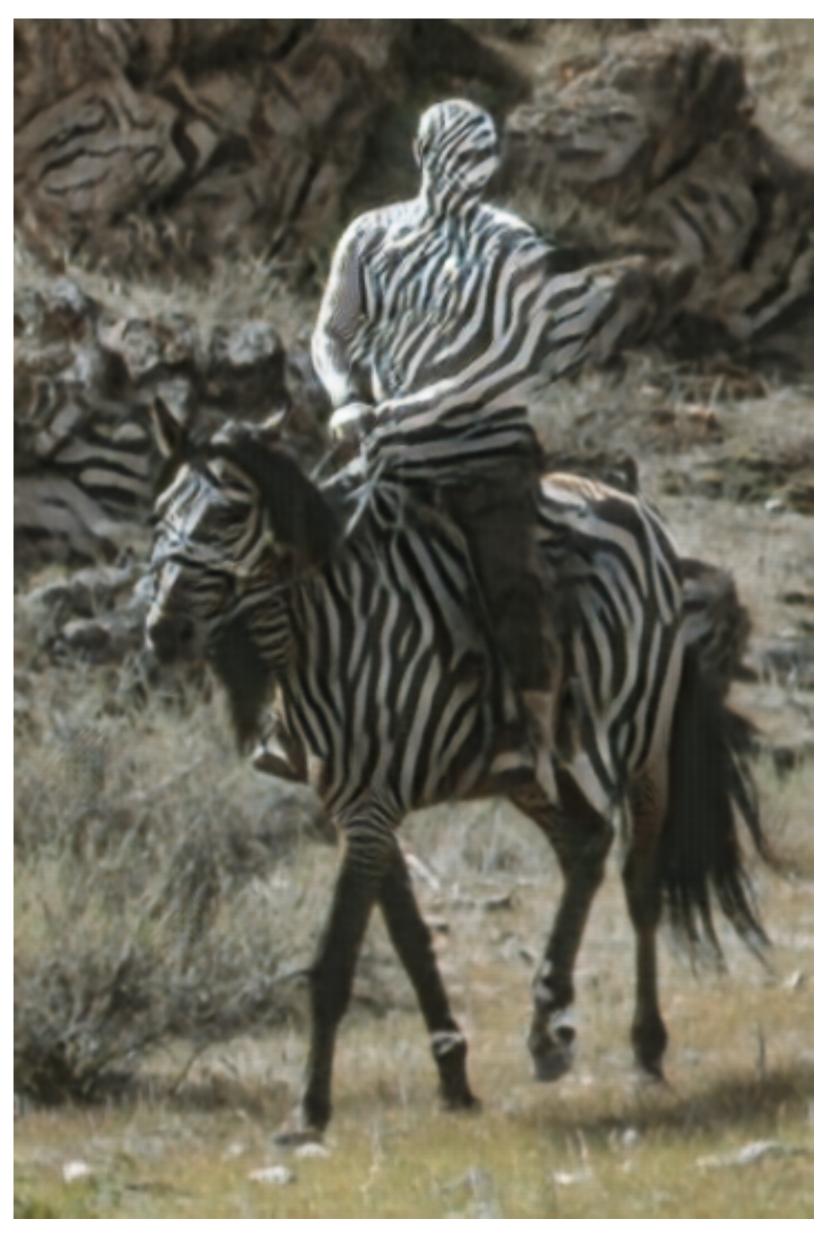




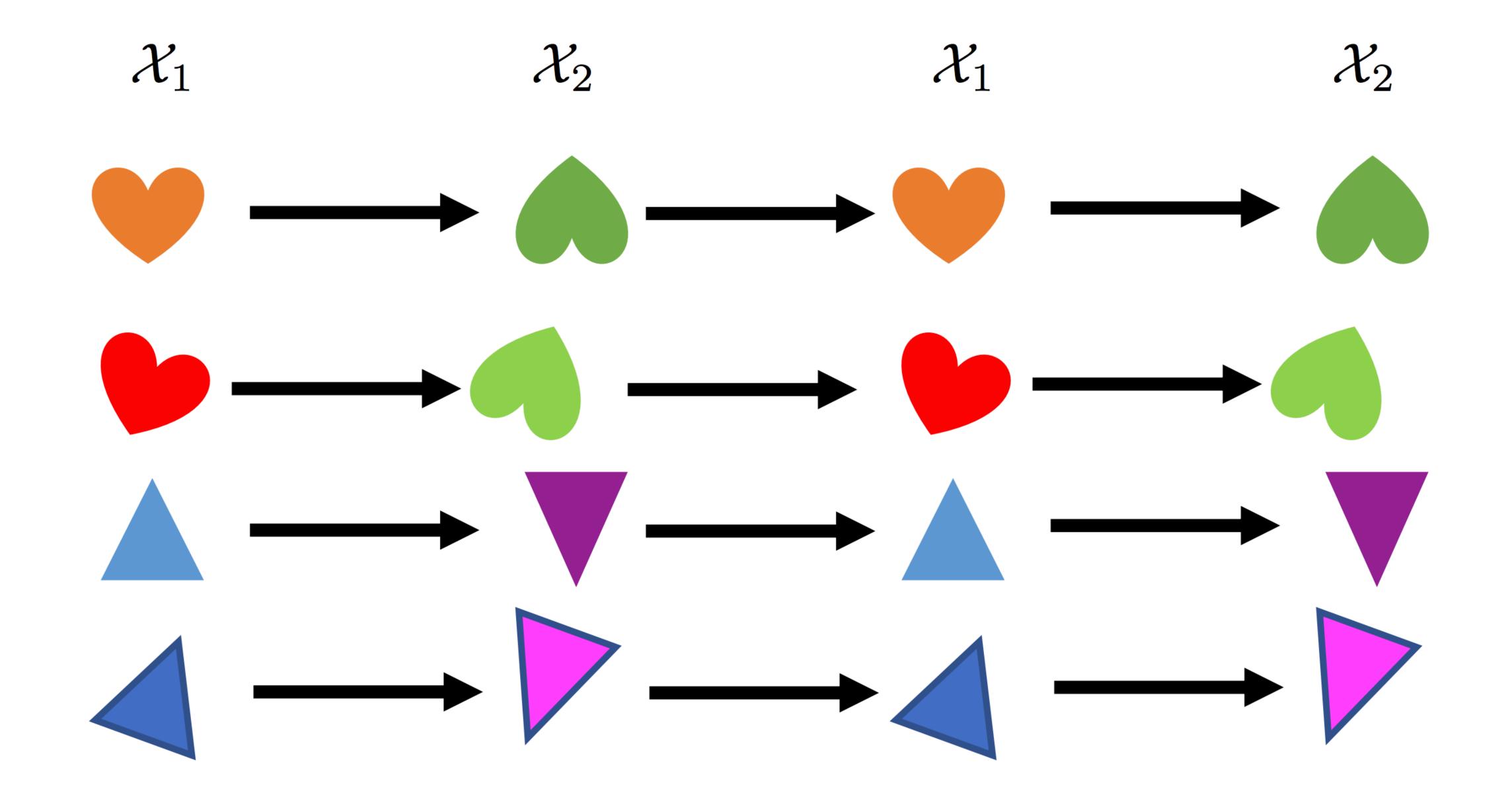
