
Lecture 17

Margin Analysis for Classification

Sasha Rakhlin

Nov 05, 2018

1 / 15



Outline

Last few bits from last lecture

Large Margin Theory for Classification

2 / 15



Constraints on values vs parameters

We discussed R̂n(G) when G is a set with a nice description, such as a ball
Bnp . However, it is not clear whether G has a nice description when G is a
nicely described class of functions.

Examples:

▸ Let G = {z↦ ⟨w, z⟩ ∶ w ∈ Bd2} and ∥zi∥ ≤ 1. We can show that

R̂n(G∣z1,...,zn) ≤
1√
n

By luck, the upper bound coincides with R̂n(Bn2 ), but G∣z1,...,zn ≠ Bn2 .

▸ Let G = {z↦ ⟨w, z⟩ ∶ w ∈ Bd1}. Assume ∥zi∥∞ ≤ 1. We can show that

R̂n(G∣z1,...,zn) ≤
√

logd

n

Contrast with R̂n(Bn1 ) = 1/n.

Notation: we shall write R(G) ≜ ER̂n(G∣Z1,...,Zn).

3 / 15



Outline

Last few bits from last lecture

Large Margin Theory for Classification

4 / 15



Classification with Real-Valued Functions

Typical binary classification methods use sign of a real-valued function to
make prediction:

I(F) = {x↦ sign(f(x)) ∶ f ∈ F}

According to previous lecture, sample complexity can be understood by
considering sizes of sets G obtained by evaluating functions in I(F) on data.

Unfortunately, this typically leads to overly pessimistic results since it is
difficult to use the structure of F . VC dimension of I(F) can be very large,
yet in practice the methods work well. What is an alternative explanation?

Example: f(x) = fw(x) = ⟨w,ψ(x)⟩ where ψ is a mapping to a high-
dimensional feature space. The VC dimension is large (equal to the
dimensionality of ψ(x)) or infinite, yet the methods perform well!

The conundrum can be addressed by something we already studied – the
margin. Just as in Perceptron, we will aim to find a way around
dimensionality and use margin + complexity of F instead.

5 / 15



Margins

Hard margin:
∃f ∈ F ∶ ∀i, yif(xi) ≥ γ

f(x)

Soft margin: we hope to have

∃f ∈ F ∶ card({i ∶ yif(xi) < γ})
n

is small

6 / 15



Surrogate Loss
Define

φ(s) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if s ≤ 0

1 − s/γ if 0 < s < γ
0 if s ≥ γ

Then
I{yf(x) ≤ 0} ≤ φ(yf(x)) ≤ ψ(yf(x)) ≜ I{yf(x) ≤ γ}

The function φ is an example of a surrogate loss function.

�(yf(x))

�

 (yf(x))I{yf(x)60}

yf(x)

Let

Lφ(f) = Eφ(yf(x)) and L̂φ(f) =
1

n

n

∑
i=1
φ(yif(xi))

7 / 15



Surrogate Loss

Now consider uniform deviations for the surrogate loss:

E sup
f∈F
{Lφ(f) − L̂φ(f)}

We have shown that this quantity is at most 2R(φ(F)) for

φ(F) = {(x,y)↦ φ(yf(x)) ∶ f ∈ F}

Observe that in our example φ is 1/γ-Lipschitz. Hence,

Emax
f∈F
{Lφ(f) − L̂φ(f)} ≤

2

γ
R(F)

by the “contraction” property from previous lecture.

8 / 15



Margin Bound

Note:
L01(f) ≤ Lφ(f), L̂φ(f) ≤ L̂ψ(f)

Hence,

Emax
f∈F
{L01(f) − L̂ψ(f)} ≤

2

γ
R(F)

Rewriting, for any algorithm f̂n that takes values in F ,

EL01(f̂n) ≤ EL̂ψ(f̂n) +
2

γ
R(F)

Recall: L̂ψ(f) = 1
n ∑

n
i=1 I{yf(x) ≤ γ} is the fraction of γ-margin errors.

Conclusion: expected zero-one out-of-sample error is controlled by the
proportion of margin mistakes made by f̂n and Rademacher averages of F ,
scaled by 1/γ. We avoided the (potentially) large VC dimension of I(F)!

9 / 15



Margin Bound: High Probability

A high probability version of this bound would read: for all f ∈ F

L01(f) ≤ L̂ψ(f) +
c

γ
R̂n(F ∣X1∶n) +O

⎛
⎝

√
log(1/δ)

n

⎞
⎠

Of course, in practice we have in front of us one dataset. But, given the
above statement, we are (1− δ)-confident that for our data and our method,
the expected error is no more than proportion of margin errors +
complexity of the model.

NB: we can choose the best γ on the data to optimize the bound (paying
extra for a union bound).

10 / 15



Perceptron

We now deduce a “non-separable” analogue for Perceptron.

Indeed, for Perceptron, F = {x↦ ⟨w,x⟩ ∶ ∥w∥ = 1}, and it is easy to show

R(F) ≤ D√
n

where D = max ∥Xi∥.

If there are no γ-margin mistakes made, our margin bound yields

EL01(f̂n) ≤
2D

γ
× 1√

n

This bound does not give the right “rate” (should be square of what we
got), but, on the other hand, our margin bound is much more general and
does not require separability as in Perceptron.

NB: it is possible to get a margin bound that does reduce to Perceptron
with correct rate, but this is more difficult.

11 / 15



Algorithmic consequences

It is fair to ask: what are the practical applications of our bounds? One
answer is that complexity notions can be used as regularizers. For instance,
suppose the set of linear classifiers in Perceptron example is indexed by
radius B:

F = {x↦ ⟨w,x⟩ ∶ ∥w∥ ≤ B}.
Then R(F) ≤ B√

n
and the margin bound (omitting constants and other

factors) reads

L01(w) ≲ L̂ψ(w) +
c

γ

B√
n
+ . . .

With a bit more work (essentially, a union bound), we can turn this into

L01(w) ≲ L̂ψ(w) +
c

γ

∥w∥√
n
+ . . .

Minimizing the upper bound suggests minimizing margin mistakes while
keeping small the norm ∥w∥ of the solution. This is essentially SVM.

12 / 15



Algorithmic consequences

General Prescription: get an upper bound on Rademacher averages of your
favorite class (indexed by a “complexity radius”). Turn it into a regularizer.
Try your new algorithm on data.

Morally, a sensible regularizer should be related to an upper bound on
Rademacher averages in some way, since its role is to control the estimation
error. (ok, there are many asterisks here, but it’s good to see the
connection)

13 / 15



Summary

▸ Complexity is a subtle notion: margin vs dimensionality of space. VC
theory may be too pessimistic here.

▸ Bound is a-posteriori: if it happens that proportion of γ-margin errors
is small, then out-of-sample performance is good

▸ Empirically-defined bounds can be optimized. Leads to new
regularization methods.

▸ Do neural nets maximize margin in any sense?

14 / 15


	Last few bits from last lecture
	Large Margin Theory for Classification

