Lecture 19

Sample Compression. Stability.

Sasha Rakhlin

Nov 14, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Outline

Compression Bounds

Algorithmic Stability

Compression Set

Let us use the shortened notation for data: $\mathscr{S} = \{Z_1, \ldots, Z_n\}$, and Let us make the dependence of the algorithm \widehat{f}_n on the training set explicit: $\widehat{f}_n = \widehat{f}_n[\mathscr{S}]$. As before, denote $\mathcal{G} = \{(x, y) \mapsto \ell(f(x), y) : f \in \mathcal{F}\}$, and let us write $\widehat{g}_n(\cdot) = \ell(\widehat{f}_n(\cdot), \cdot)$. Let us write $\widehat{g}_n[\mathscr{S}](\cdot)$ to emphasize the dependence.

Suppose there exists a "compression function" C_k which selects from any dataset \mathscr{S} of size n a subset of k examples $C_k(\mathscr{S}) \subseteq \mathscr{S}$ such that

 $\widehat{f}_{n}[\mathscr{S}] = \widehat{f}_{k}[C_{k}(\mathscr{S})]$

That is, the learning algorithm produces the same function when given \mathscr{S} or its subset $C_k(\mathscr{S})$.

(日) (同) (目) (日) (日) (0) (0)

One can keep in mind the example of support vectors in SVMs.

Then,

$$\begin{split} \mathbf{L}(\widehat{f}_{n}) &- \widehat{\mathbf{L}}(\widehat{f}_{n}) = \mathbb{E}\widehat{g}_{n} - \frac{1}{n}\sum_{i=1}^{n}\widehat{g}_{n}(Z_{i}) \\ &= \mathbb{E}\widehat{g}_{k}[C_{k}(\mathscr{S})](Z) - \frac{1}{n}\sum_{i=1}^{n}\widehat{g}_{k}[C_{k}(\mathscr{S})](Z_{i}) \\ &\leq \max_{I \subseteq \{1, \dots, n\}, |I| \leq k} \left\{ \mathbb{E}\widehat{g}_{k}[\mathscr{S}_{I}](Z) - \frac{1}{n}\sum_{i=1}^{n}\widehat{g}_{k}[\mathscr{S}_{I}](Z_{i}) \right\} \end{split}$$

where \mathscr{S}_{I} is the subset indexed by I.

Since $\widehat{\mathfrak{g}}_k[\mathscr{S}_I]$ only depends on k out of n points, the empirical average is "mostly out of sample". Adding and subtracting loss functions on for an additional set of i.i.d. random variables $W = \{\mathsf{Z}_1', \ldots, \mathsf{Z}_k'\}$ results in an upper bound

$$\max_{I \subseteq \{1,...,n\}, |I| \le k} \left\{ \mathbb{E} \widehat{g}_k[\mathscr{S}_I](\mathsf{Z}) - \frac{1}{n} \sum_{\mathsf{Z}' \in \mathscr{S}'} \widehat{g}_k[\mathscr{S}_I](\mathsf{Z}') \right\} + \frac{(b-a)k}{n}$$

where [a, b] is the range of functions in \mathcal{G} and \mathscr{S}' is obtained from \mathscr{S} by replacing \mathscr{S}_{I} with the corresponding subset W_{I} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

For each fixed I, the random variable

$$\mathbb{E}\widehat{g}_{k}[\mathscr{S}_{I}](\mathsf{Z}) - \frac{1}{n}\sum_{\mathsf{Z}'\in\mathscr{S}'}\widehat{g}_{k}[\mathscr{S}_{I}](\mathsf{Z}')$$

is zero mean with standard deviation $O((b-a)/\sqrt{n})$. Hence, the expected maximum over I with respect to \mathscr{S}, W is at most

$$c\sqrt{\frac{(b-a)k\log(en/k)}{n}}$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

(

since $\log \binom{n}{k} \leq k \log(en/k)$.

Conclusion: compression-style argument limits the bias

$$\mathbb{E}\left[\mathbf{L}(\widehat{f}_{n}) - \widehat{\mathbf{L}}(\widehat{f}_{n})\right] \leq O\left(\sqrt{\frac{k \log n}{n}}\right),$$

which is non-vacuous if $k = o(n/\log n)$.

