Lecture 13

Statistical Learning: First Steps
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Supervised Learning: data . = {(X1,Y1),...,(Xn,Yn)} are i.i.d. from
unknown distribution P.

Learning algorithm: a mapping {(X1,Y1),...,(Xn,Yn)} — T

Goals:

» Prediction: small expected loss
L(Tn) = Exv(Y,Tn(X)).
Here (X,Y) ~ P. Interpretation: good prediction on a random example

from same population.

» Estimation: small HF“ - f*|, or H@— B*H7 where f* or 0° are
parameters of P (e.g. regression function f*(x) = E[Y|X = x], or
*(x) = (07,x), ete).

In this course, we mostly focus on prediction, but will also outline
connections between prediction and estimation.
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Why not estimate the underlying distribution P first?

This is in general a harder problem than prediction. Consider classification.
We might be attempting to learn parts/properties of the distribution that
are irrelevant, while all we care about is the “boundary” between the two
classes.



Key difficulty: our goals are in terms of unknown quantities related to
unknown P. Have to use empirical data instead. Purview of statistics.

For instance, we can calculate the empirical loss of f: X - )

i(r)- 1 2emf(xi)>
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Quiz: what is random here?
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. L(f) for a given fixed f
n

I

. L(fn)

. L(f) for a given fixed f

S O N

It is important that these are understood before we proceed further.
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Theoretical analysis of performance is typically easier if T, has closed form
(in terms of the training data).

E.g. ordinary least squares fn(x) = x (X"X)"'XTY.

Unfortunately, most ML and many Statistical procedures are not explicitly
defined but arise as

» solutions to an optimization objective (e.g. logistic regression)

» as an iterative procedure without an immediately obvious objective
function (e.g. AdaBoost, Random Forests, etc)



The Gold Standard
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Within the framework we set up, the smallest expected loss is achieved by
the Bayes optimal function

f* = arg min L(f)
f
where the minimization is over all (measurable) prediction rules f: X — ).

The value of the lowest expected loss is called the Bayes error:

L(f) = inf L(f)

Of course, we cannot calculate any of these quantities since P is unknown.



Bayes Optimal Function

Bayes optimal function f* takes on the following forms in these two
particular cases:

» Binary classification (Y = {0,1}) with the indicator loss:

f(x) =I{n(x) >1/2}, where n(x)=E[Y]X=x]

» Regression (Y = R) with squared loss:

f'(x) =n(x), where m(x)=E[Y|]X=x]
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The big question: is there a way to construct a learning algorithm with a
guarantee that
L(fn) - L(f")

is small for large enough sample size n?
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Consistency

An algorithm that ensures
lim L(f,) =L(f*)  almost surely

is called consistent. Consistency ensures that our algorithm is approaching
the best possible prediction performance as the sample size increases.

The good news: consistency is possible to achieve.

» eagy if X is a finite or countable set

» not too hard if X' is infinite, and the underlying relationship between x
and y is “continuous”



The bad news...

In general, we cannot prove anything “interesting” about L(y) - L(f*),
unless we make further assumptions (incorporate prior knowledge).

What do we mean by “nothing interesting”? This is the subject of the
so-called “No Free Lunch” Theorems. Unless we posit further assumptions,

» For any algorithm f,,, any n and any € > 0, there exists a distribution
P such that L(f*) =0 and
-~ 1
EL(fn) > 5 — €

» For any algorithm o, and any sequence a, that converges to 0, there
exists a probability distribution P such that L(f*) =0 and for all n

EL(Tn) > an

Reference: (Devroye, Gyorfi, Lugosi: A Probabilistic Theory of Pattern Recognition),
(Bousquet, Boucheron, Lugosi, 2004)
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is this really “bad news”?

Not really. We always have some domain knowledge.

Two ways of incorporating prior knowledge:
» Direct way: assumptions on distribution P (e.g. margin)

» Indirect way: redefine the goal to perform as well as a reference set F
of predictors:

L(fn) - gL(f)

F encapsulates our inductive bias.

We often make both of these assumptions.
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We start our study of Statistical Learning with the classical Perceptron
algorithm.

Reason: simplicity. We will give a three-line proof of Perceptron, followed
by two interesting consequences with one-line proofs each. These
consequences are, perhaps, the easiest nontrivial statistical guarantees I can
think of.
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Perceptron
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Perceptron

(x1,Y1)y- .-, (x1,yT) € X x {1} (T may or may not be same as n)
Maintain a hypothesis wy € R4 (initialize wy = 0).

On round t,
» Consider (x¢,yt)
» Form prediction Gt = sign({wq, x¢))

» If ¢ # yt, update
Wi+l = Wt + YiXe

else
Wil = Wy
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Perceptron
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For simplicity, suppose all data are in a unit ball, |x¢| < 1.

Definition of margin of (x1,y1),..., (x1,yT):
Y = max min yi (w,xi)
[wi=1 ie[T]

or v = 0 if no margin.

Theorem (Novikoff *62): Perceptron makes at most 1/y* mistakes (and
corrections) on any sequence of examples with margin y.
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Proof: Let m be the number of mistakes after T iterations. If a mistake
is made on round t,

Iween | = [we +yexe|® < we|? + 2ye (we, xe) + 1< e + 1.

Hence,
[wr|* <m.

For optimal hyperplane w*
v < (W5 yxe) = (W5, Wi —we).
Hence (adding and canceling),

my < (W, wr) < |wr| < vm.
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More formally, for any T and (x1,y1),..., (xT,yT1),

D2

T
Zl{yt We, Xt <O} < ‘}/2

where v = y(x1.:1,y1:7) is margin and D = D(xy:1, Y1) = max ||x¢].
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