Failure case

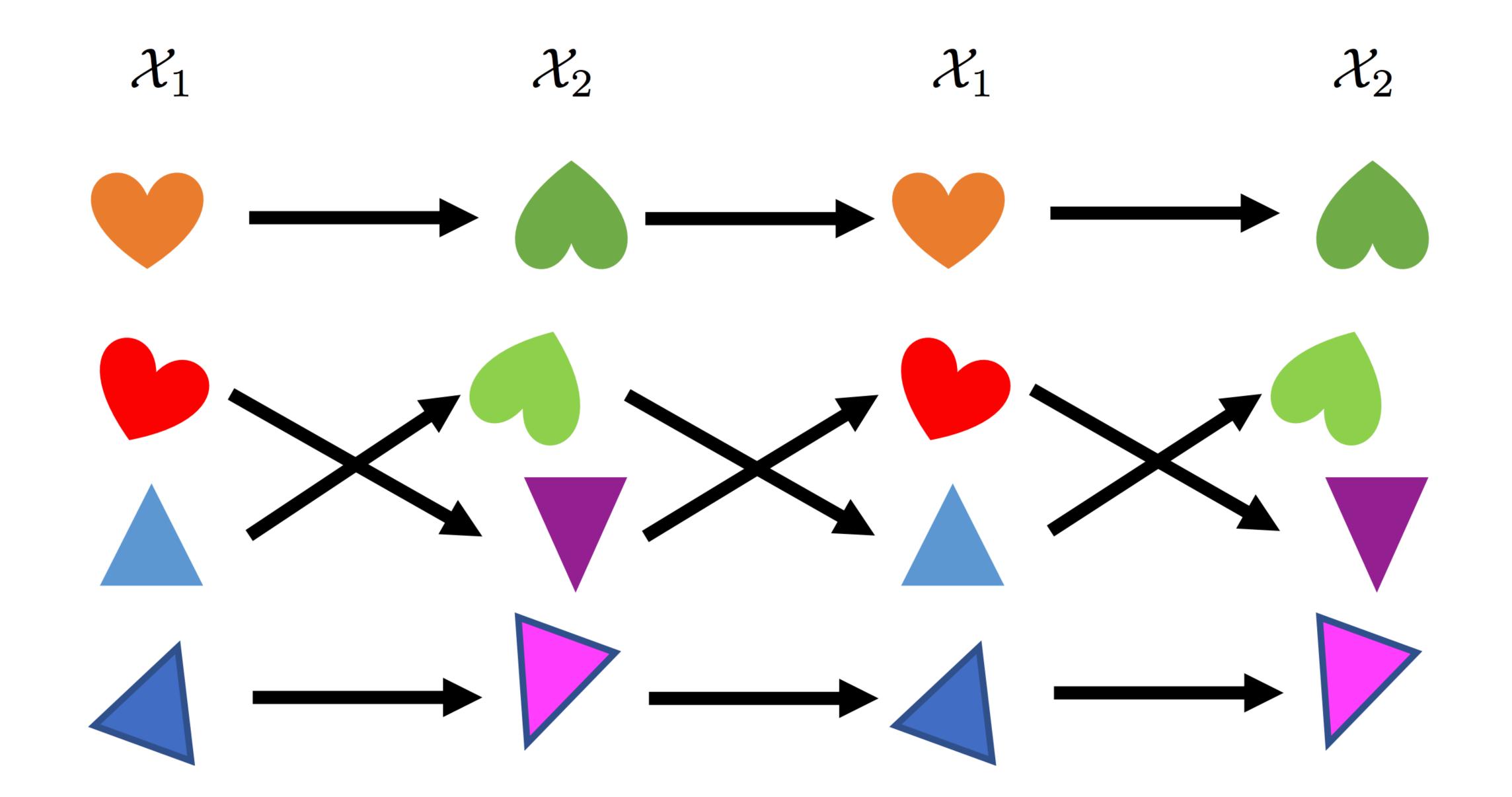


Failure case



