Lecture 13

Statistical Learning: First Steps

Sasha Rakhlin

Oct 22, 2018

Outline

 Setup

Outline

Setup

Supervised Learning: data $\mathcal{S} = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ are i.i.d. from unknown distribution P.

Learning algorithm: a mapping
$$\{(X_1, Y_1), \dots, (X_n, Y_n)\} \longmapsto \widehat{f}_n$$
.

Goals:

▶ Prediction: small expected loss

$$\mathbf{L}(\widehat{f}_n) = \mathbb{E}_{X,Y} \ell(Y, \widehat{f}_n(X)).$$

Here $(X,Y) \sim P$. Interpretation: good prediction on a random example from same population.

▶ Estimation: small $\|\widehat{f}_n - f^*\|$, or $\|\widehat{\theta} - \theta^*\|$, where f^* or θ^* are parameters of P (e.g. regression function $f^*(x) = \mathbb{E}[Y|X = x]$, or $f^*(x) = \langle \theta^*, x \rangle$, etc).

In this course, we mostly focus on prediction, but will also outline connections between prediction and estimation.

Why not estimate the underlying distribution P first?

This is in general a harder problem than prediction. Consider classification. We might be attempting to learn parts/properties of the distribution that are irrelevant, while all we care about is the "boundary" between the two classes.

Key difficulty: our goals are in terms of unknown quantities related to unknown P. Have to use empirical data instead. Purview of statistics.

For instance, we can calculate the *empirical loss* of $f: \mathcal{X} \to \mathcal{Y}$

$$\widehat{\mathbf{L}}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f(X_i))$$

Quiz: what is random here?

- 1. $\widehat{\mathbf{L}}(\mathbf{f})$ for a given fixed \mathbf{f}
- 2. \widehat{f}_n
- 3. $\widehat{\mathbf{L}}(\widehat{\mathsf{f}}_{\mathsf{n}})$
- 4. $\mathbf{L}(\widehat{f}_n)$
- 5. L(f) for a given fixed f

It is important that these are understood before we proceed further.

Theoretical analysis of performance is typically easier if \widehat{f}_n has closed form (in terms of the training data).

E.g. ordinary least squares $\widehat{f}_n(x) = x^T(X^TX)^{-1}X^TY$.

Unfortunately, most ML and many Statistical procedures are not explicitly defined but arise as

- ▶ solutions to an optimization objective (e.g. logistic regression)
- as an iterative procedure without an immediately obvious objective function (e.g. AdaBoost, Random Forests, etc)

The Gold Standard

Within the framework we set up, the smallest expected loss is achieved by the $Bayes\ optimal\ function$

$$f^* = \arg\min_{f} \mathbf{L}(f)$$

where the minimization is over all (measurable) prediction rules $f: \mathcal{X} \to \mathcal{Y}$.

The value of the lowest expected loss is called the *Bayes error*:

$$\mathbf{L}(\mathsf{f}^*) = \inf_{\mathsf{f}} \mathbf{L}(\mathsf{f})$$

Of course, we cannot calculate any of these quantities since P is unknown.

Bayes Optimal Function

Bayes optimal function f^* takes on the following forms in these two particular cases:

▶ Binary classification $(\mathcal{Y} = \{0, 1\})$ with the indicator loss:

$$f^*(x) = I\{\eta(x) \ge 1/2\}, \text{ where } \eta(x) = \mathbb{E}[Y|X = x]$$

▶ Regression $(\mathcal{Y} = \mathbb{R})$ with squared loss:

$$f^*(x) = \eta(x)$$
, where $\eta(x) = \mathbb{E}[Y|X = x]$

The big question: is there a way to construct a learning algorithm with a guarantee that

$$\mathbf{L}(\widehat{f}_n) - \mathbf{L}(f^*)$$

is small for large enough sample size n?

Consistency

An algorithm that ensures

$$\lim_{n\to\infty}\mathbf{L}(\widehat{f}_n)=\mathbf{L}(f^*)\qquad \text{almost surely}$$

is called *consistent*. Consistency ensures that our algorithm is approaching the best possible prediction performance as the sample size increases.

The good news: consistency is possible to achieve.