Recall that this term was the upper bound (up to log) on expected excess loss of ERM if class has VC dimension k. However, a possible equivalence between compression and VC dimension is still being investigated.

◆□▶ <個▶ < E▶ < E▶ E のQの</p>

Example: Classification with Thresholds in 1D

• $\mathcal{X} = [0,1], \mathcal{Y} = \{0,1\}$

•
$$\mathcal{F} = \{ f_{\theta} : f_{\theta}(x) = I\{x \ge \theta\}, \theta \in [0, 1] \}$$

•
$$\ell(f_{\theta}(x), y) = \mathbf{I}\{f_{\theta}(x) \neq y\}$$

For any set of data $(x_1, y_1), \ldots, (x_n, y_n)$, the ERM solution \hat{f}_n has the property that the first occurrence x_l on the left of the threshold has label $y_l = 0$, while first occurrence x_r on the right – label $y_r = 1$.

Enough to take k = 2 and define $\widehat{f}_n[\mathscr{S}] = \widehat{f}_2[(x_1, 0), (x_r, 1)].$

Further examples/observations:

- Compression of size d for hyperplanes (realizable case)
- Compression of size $1/\gamma^2$ for margin case
- Bernstein bound gives 1/n rate rather than $1/\sqrt{n}$ rate on realizable data (zero empirical error).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

Compression Bounds

Algorithmic Stability

Recall that compression was a way to upper bound $\mathbb{E}\left[\mathbf{L}(\widehat{f}_n) - \widehat{\mathbf{L}}(\widehat{f}_n)\right]$. Algorithmic stability is another path to the same goal.

Compare:

- \blacktriangleright Compression: $\widehat{f_n}$ depends only on a subset of k datapoints.
- Stability: \hat{f}_n does not depend on any of the datapoints too strongly.

ション ふゆ くち くち くち くち くち

As before, let's write shorthand $g = l \circ f$ and $\widehat{g}_n = l \circ \widehat{f}_n$.

We now write

$$\mathbb{E}_{\mathscr{S}}\mathbf{L}(\widehat{f}_{n}) = \mathbb{E}_{Z_{1},...,Z_{n},Z} \{ \widehat{g}_{n}[Z_{1},...,Z_{n}](Z) \}$$

Again, the meaning of $\widehat{g}_n[Z_1, \dots, Z_n](Z)$: train on Z_1, \dots, Z_n and test on Z.

On the other hand,

$$\mathbb{E}_{\mathscr{P}}\widehat{\mathbf{L}}(\widehat{f}_{n}) = \mathbb{E}_{Z_{1},\dots,Z_{n}} \left\{ \begin{array}{c} \frac{1}{n} \sum_{i=1}^{n} \widehat{g}_{n}[Z_{1},\dots,Z_{n}](Z_{i}) \end{array} \right\}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Z_{1},\dots,Z_{n}} \left\{ \begin{array}{c} \widehat{g}_{n}[Z_{1},\dots,Z_{n}](Z_{i}) \end{array} \right\}$$
$$= \mathbb{E}_{Z_{1},\dots,Z_{n}} \left\{ \begin{array}{c} \widehat{g}_{n}[Z_{1},\dots,Z_{n}](Z_{1}) \end{array} \right\}$$

where the last step holds for symmetric algorithms (wrt permutation of training data). Of course, instead of Z_1 we can take any Z_i .

(日) (同) (目) (日) (日) (0) (0)

Now comes the renaming trick. It takes a minute to get used to, if you haven't seen it.

Note that Z_1, \ldots, Z_n, Z are i.i.d. Hence,

$$\mathbb{E}_{\mathscr{S}}\mathbf{L}(\widehat{f}_{n}) = \mathbb{E}_{Z_{1},\dots,Z_{n},Z} \{ \widehat{g}_{n}[Z_{1},\dots,Z_{n}](Z) \}$$
$$= \mathbb{E}_{Z_{1},\dots,Z_{n},Z} \{ \widehat{g}_{n}[Z,Z_{2},\dots,Z_{n}](Z_{1}) \}$$

Therefore,

 $\mathbb{E}\left\{\mathbf{L}(\widehat{f}_n) - \widehat{\mathbf{L}}(\widehat{f}_n)\right\} = \mathbb{E}_{Z_1, \dots, Z_n, Z}\left\{ \begin{array}{c} \widehat{g}_n[Z, Z_2, \dots, Z_n](Z_1) - \widehat{g}_n[Z_1, \dots, Z_n](Z_1) \end{array} \right\}$

