
Lecture 18

Local Methods

Sasha Rakhlin

Nov 07, 2018

1 / 23



Today: analysis of “local” procedures such as k-Nearest-Neighbors or local
smoothing. Different bias-variance decomposition (we do not fix a class F).

Analysis will rely on local similarity (e.g. Lipschitz-ness) of regression
function f∗. Idea: to predict y at a given x, look up in the dataset those Yi
for which Xi is “close” to x.
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Bias-Variance
It’s time to revisit the bias-variance picture. Recall that our goal was to
ensure that

EL(f̂n) − L(f∗)

decreases with data size n, where f∗ gives smallest possible L.

For “simple problems” (that is, strong assumptions on P), one can ensure
this without the bias-variance decomposition. Examples: Perceptron, linear
regression in d < n regime, etc.

However, for more interesting problems, we cannot get this difference to be
small in “one shot” because variance (fluctuation of the stochastic part) is
too large. Instead, it is more beneficial to introduce a biased procedure in
the hope to reduce variance.

Our approach so far was to split this term into an
estimation-approximation error with respect to some class F :

EL(f̂n) − L(fF) + L(fF) − L(f∗)
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Bias-Variance

In this lecture, we study a different bias-variance decomposition, typically
used in nonparametric statistics. We will only work with square loss.

Rather than fixing F that controls the estimation error, we fix an algorithm
(procedure/estimator) f̂n that has some tunable parameter.

By definition E[Y∣X = x] = f∗(x). Then we write

EL(f̂n) − L(f∗) = E(f̂n(X) − Y)2 − E(f∗(X) − Y)2

= E(f̂n(X) − f∗(X) + f∗(X) − Y)2 − E(f∗(X) − Y)2

= E(f̂n(X) − f∗(X))2

because the cross term vanishes (check!)
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Bias-Variance

Before proceeding, let us discuss the last expression.

E(f̂n(X) − f∗(X))2 = ES ∫
x
(f̂n(x) − f

∗

(x))
2
P(dx)

= ∫
x
ES (f̂n(x) − f

∗

(x))
2
P(dx)

We will often analyze ES (f̂n(x) − f
∗
(x))2 for fixed x and then integrate.

The integral is a measure of distance between two functions:

∥f − g∥
2
L2(P)

≜ ∫
x
(f(x) − g(x))

2
P(dx).
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Bias-Variance

Let us drop L2(P) from notation for brevity. The bias-variance
decomposition can be written as

E ∥f̂n − f
∗
∥
2
= E ∥f̂n − EY1∶n[f̂n] + EY1∶n[f̂n] − f

∗
∥
2

= E ∥f̂n − EY1∶n[f̂n]∥
2
+ E ∥EY1∶n[f̂n] − f

∗
∥
2

,

because the cross term is zero in expectation.

The first term is variance, the second is squared bias. One “typically”
increases with the parameter, the other decreases.

Parameter is chosen either (a) theoretically or (b) by cross-validation (this
is the usual case in practice).
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In the rest of the lecture, we will discuss several local methods and describe
(in a hand-wavy manner) the behavior of bias and variance.

For more details, consult

▸ “Distribution-Free Theory of Nonparametric Regression,” Györfi et al

▸ “Introduction to Nonparametric Estimation,” Tsybakov
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Outline

k-Nearest Neighbors

Local Kernel Regression: Nadaraya-Watson

Interpolation
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As before, we are given (X1,Y1), . . . , (Xn,Yn) i.i.d. from P. To make a
prediction of Y at a given x, we sort points according to distance ∥Xi − x∥.
Let

(X(1),Y(1)), . . . , (X(n),Y(n))

be the sorted list (remember this depends on x).

The k-NN estimate is defined as

f̂n(x) =
1

k

k

∑
i=1

Y(i).

If support of X is bounded and d ≥ 3, then one can estimate

E ∥X − X(1)∥
2
≲ n

−2/d.

That is, we expect the closest neighbor of a random point X to be no
further than n−1/d away from one of n randomly drawn points.
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Variance: Given x,

f̂n(x) − EY1∶n[f̂n(x)] =
1

k

k

∑
i=1

(Y(i) − f
∗

(X(i)))

which is on the order of 1/
√
k. Then variance is of the order 1

k
.

Bias: a bit more complicated. For a given x,

EY1∶n[f̂n(x)] − f
∗

(x) =
1

k

k

∑
i=1

(f
∗

(X(i)) − f
∗

(x)).

Suppose f∗ is 1-Lipschitz. Then the square of above is

(
1

k

k

∑
i=1

(f
∗

(X(i)) − f
∗

(x)))

2

≤
1

k

k

∑
i=1

∥X(i) − x∥
2

So, the bias is governed by how close the closest k random points are to x.
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Claim: enough to know the upper bound on the closest point to x among n
points.