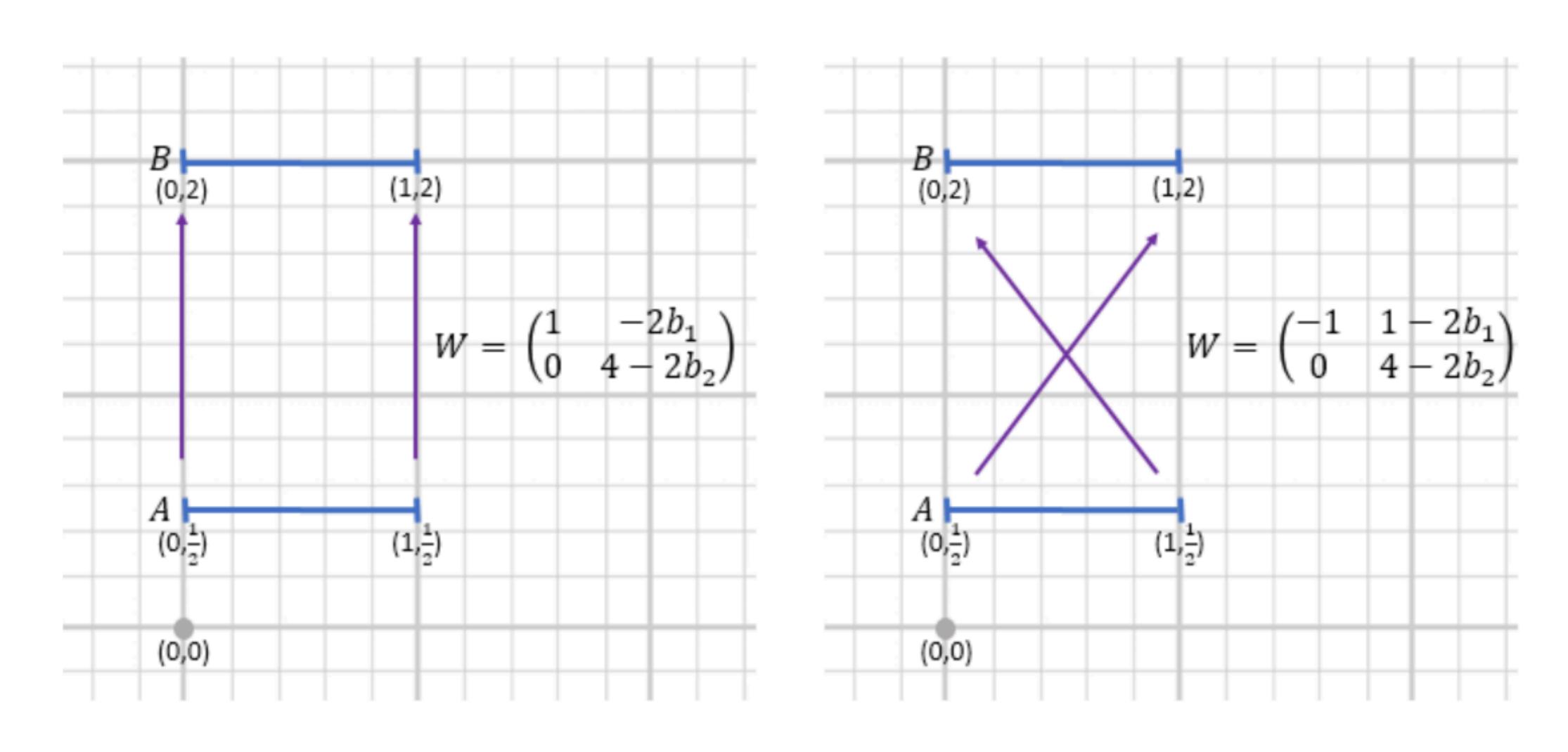
Why does CycleGAN work?



