Lecture 16

Sample Complexity via Rademacher Averages
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Recap

One way to get an upper bound on EL(f,) - L(f#) for ERM f, over F is
via uniform deviations:
Emax [L(f) - L(f)].
feF

(more mathematical name: expected maximum of empirical process)

At this point, there is not algorithm .. in the picture. Purely a question
about F (and, perhaps, P). If expected maximum is small (as a function of
n), we can conclude that F is “learnable” by ERM.



Recap

To shorten the notation, we introduced z = (x,y), g=£of, G={o F.

Then we write

111
Eﬁgh45*52%54~

i=1

Perhaps we can make things even more transparent by writing

EmaxUg
9¢g
where Uy £ Eg(Z) - £ Y1, g(Z:) is a zero-mean random variable indexed
by g (with typical fluctuations O(1/\/n) due to CLT).

Key point: the larger G is, the more likely it is that one of Uy takes on a
higher value (as in multiple hypothesis testing). In particular, if G is “too
large,” we cannot control the maximum any longer. This is the reason we
split the learning problem analysis into estimation-approzimation tradeoff,
so that we can control statistical fluctuations on a smaller set.



Recap

Again, if G = {go}, then expected supremum is zero. If G contains two
“different enough” functions, it is ©(1/\/n). How about for countable G?
Uncountable G7 How about correlations of functions in G? Perhaps not all
variables Uy are uncorrelated?

What is the right measure of complexity of G7



Complexity

We start by looking at a simpler problem and then relate to above.

Question: given a set G ¢ [-1,1]™, what is its “complexity”? Of course, this
is an ill-posed question, but let’s brainstorm anyway.
Attempt 1: complexity = count elements of G. Not good for uncountable G.

Attempt 2: complexity = volume of G if uncountable. Bad: if G is thin in
one dimension, volume goes to zero.

Attempt 3: complexity = average size of projection onto a random
Gaussian vector



For a random vector v (say, uniform on unit sphere S™ '), measure

max (v, g)
geG

The expected maximum measures an average “width” of G over all
directions:

Emax (v, g)
geG

If v is a multivariate normal, this quantity is called “Gaussian width.”

If v is a vector of independent {+1}’s (prob 1/2 each), this quantity is
called “Rademacher averages.”
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We will focus on Rademacher averages as a measure of complexity. Let

€ =(€1,...,€n) be sequence of i.i.d. Rademacher random variables
(unbiased coin flips with values +1).

— 1 1 &
Dn(G) = EIEGM max (€, g) = Ec,,, max — ) €gi.

geG geG M iy
Verify:
Zn({g0}) =0
and _
In({-1,137) =1
How about

Zn({-1,1})

where 1 is a vector of 1’s?



If G is finite,
P !
Zn(G) <y / 08lCl
n

for some constant c.

This bound can be lose, as it does not take into account
“overlaps” /correlations between vectors.
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A few properties of Rademacher averages:

» Convex hull property:
Pn(G) = %n (conv(G))

where conv(G) is convex hull of G.

» Scaling property: for a constant c,
Zn(c-G) = |c|Zn(G)
» Subset Property:
GCSF =  Zn(G)<Zn(F)
» Contraction: if ¢ : R - R is L-Lipschitz then
Zn($(G)) < LZn(G)

where $(G) = {($(g1),...,d(gn) : g € G}, ¢ acting coordinate-wise.



Let By be a unit ball in RP:

Bp = {xeR": Ix, <1}

where
n 1/p
i, = ()
i=1
Then
—~ 1/2 1/2
T‘«%Jn(Bz)=EHHFX1(€79>=EH€H2:E(”€H§) <(Elef3)"" =vn
glio=
Hence,
= 1
% (BY) < —.
(B2) NG
Show that

. 1
%n(Bl): E

Clearly, log |G| gives a loose bound here, as random variables
{£ (e e;):j=1,...,n} produce values close to 0.