ション ふゆ くち くち くち くち くち

Of course, we haven't really done much except re-writing expectation. But the difference

 $\widehat{g}_{n}[Z, Z_{2}, \ldots, Z_{n}](Z_{1}) - \widehat{g}_{n}[Z_{1}, \ldots, Z_{n}](Z_{1})$

has a "stability" interpretation. If it holds that the output of the algorithm "does not change much" when one datapoint is replaced with another, then the gap $\mathbb{E} \{ \mathbf{L}(\hat{\mathbf{f}}_n) - \widehat{\mathbf{L}}(\hat{\mathbf{f}}_n) \}$ is small.

ション ふゆ くち くち くち くち くち

Moreover, since everything we've written is an equality, this stability is equivalent to having small gap $\mathbb{E} \{ \mathbf{L}(\widehat{f}_n) - \widehat{\mathbf{L}}(\widehat{f}_n) \}$.

NB: our aim of ensuring small $\mathbb{E} \{ \mathbf{L}(\widehat{\mathbf{f}}_n) - \widehat{\mathbf{L}}(\widehat{\mathbf{f}}_n) \}$ only makes sense if $\widehat{\mathbf{L}}(\widehat{\mathbf{f}}_n)$ is small (e.g. on average). That is, the analysis only makes sense for those methods that explicitly or implicitly minimize empirical loss (or a regularized variant of it).

It's not enough to be stable. Consider a learning mechanism that ignores the data and outputs $\hat{f}_n = f_0$, a constant function. Then $\mathbb{E}\left\{\mathbf{L}(\hat{f}_n) - \widehat{\mathbf{L}}(\hat{f}_n)\right\} = 0$ and the algorithm is very stable. However, it does not do anything interesting.

Rather than the average notion we just discussed, let's consider a much stronger notion:

We say that algorithm is β uniformly stable if

$$\begin{split} \forall i \in [n], z_1, \dots, z_n, z', z \quad \left| \widehat{g}_n [\mathscr{S}](z) - \widehat{g}_n [\mathscr{S}^{i, z'}](z) \right| \leq \beta \end{split}$$
 where $\mathscr{S}^{i, z'} = \{ z_1, \dots, z_{i-1}, z', z_{i+1}, \dots, z_n \}. \end{split}$

Uniform Stability

Clearly, for any realization of Z_1, \ldots, Z_n, Z ,

 $\widehat{g}_n[Z,Z_2,\ldots,Z_n](Z_1)-\widehat{g}_n[Z_1,\ldots,Z_n](Z_1)\leq\beta,$

and so expected loss of a β -uniformly-stable ERM is β -close to its empirical error (in expectation).

Of course, it is unclear at this point whether a $\beta\text{-uniformly-stable ERM}$ (or near-ERM) exists.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Kernel Ridge Regression

Consider

$$\widehat{f}_{n} = \mathop{\mathrm{argmin}}_{f \in \mathcal{H}} \ \frac{1}{n} \sum_{i=1}^{n} (f(X_{i}) - Y_{i})^{2} + \lambda \|f\|_{K}^{2}$$

in RKHS \mathcal{H} corresponding to kernel K.

Assume $K(x, x) \leq \kappa^2$ for any x.

Lemma: Kernel Ridge Regression is β -uniformly stable with $\beta = O\left(\frac{1}{\lambda n}\right)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

To prove this, first recall the definition of a $\sigma\text{-strongly convex function }\varphi$ on convex domain $\mathcal W$:

$$\forall u, v \in \mathcal{W}, \quad \varphi(u) \ge \varphi(v) + \langle \nabla \varphi(v), u - v \rangle + \frac{\sigma}{2} \|u - v\|^2.$$

Suppose ϕ, ϕ' are both σ -strongly convex. Suppose w, w' satisfy $\nabla \phi(w) = \nabla \phi'(w') = 0$. Then

$$\phi(w') \ge \phi(w) + \frac{\sigma}{2} \left\| w - w' \right\|^2$$

and

$$\phi'(w) \ge \phi'(w') + \frac{\sigma}{2} \left\| w - w' \right\|^2$$

As a trivial consequence,

$$\sigma \left\| w - w' \right\|^2 \leq \left[\phi(w') - \phi'(w') \right] + \left[\phi'(w) - \phi(w) \right]$$