Argument: for simplicity assume that J = n/k is an integer. Divide the
original (unsorted) dataset into k blocks, n/k size each. Let Xi be the
closest point to x in ith block. Then the collection X1, . . . ,XJ, a k-subset
which is no closer than the set of k nearest neighbors. That is,

1

k

k

∑
i=1

∥X(i) − x∥
2
≤

1

k

k

∑
i=1

∥X
i
− x∥

2

Taking expectation (with respect to dataset), the bias term is at most

E{
1

k

k

∑
i=1

∥X
i
− x∥

2
} = E ∥X

1
− x∥

2

which is expected squared distance from x to the closest point in a random
set of n/k points. When we take expectation over X, this is at most

(n/k)
−2/d
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Putting everything together, the bias-variance decomposition yields

1

k
+ (

k

n
)

2/d

Optimal choice is k ∼ n
2

2+d and the overall rate of estimation at a given
point x is

n
−

2
2+d .

Since the result holds for any x, the integrated risk is also

E ∥f̂n − f
∗
∥
2
≲ n

−
2

2+d .
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Summary

▸ We sketched the proof that k-Nearest-Neighbors has sample
complexity guarantees for prediction or estimation problems with
square loss if k is chosen appropriately.

▸ Analysis is very different from “empirical process” approach for ERM.

▸ Truly nonparametric!

▸ No assumptions on underlying density (in d ≥ 3) beyond compact
support. Additional assumptions needed for d ≤ 3.
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Outline

k-Nearest Neighbors

Local Kernel Regression: Nadaraya-Watson

Interpolation
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Fix a kernel K ∶ Rd → R≥0. Assume K is zero outside unit Euclidean ball at

origin (not true for e−x
2

, but close enough).

(figure from Györfi et al)

Let Kh(x) = K(x/h), and so Kh(x − x
′
) is zero if ∥x − x ′∥ ≥ h.

h is “bandwidth” – tunable parameter.

Assume K(x) > cI{∥x∥ ≤ 1} for some c > 0. This is important for the
“averaging effect” to kick in.
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Nadaraya-Watson estimator:

f̂n(x) =
n

∑
i=1

YiWi(x)

with

Wi(x) =
Kh(x − Xi)

∑
n
i=1 Kh(x − Xi)

(Note: ∑iWi = 1).
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Unlike the k-NN example, bias is easier to estimate.

Bias: for a given x,

EY1∶n[f̂n(x)] = EY1∶n [
n

∑
i=1

YiWi(x)] =
n

∑
i=1

f
∗

(Xi)Wi(x)

and so

EY1∶n[f̂n(x)] − f
∗

(x) =
n

∑
i=1

(f
∗

(Xi) − f
∗

(x))Wi(x)

Suppose f∗ is 1-Lipschitz. Since Kh is zero outside the h-radius ball,

∣EY1∶n[f̂n(x)] − f
∗

(x)∣
2
≤ h

2.
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Variance: we have

f̂n(x) − EY1∶n[f̂n(x)] =
n

∑
i=1

(Yi − f
∗

(Xi))Wi(x)

Expectation of square of this difference is at most

E [
n

∑
i=1

(Yi − f
∗

(Xi))
2
Wi(x)

2
]

since cross terms are zero (fix X’s, take expectation with respect to the Y’s).

We are left analyzing

nE [
Kh(x − X1)

2

(∑
n
i=1 Kh(x − Xi))

2
]

Under some assumptions on density of X, the denominator is at least
(nhd)2 with high prob, whereas EKh(x − X1)

2
= O(hd) assuming ∫ K

2
<∞.

This gives an overall variance of O(1/(nhd)). Many details skipped here
(e.g. problems at the boundary, assumptions, etc)

Overall, bias and variance with h ∼ n−
1

2+d yield

h
2
+

1

nhd
= n

−
2

2+d
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Summary

▸ Analyzed smoothing methods with kernels. As with nearest neighbors,
slow (nonparametric) rates in large d.

▸ Same bias-variance decomposition approach as k-NN.
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Outline

k-Nearest Neighbors

Local Kernel Regression: Nadaraya-Watson

Interpolation
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Let us revisit the following question: can a learning method be successful if
it interpolates the data?

Consider the Nadaraya-Watson estimator. Take a kernel that approaches a
large value τ at 0, e.g.

K(x) = max{1/ ∥x∥α ,τ}

Note that large τ means f̂n(Xi) ≈ Yi since the weight Wi(Xi) is large. In
fact, if τ =∞, we get interpolation f̂n(Xi) = Yi of all training data. Yet, the
sketched proof still goes through. Hence, “memorizing the data” (governed
by parameter τ) is completely decoupled from the bias-variance trade-off
(as given by parameter h).

Contrast with conventional wisdom: fitting data too well means overfitting.

NB: Of course, we could always redefine any f̂n to be equal to Yi on Xi, but
our example shows more explicitly how memorization is governed by a
parameter that is independent of bias-variance.
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Bias-Variance and Overfitting

“Elements of Statistical Learning,” Hastie, Tibshirani, Friedman
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What is overfitting?

▸ Fitting data too well?

▸ Bias too low, variance too high?

Key takeaway: we should not conflate these two.
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