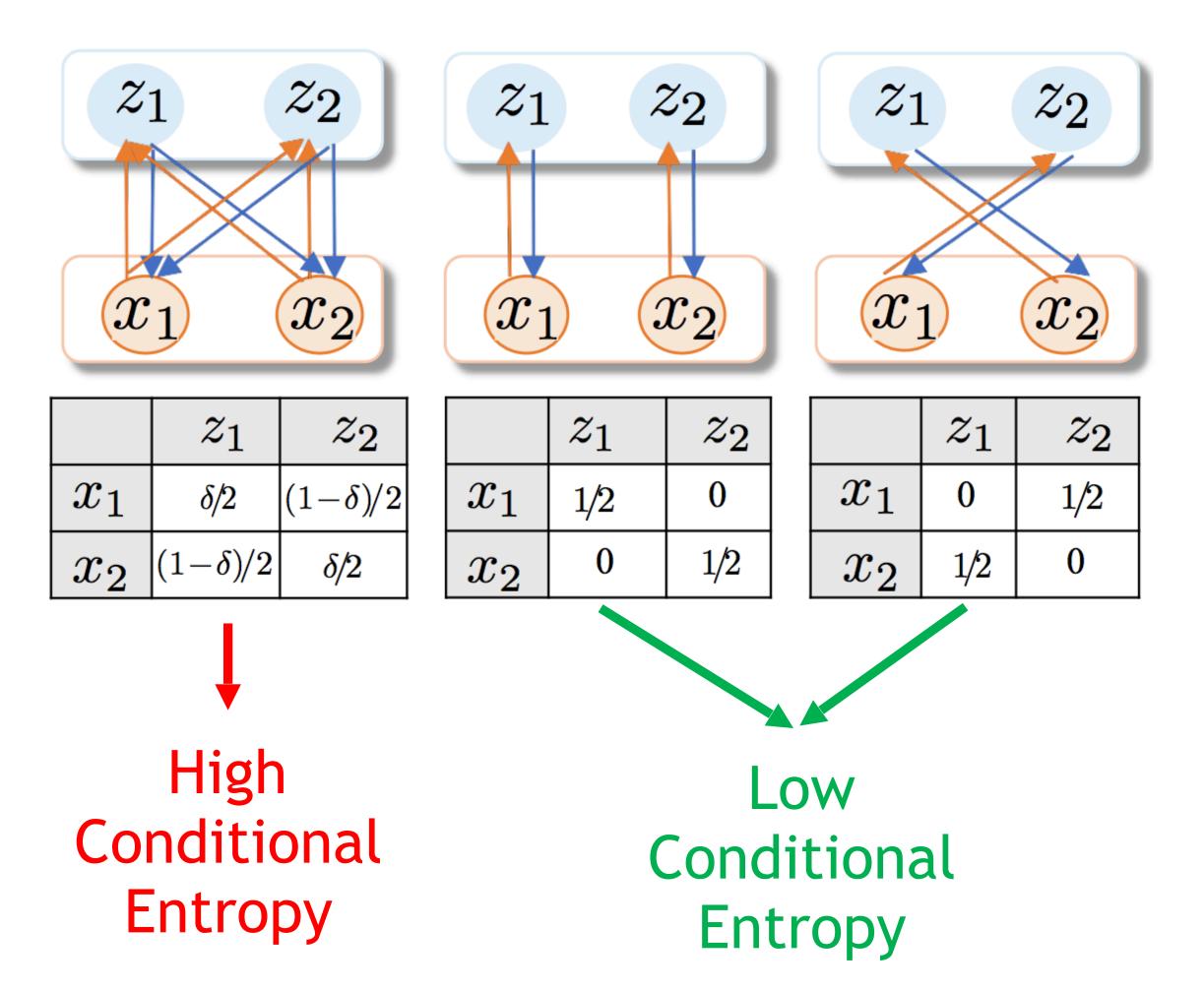


Simplicity hypothesis

[Galanti, Wolf, Benaim, 2018]