Now take

$$\phi(f) = \frac{1}{n} \sum_{i \in \mathscr{S}} (f(x_i) - y_i)^2 + \lambda \|f\|_{K}^2$$

and

$$\phi'(f) = \frac{1}{n} \sum_{i \in \mathscr{S}'} (f(x_i) - y_i)^2 + \lambda \|f\|_{K}^2$$

where \mathscr{S} and \mathscr{S}' differ in one element: (x_i, y_i) is replaced with (x'_i, y'_i) .

Let $\widehat{f}_n, \widehat{f}'_n$ be the minimizers of ϕ, ϕ' , respectively. Then

$$\varphi(\widehat{f}'_{n}) - \varphi'(\widehat{f}'_{n}) \leq \frac{1}{n} \left(\left(\widehat{f}'_{n}(x_{i}) - y_{i} \right)^{2} - \left(\widehat{f}'_{n}(x'_{i}) - y'_{i} \right)^{2} \right)$$

and

$$\phi'(\widehat{f_n}) - \phi(\widehat{f_n}) \leq \frac{1}{n} \left(\left(\widehat{f_n}(x_i') - y_i' \right)^2 - \left(\widehat{f_n}(x_i) - y_i \right)^2 \right)$$

NB: we have been operating with f as vectors. To be precise, one needs to define the notion of strong convexity over \mathcal{H} . Let us sweep it under the rug and say that ϕ, ϕ' are 2λ -strongly convex with respect to $\|\cdot\|_{\mathcal{K}}$.

Then
$$\left\|\widehat{f}_{n} - \widehat{f}'_{n}\right\|_{K}^{2}$$
 is at most

$$\frac{1}{2\lambda n} \left(\left(\widehat{f}'_{n}(x_{i}) - y_{i}\right)^{2} - \left(\widehat{f}_{n}(x_{i}) - y_{i}\right)^{2} + \left(\widehat{f}_{n}(x'_{i}) - y'_{i}\right)^{2} - \left(\widehat{f}'_{n}(x'_{i}) - y'_{i}\right)^{2} \right)$$

which is at most

$$\frac{1}{2\lambda n} C \left\| \widehat{f}_n - \widehat{f}'_n \right\|_{\infty}$$

where C = 4(1 + c) if $|Y_i| \le 1$ and $|\widehat{f}_n(x_i)| \le c$.

On the other hand, for any \boldsymbol{x}

$$\begin{split} f(x) &= \left\langle f, K_x \right\rangle \leq \left\| f \right\|_K \left\| K_x \right\| = \left\| f \right\|_K \sqrt{\left\langle K_x, K_x \right\rangle} = \left\| f \right\|_K \sqrt{K(x, x)} \leq \kappa \left\| f \right\|_K \\ \text{and so} \\ &\left\| f \right\|_{\infty} \leq \kappa \left\| f \right\|_K \,. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

Putting everything together,

$$\left\| \widehat{f}_{n} - \widehat{f}'_{n} \right\|_{K}^{2} \leq \frac{1}{2\lambda n} C \left\| \widehat{f}_{n} - \widehat{f}'_{n} \right\|_{\infty} \leq \frac{\kappa C}{2\lambda n} \left\| \widehat{f}_{n} - \widehat{f}'_{n} \right\|_{K}$$

Hence,

$$\left\| \widehat{f}_{n} - \widehat{f}'_{n} \right\|_{K} \leq \frac{1}{2\lambda n} C \left\| \widehat{f}_{n} - \widehat{f}'_{n} \right\|_{\infty} \leq \frac{\kappa C}{2\lambda n}$$

To finish the claim,

$$\left(\widehat{f}_{n}\left(x_{i}\right)-y_{i}\right)^{2}-\left(\widehat{f}_{n}'\left(x_{i}\right)-y_{i}\right)^{2}\leq C\left\|\widehat{f}_{n}-\widehat{f}_{n}'\right\|_{\infty}\leq\kappa C\left\|\widehat{f}_{n}-\widehat{f}_{n}'\right\|_{K}\leq O\left(\frac{1}{\lambda n}\right)^{2}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで