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Compression Bounds
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Compression Set

N
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Let us use the shortened notation for data: ./ = {Z1,...,Zn}, and Let us
make the dependence of the algorithm f,, on the training set explicit:

T = Tn[.]. As before, denote G = {(x,y) ~ £(f(x),y) : f € F}, and let us
write Gn (+) = £(fn(-),-). Let us write Gn[.](-) to emphasize the
dependence.

Suppose there exists a “compression function” Cy which selects from any
dataset .7 of size n a subset of k examples Cy () €.¥ such that

o] = P [Cr(2)]

That is, the learning algorithm produces the same function when given .%
or its subset Ci(.%).

One can keep in mind the example of support vectors in SVMs.
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Then,
L(fn) - L(fn) = EGn - %gﬁn(zi)
S ACNEDICIRE S ACHEDCA
< o JEG(AND) - 1 S alANz)

where .77 is the subset indexed by I.
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Since Gk [-1] only depends on k out of n points, the empirical average is
“mostly out of sample”. Adding and subtracting loss functions on for an
additional set of i.i.d. random variables W = {Z1,..., Z;} results in an
upper bound

max {E’g‘k[%](l)—% > G2

Ic{1,...n},|I|<k Zies!

}+ (b-a)k
n

where [a,b] is the range of functions in G and .’ is obtained from .¥ by
replacing .1 with the corresponding subset Wj.



For each fixed I, the random variable

EGAND) - T BANL)

is zero mean with standard deviation O((b - a)//n). Hence, the expected
maximum over [ with respect to ., W is at most

(b-a)klog(en/k)
oy kL

since log (1) < klog(en/k).
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Conclusion: compression-style argument limits the bias

— — klogn
E[L(fn) -L(fa)] <O (\/ o )

which is non-vacuous if k = o(n/logn).

Recall that this term was the upper bound (up to log) on expected excess
loss of ERM if class has VC dimension k. However, a possible equivalence
between compression and VC dimension is still being investigated.



Example: Classification with Thresholds in 1D

> X:[O,l], 372{0,1}
» F={fo:fo(x)=I{x>0},06¢[0,1]}
- U(Fo(x),y) = 1{fo(x) # U}

fn

Oo—oo-—0O0-0-0—00-—0—
0 ! 1

For any set of data (x1,y1),...,(Xn,Yn), the ERM solution .. has the
property that the first occurrence x; on the left of the threshold has label

yp = 0, while first occurrence x, on the right — label y, = 1.

Enough to take k = 2 and define T [.] = fa[ (x1,0), (x+, 1)].



Further examples/observations:
» Compression of size d for hyperplanes (realizable case)
» Compression of size 1/}/2 for margin case

» Bernstein bound gives 1/n rate rather than 1/y/n rate on realizable
data (zero empirical error).
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Algorithmic Stability
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Recall that compression was a way to upper bound E [L(?n) —f(?n)]
Algorithmic stability is another path to the same goal.

Compare:
» Compression: T depends only on a subset of k datapoints.

» Stability: T, does not depend on any of the datapoints too strongly.
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As before, let’s write shorthand g={of and Gn = ¢ O?n.
We now write

EsL(fn) =Ez,..z0.2{ GulZ1,...,Zn)(Z) }

Again, the meaning of gn[Z1,...,Zy](Z): train on Zy,...,Z, and test on Z.

On the other hand,

Sl

iﬁn[zl,.‘.,zn](zi) }

iEzl, Zn i GnlZ1,...,Z0](Z1) }

=Ezl vvvvv Zn{ a“[zl7"‘ﬂz“](zl) }

where the last step holds for symmetric algorithms (wrt permutation of
training data). Of course, instead of Z; we can take any Z;.
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Now comes the renaming trick. It takes a minute to get used to, if you
haven’t seen it.

Note that Zi,...,Zn,Z are i.i.d. Hence,

..... znz{ GnlZ1,...,Z0](2) }
=Ez,...znz{ GnlZ,Z2,...,Z:](Z1) }

Therefore,

E{L(fa) ~T(f0)} =Bz, 202 { GnlZ,Z2,.., Za)(Z1) = GnlZ1, .-, Za](Z0) }
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Of course, we haven’t really done much except re-writing expectation. But
the difference

GnlZ,Zo, ..., Z0(Z1) = GnlZ1,. .., Z0](Z1)

has a “stability” interpretation. If it holds that the output of the algorithm
“does not change much” when one datapoint is replaced with another, then
the gap E {L(fn) - L(fn)} is small.