Cycle Loss upper bounds Conditional Entropy

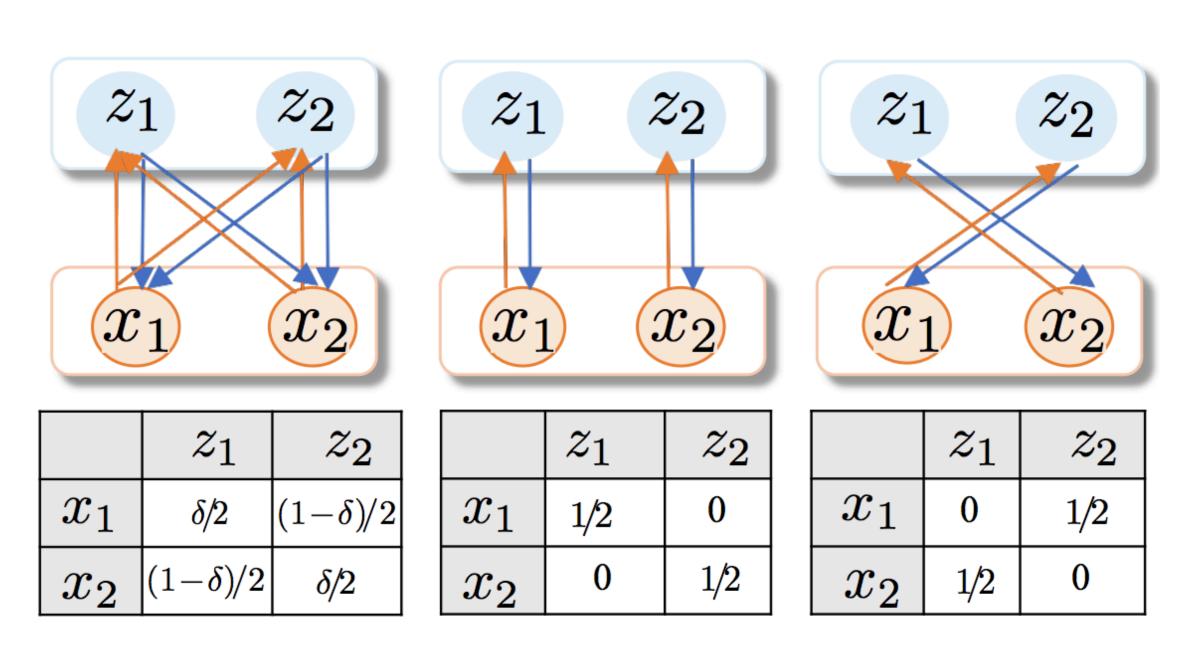


Conditional Entropy

$$H^{\pi}(\boldsymbol{x}|\boldsymbol{z}) \triangleq -\mathbb{E}_{\pi(\boldsymbol{x},\boldsymbol{z})}[\log \pi(\boldsymbol{x}|\boldsymbol{z})]$$

"ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching" [Li et al. NIPS 2017]. Also see [Tiao et al. 2018] "CycleGAN as Approximate Bayesian Inference"

Cycle Loss upper bounds Conditional Entropy



Conditional Entropy

$$H^{\pi}(\boldsymbol{x}|\boldsymbol{z}) \triangleq -\mathbb{E}_{\pi(\boldsymbol{x},\boldsymbol{z})}[\log \pi(\boldsymbol{x}|\boldsymbol{z})]$$

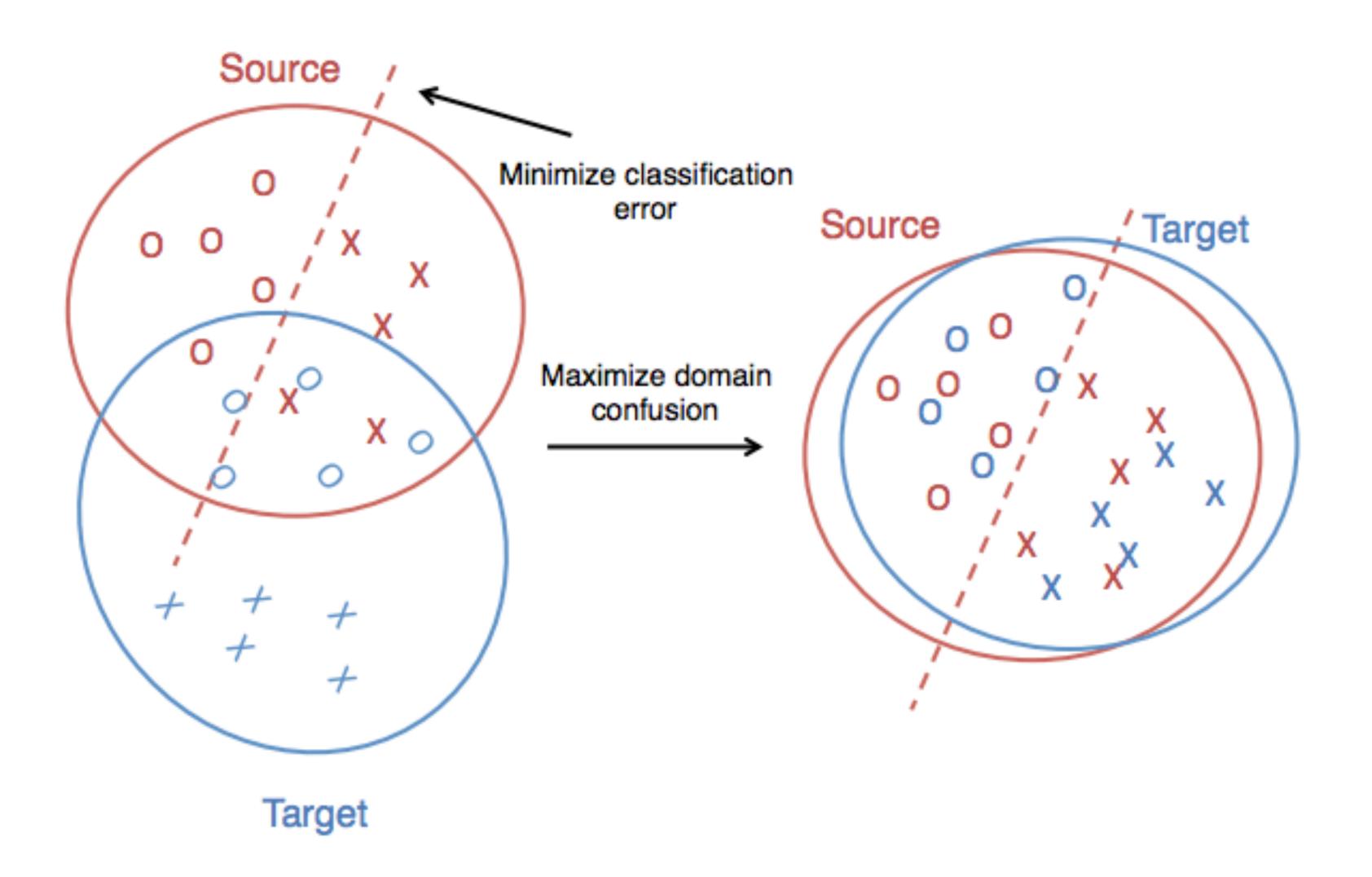
Lemma 3 For joint distributions $p_{\theta}(x, z)$ or $q_{\phi}(x, z)$, we have