10 / 21



Homework: for p € [1, o], find upper bound on

T (BY).
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Symmetrization

What do these Rademacher averages have to do with our problem of
bounding uniform deviations?

Let
Glor = {(9(21),...,9(2zn)) : g€ G} c R"

g1
[¢p)

Z1 Z2 Zn



Symmetrization Lemma

Lemma:

E max []Eg(Z) 1 i g(Zi)] < 2E%n(Glz1.0)
geg i

i=1
In fact, this is also a lower bound.

Message: to understand uniform deviations, enough to understand richness
of sets Glz,.,. -
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Equivalent way of writing Rademacher averages on previous slide is to
directly write

9EZ (Glz0) = 2Bmax = " e1g(Z2)
geg M

i=1
where the expectation is both over Zi., and €1:n.

(make sure this simple rewriting is clear to you)



Symmetrization

Looks like we shifted the difficulty from uniform deviations to the difficulty
of estimating Rademacher averages.

The key gain in this step is that we can reason conditionally on Zi,...,Z..
This is a crucial point that makes the analysis simple in many cases.



To illustrate the last point, consider G = {z—I{z >0} :0 ¢ R}, a class of
thresholds on R. This class is uncountable.

Question: is

OeR

1 n
E max [EI{Z >0} - o ZI{Zi > 9}]
i=1
small? Not at all clear how to do this directly!

However, consider the Rademacher averages, conditionally on Z;,...,Zy:
Pn(Glzy.,) = Ee max[ Ze {z; > 9}]
How many distinct vectors are in %n (G|z,., )? Answer: n + 1. Hence,

Fn(Glzyn) scy/ @

That was super easy! A more careful analysis removes log(n + 1). This is a
version of Kolmogorov’s result on uniform closeness of CDF and empirical
CDF (a quantified version of Glivenko-Cantelli Theorem).
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Binary case

Suppose G is a class of {-1,1}-valued functions. Then
G=Glz,,..,z, €{-1,+1}™, a subset of n-dimensional hypercube.

Vapnik-Chervonenkis theory says that cardinality of G is at most O(n?)
whenever n > ve-dim(G).

On the other hand, if ve-dim(G) = oo, then for any n there exist Zi,...,Zn
such that |G| = 2™ and, hence, upper bound via uniform deviations is
vacuous.

However, we might not care about existence of these Zi,...,Z, if
distribution P is ‘nice’.



. wait, where is the loss function

So far, we dealt with abstract functions g € G. But in the learning problem,
we take g = {of for a fixed loss function and f € F.

Using contraction property of Rademacher averages, it is easy to remove
any L-Lipschitz loss and claim that % ({ o F) are at most L-%n (F). For
zero-one loss (which is not Lipschitz), we can do an easy direct computation
(homework).
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Conclusion: to analyze performance of ERM, we can shift focus to uniform
deviations, and then to Rademacher averages. There are a variety of
techniques for upper bounding Rademacher averages (covering numbers,
chaining, scale-sensitive dimensions / VC dimension). We will do some of
these calculations when studying neural nets.



Proof of Symmetrization (only for those interested)
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Let ¥ ={Z1,...,Zn} and &' ={Z1,...,Z]} (another n i.i.d. datapoints).
E.o max Ezg(Z)—lig(Zi) =Es max|Es li:g(Z-') —lig(zi)
geg ni4 geg ni43 * n i

B pomax| L3 {o(2) - 9(20)|

For any sequence of signs €1,.. ., en, distribution of + >1, {g(Z{) - g(Z:)}
is the same as distribution of = Y"1 e {g(Z{) - g(Z:)}. Hence, last
expression is equal to

3oz - 20)]

E&”,y’,e max[
9¢g

Using sup A + B < sup A +sup B and symmetry of random signs €;, we get
upper bound of

1 & —~
2E »  max [ > €i9(Zi)] =2E5%n(G|z1.)
9¢G [T i



NB: We’ve been writing uniform deviations and Rademacher averages with
a “max” but it should really be “sup”.