- easy if \mathcal{X} is a finite or countable set
- not too hard if $\mathcal X$ is infinite, and the underlying relationship between x and y is "continuous"

The bad news...

In general, we cannot prove anything "interesting" about $L(\widehat{f}_n) - L(f^*)$, unless we make further assumptions (incorporate *prior knowledge*).

What do we mean by "nothing interesting"? This is the subject of the so-called "No Free Lunch" Theorems. Unless we posit further assumptions,

For any algorithm \widehat{f}_n , any n and any $\epsilon > 0$, there exists a distribution P such that $\mathbf{L}(f^*) = 0$ and

$$\mathbb{E}\mathbf{L}(\widehat{\mathsf{f}}_{\mathfrak{n}}) \geq \frac{1}{2} - \epsilon$$

For any algorithm \hat{f}_n , and any sequence a_n that converges to 0, there exists a probability distribution P such that $L(f^*) = 0$ and for all n

$$\mathbb{E}\mathbf{L}(\widehat{f}_n) \geq a_n$$

Reference: (Devroye, Györfi, Lugosi: A Probabilistic Theory of Pattern Recognition), (Bousquet, Boucheron, Lugosi, 2004)

is this really "bad news"?

Not really. We always have some domain knowledge.

Two ways of incorporating prior knowledge:

- ▶ Direct way: assumptions on distribution P (e.g. margin)
- Indirect way: redefine the goal to perform as well as a reference set F
 of predictors:

$$\mathbf{L}(\widehat{f}_n) - \inf_{f \in \mathcal{F}} \mathbf{L}(f)$$

 \mathcal{F} encapsulates our *inductive bias*.

We often make both of these assumptions.

Outline

Setup

We start our study of Statistical Learning with the classical Perceptron algorithm.

Reason: simplicity. We will give a three-line proof of Perceptron, followed by two interesting consequences with one-line proofs each. These consequences are, perhaps, the easiest nontrivial statistical guarantees I can think of.


```
(x_1, y_1), \dots, (x_T, y_T) \in \mathcal{X} \times \{\pm 1\} (T may or may not be same as n)
Maintain a hypothesis w_t \in \mathbb{R}^d (initialize w_1 = 0).
On round t,
   • Consider (x_t, y_t)
   • Form prediction \widehat{y}_t = \text{sign}(\langle w_t, x_t \rangle)
   • If \hat{y}_t \neq y_t, update
                                             w_{t+1} = w_t + y_t x_t
      else
                                                 w_{t+1} = w_t
```


For simplicity, suppose all data are in a unit ball, $\|x_t\| \le 1$.

Definition of margin of $(x_1, y_1), \dots, (x_T, y_T)$:

$$\gamma = \max_{\|w\|=1} \min_{\mathfrak{i} \in [T]} y_{\mathfrak{i}} \langle w, x_{\mathfrak{i}} \rangle$$

or $\gamma = 0$ if no margin.

Theorem (Novikoff '62): Perceptron makes at most $1/\gamma^2$ mistakes (and corrections) on any sequence of examples with margin γ .

Proof: Let \mathfrak{m} be the number of mistakes after T iterations. If a mistake is made on round \mathfrak{t} ,

$$\|w_{t+1}\|^2 = \|w_t + y_t x_t\|^2 \le \|w_t\|^2 + 2y_t \langle w_t, x_t \rangle + 1 \le \|w_t\|^2 + 1.$$

Hence,

$$\|w_T\|^2 \leq m$$
.

For optimal hyperplane w^*

$$\gamma \leq \langle w^*, y_t x_t \rangle = \langle w^*, w_{t+1} - w_t \rangle.$$

Hence (adding and canceling),

$$m\gamma \leq \left\langle w^*, w_T \right\rangle \leq \left\| w_T \right\| \leq \sqrt{m}.$$

More formally, for any T and $(x_1, y_1), \ldots, (x_T, y_T)$,

$$\sum_{t=1}^{T} \mathbf{I} \{ y_t \langle w_t, x_t \rangle \le 0 \} \le \frac{D^2}{\gamma^2}$$

where $\gamma = \gamma(x_{1:T}, y_{1:T})$ is margin and $D = D(x_{1:T}, y_{1:T}) = \max_t \|x_t\|$.