$$H^{q_{\phi}}(\boldsymbol{x}|\boldsymbol{z}) \triangleq -\mathbb{E}_{q_{\phi}(\boldsymbol{x},\boldsymbol{z})}[\log q_{\phi}(\boldsymbol{x}|\boldsymbol{z})] = -\mathbb{E}_{q_{\phi}(\boldsymbol{x},\boldsymbol{z})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] - \mathbb{E}_{q_{\phi}(\boldsymbol{z})}[\mathrm{KL}(q_{\phi}(\boldsymbol{x}|\boldsymbol{z})||p_{\theta}(\boldsymbol{x}|\boldsymbol{z}))]$$

$$\leq -\mathbb{E}_{q_{\phi}(\boldsymbol{x},\boldsymbol{z})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] \triangleq \mathcal{L}_{\mathrm{Cycle}}(\boldsymbol{\theta},\boldsymbol{\phi}). \tag{6}$$

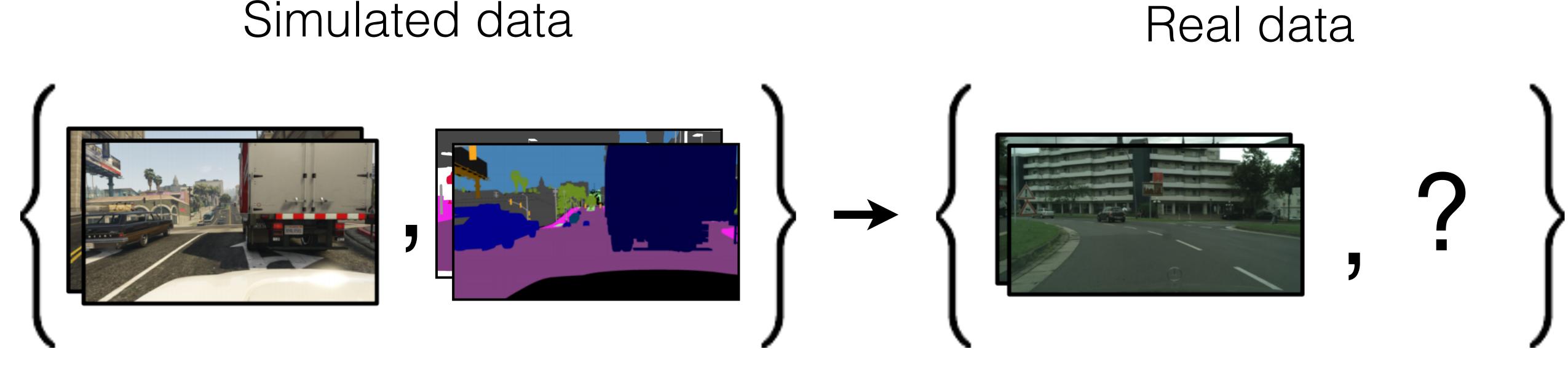
"ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching" [Li et al. NIPS 2017]. Also see [Tiao et al. 2018] "CycleGAN as Approximate Bayesian Inference"