Moreover, since everything we’'ve written is an equality, this stability is
equivalent to having small gap E {L(fn) - L(fn)}.



NB: our aim of ensuring small E {L(?n) —f(?n)} only makes sense if L(fy)
is small (e.g. on average). That is, the analysis only makes sense for those
methods that explicitly or implicitly minimize empirical loss (or a
regularized variant of it).

It’s not enough to be stable. Consider a learning mechanism that ignores
the data and outputs ?n = fp, a constant function. Then

E {L(?n) —f(?n)} =0 and the algorithm is very stable. However, it does not
do anything interesting.



Uniform Stability

Rather than the average notion we just discussed, let’s consider a much
stronger notion:

We say that algorithm is 3 uniformly stable if

Vie[nlzi,..,z 2z [Gl71(2) -Gl 7 )(2)] < B

i,2' ’
where "% ={z1,...,zi-1,2",Zi41,. .., Zn }.
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Uniform Stability

Clearly, for any realization of Z1,...,7Zn,Z,
GnlZ, Za,... . Zn(Z1) = GnlZs, ..., Zn](Z1) < B,

and so expected loss of a 3-uniformly-stable ERM is (3-close to its empirical
error (in expectation).

Of course, it is unclear at this point whether a -uniformly-stable ERM (or
near-ERM) exists.



Kernel Ridge Regression

Consider
n

-~ 1

= argmin — Y (f(X1) - Yo)? + A [f] 3
feH nia

in RKHS #H corresponding to kernel K.

Assume K(x,x) < k? for any x.

Lemma: Kernel Ridge Regression is [3-uniformly stable with = O (ﬁ)
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Proof (stability of Kernel Ridge Regression)

To prove this, first recall the definition of a o-strongly convex function ¢ on
convex domain W:

Vv eW, §(w) 2 bv) + (Vo) u-v) + 2 fu-v|’.

Suppose ¢, ¢’ are both o-strongly convex. Suppose w,w’ satisfy
Vo(w) =vd'(w') =0. Then

O(w) 2 (W) + £ [w-w'|

and o )
¢'(w) 2 ' (W) + 5 fw-w'|

As a trivial consequence,

o —w' [ < [60v') ~ &' (w)] + [ 0w) - ()]
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Proof (stability of Kernel Ridge Regression)

Now take 1
d(f) = n S (F(xi) —yi) 2 + A%

ies
and

(0= () -y AR

ie /!
where . and .’ differ in one element: (xi,y:) is replaced with (x{,y{).
Let Tn, Tl be the minimizers of ¢, ¢’, respectively. Then
A 1 !
O(F) =0 (F) < — ((Fu(x) = y)” - (Fa () - u)°)

and
((Fa(xd) =) = (Fa(x0) = u0)?)

Sl

¢ () - b (o) <

NB: we have been operating with f as vectors. To be precise, one needs to
define the notion of strong convexity over H. Let us sweep it under the rug
and say that ¢, $’ are 2A-strongly convex with respect to |-|.
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Proof (stability of Kernel Ridge Regression)

Then H?“ —ﬂ”i is at most
1 = = 7 7 7 7
n ((Fr(x) =y1)* = (Fa(xi) —y)* + (Fu(xi) - y0)* - (FL(x{) - u1)?)
which is at most
1 =~ =

— C|fa-To

|-
where C = 4(1+c¢) if [Y;| <1 and [fn(xi)] < c.

On the other hand, for any x

F00) = (f, Ka) < [Flh Kl = [l v/ (K K} = [l VK %) < k£l

and so
Il < & [f] -



Proof (stability of Kernel Ridge Regression)

Putting everything together,

1 = =

- 2
o=l < T -Tal < 25 |7 =Tl
Hence,
— 1 -~ kC
[T =l < 5l =Tl < o

To finish the claim,

—~ - -~ 1
() =) = (Bu(x) - o) < C[Fu - Tal, < xC -l <0 (5)
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