Domain Adaptation



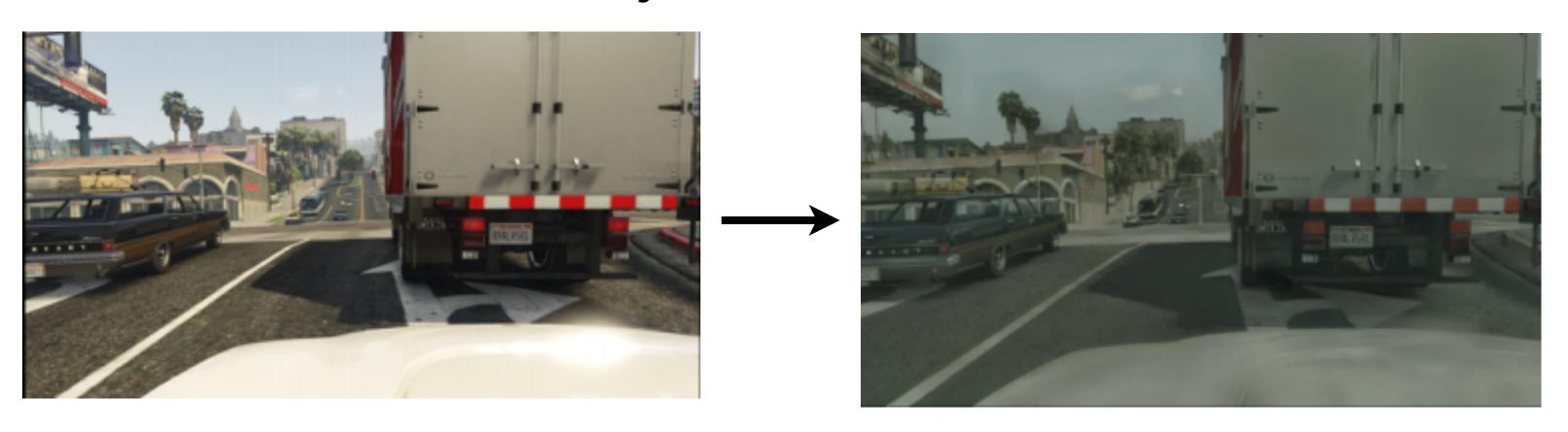
Sim2real

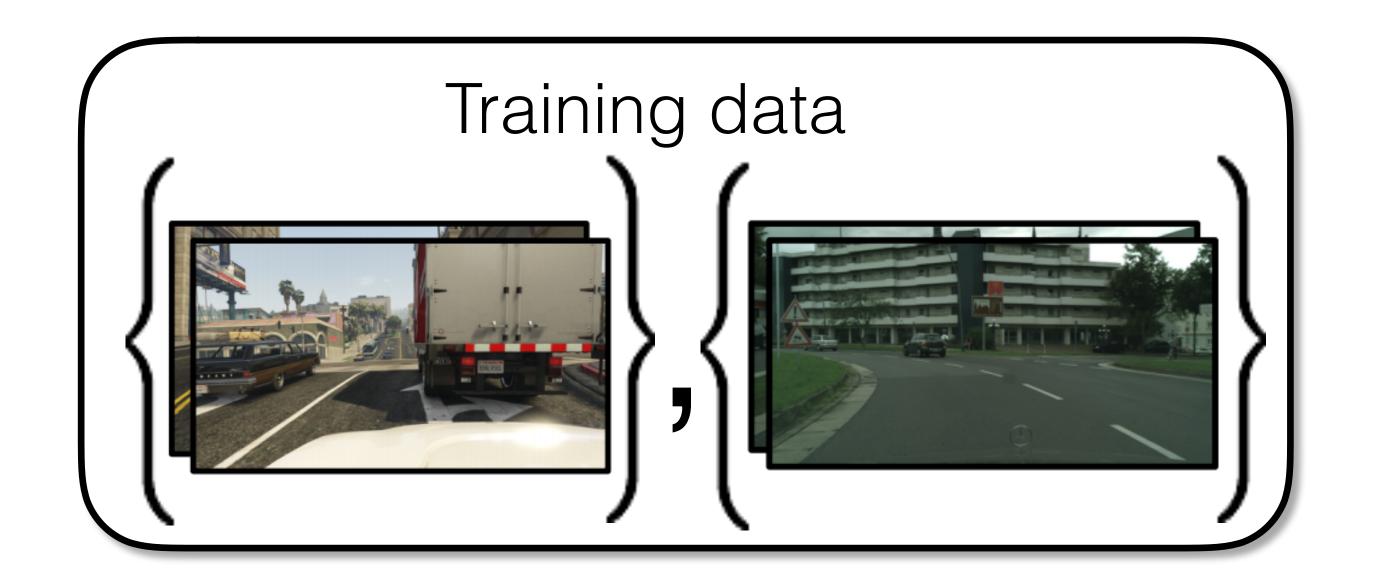
Simulated data



[Richter*, Vineet* et al. 2016] [Krähenbühl et al. 2018]

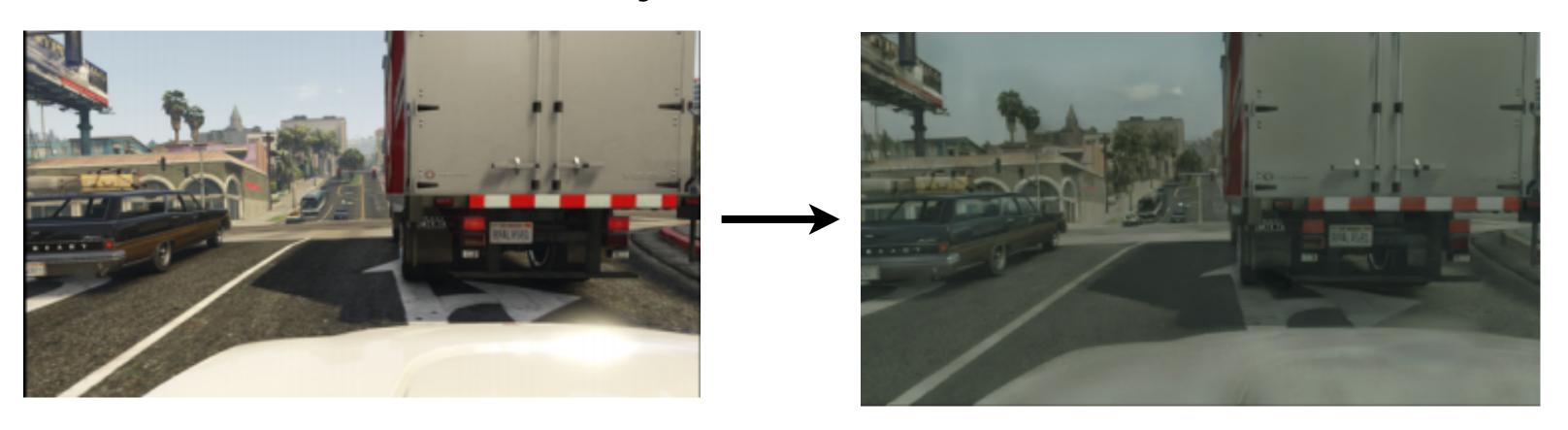
CycleGAN





[Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Darrell, Efros, 2018]

CycleGAN



[Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Darrell, Efros, 2018]

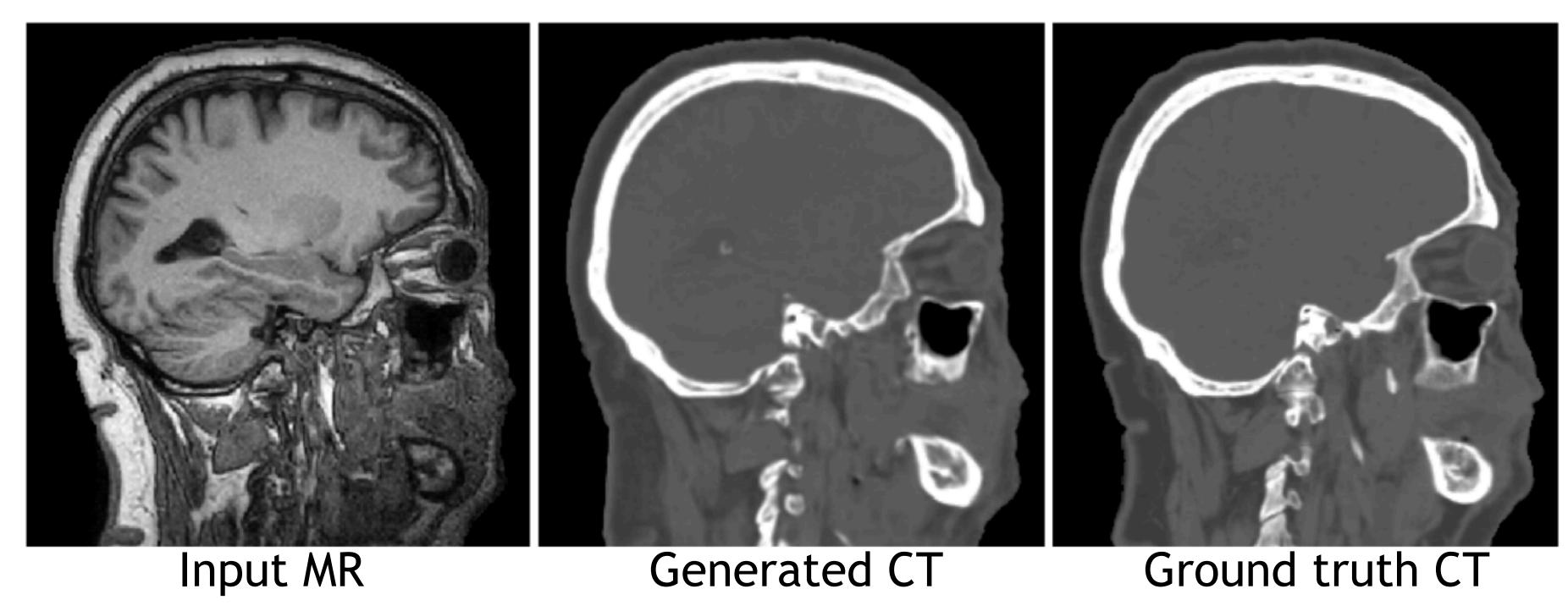
$\begin{array}{c} \text{CycleGAN} & \text{FCN} \\ \\ \hline \\ \end{array}$



[Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Darrell, Efros, 2018]

Medical domain adaptation

MR → CT [Wolterink et al] arxiv: 1708.01155



- MRI reconstruction [Quan et al.] arxiv:1709.00753
- Cardiac MR images from CT [Chartsias et al. 2017]

Three perspectives on GANs

- 1. Structured loss
- 2. Generative model

3. Domain-level supervision / mapping

Thank you!