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Compression Set

Let us use the shortened notation for data: S = {Z1, . . . ,Zn}, and Let us
make the dependence of the algorithm f̂n on the training set explicit:
f̂n = f̂n[S ]. As before, denote G = {(x,y)↦ `(f(x),y) ∶ f ∈ F}, and let us
write ĝn(⋅) = `(f̂n(⋅), ⋅). Let us write ĝn[S ](⋅) to emphasize the
dependence.

Suppose there exists a “compression function” Ck which selects from any
dataset S of size n a subset of k examples Ck(S ) ⊆ S such that

f̂n[S ] = f̂k[Ck(S )]

That is, the learning algorithm produces the same function when given S
or its subset Ck(S ).

One can keep in mind the example of support vectors in SVMs.
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Then,

L(f̂n) − L̂(f̂n) = Eĝn −
1

n

n

∑
i=1
ĝn(Zi)

= Eĝk[Ck(S )](Z) − 1

n

n

∑
i=1
ĝk[Ck(S )](Zi)

≤ max
I⊆{1,...,n},∣I∣≤k

{Eĝk[SI](Z) −
1

n

n

∑
i=1
ĝk[SI](Zi)}

where SI is the subset indexed by I.
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Since ĝk[SI] only depends on k out of n points, the empirical average is
“mostly out of sample”. Adding and subtracting loss functions on for an
additional set of i.i.d. random variables W = {Z ′1, . . . ,Z ′k} results in an
upper bound

max
I⊆{1,...,n},∣I∣≤k

{Eĝk[SI](Z) −
1

n
∑

Z ′∈S ′

ĝk[SI](Z ′)} +
(b − a)k

n

where [a,b] is the range of functions in G and S ′ is obtained from S by
replacing SI with the corresponding subset WI.
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For each fixed I, the random variable

Eĝk[SI](Z) −
1

n
∑

Z ′∈S ′

ĝk[SI](Z ′)

is zero mean with standard deviation O((b − a)/
√
n). Hence, the expected

maximum over I with respect to S ,W is at most

c

√
(b − a)k log(en/k)

n

since log (n
k
) ≤ k log(en/k).
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Conclusion: compression-style argument limits the bias

E [L(f̂n) − L̂(f̂n)] ≤ O
⎛
⎝

√
k logn

n

⎞
⎠

,

which is non-vacuous if k = o(n/ logn).

Recall that this term was the upper bound (up to log) on expected excess
loss of ERM if class has VC dimension k. However, a possible equivalence
between compression and VC dimension is still being investigated.
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Example: Classification with Thresholds in 1D

▸ X = [0, 1], Y = {0, 1}
▸ F = {fθ ∶ fθ(x) = I{x ≥ θ},θ ∈ [0, 1]}
▸ `(fθ(x),y) = I{fθ(x) ≠ y}

0 1

f̂n

For any set of data (x1,y1), . . . , (xn,yn), the ERM solution f̂n has the
property that the first occurrence xl on the left of the threshold has label
yl = 0, while first occurrence xr on the right – label yr = 1.

Enough to take k = 2 and define f̂n[S ] = f̂2[(xl, 0), (xr, 1)].
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Further examples/observations:

▸ Compression of size d for hyperplanes (realizable case)

▸ Compression of size 1/γ2 for margin case

▸ Bernstein bound gives 1/n rate rather than 1/
√
n rate on realizable

data (zero empirical error).
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Recall that compression was a way to upper bound E [L(f̂n) − L̂(f̂n)].
Algorithmic stability is another path to the same goal.

Compare:

▸ Compression: f̂n depends only on a subset of k datapoints.

▸ Stability: f̂n does not depend on any of the datapoints too strongly.

11 / 22



As before, let’s write shorthand g = ` ○ f and ĝn = ` ○ f̂n.

We now write

ESL(f̂n) = EZ1,...,Zn,Z { ĝn[Z1, . . . ,Zn](Z) }

Again, the meaning of ĝn[Z1, . . . ,Zn](Z): train on Z1, . . . ,Zn and test on Z.

On the other hand,

ES L̂(f̂n) = EZ1,...,Zn { 1

n

n

∑
i=1
ĝn[Z1, . . . ,Zn](Zi) }

= 1

n

n

∑
i=1

EZ1,...,Zn { ĝn[Z1, . . . ,Zn](Zi) }

= EZ1,...,Zn { ĝn[Z1, . . . ,Zn](Z1) }

where the last step holds for symmetric algorithms (wrt permutation of
training data). Of course, instead of Z1 we can take any Zi.
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Now comes the renaming trick. It takes a minute to get used to, if you
haven’t seen it.

Note that Z1, . . . ,Zn,Z are i.i.d. Hence,

ESL(f̂n) = EZ1,...,Zn,Z { ĝn[Z1, . . . ,Zn](Z) }
= EZ1,...,Zn,Z { ĝn[Z,Z2, . . . ,Zn](Z1) }

Therefore,

E{L(f̂n) − L̂(f̂n)} = EZ1,...,Zn,Z { ĝn[Z,Z2, . . . ,Zn](Z1) − ĝn[Z1, . . . ,Zn](Z1) }
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Of course, we haven’t really done much except re-writing expectation. But
the difference

ĝn[Z,Z2, . . . ,Zn](Z1) − ĝn[Z1, . . . ,Zn](Z1)

has a “stability” interpretation. If it holds that the output of the algorithm
“does not change much” when one datapoint is replaced with another, then
the gap E{L(f̂n) − L̂(f̂n)} is small.

Moreover, since everything we’ve written is an equality, this stability is
equivalent to having small gap E{L(f̂n) − L̂(f̂n)}.
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NB: our aim of ensuring small E{L(f̂n) − L̂(f̂n)} only makes sense if L̂(f̂n)
is small (e.g. on average). That is, the analysis only makes sense for those
methods that explicitly or implicitly minimize empirical loss (or a
regularized variant of it).

It’s not enough to be stable. Consider a learning mechanism that ignores
the data and outputs f̂n = f0, a constant function. Then
E{L(f̂n) − L̂(f̂n)} = 0 and the algorithm is very stable. However, it does not
do anything interesting.
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Uniform Stability

Rather than the average notion we just discussed, let’s consider a much
stronger notion:

We say that algorithm is β uniformly stable if

∀i ∈ [n], z1, . . . , zn, z ′, z ∣ĝn[S ](z) − ĝn[S i,z ′](z)∣ ≤ β

where S i,z ′ = {z1, . . . , zi−1, z ′, zi+1, . . . , zn}.
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Uniform Stability

Clearly, for any realization of Z1, . . . ,Zn,Z,

ĝn[Z,Z2, . . . ,Zn](Z1) − ĝn[Z1, . . . ,Zn](Z1) ≤ β,

and so expected loss of a β-uniformly-stable ERM is β-close to its empirical
error (in expectation).

Of course, it is unclear at this point whether a β-uniformly-stable ERM (or
near-ERM) exists.
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Kernel Ridge Regression

Consider

f̂n = argmin
f∈H

1

n

n

∑
i=1

(f(Xi) − Yi)2 + λ ∥f∥2K

in RKHS H corresponding to kernel K.

Assume K(x,x) ≤ κ2 for any x.

Lemma: Kernel Ridge Regression is β-uniformly stable with β = O ( 1
λn

)
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Proof (stability of Kernel Ridge Regression)

To prove this, first recall the definition of a σ-strongly convex function φ on
convex domain W:

∀u, v ∈W, φ(u) ≥ φ(v) + ⟨∇φ(v),u − v⟩ + σ
2
∥u − v∥2 .

Suppose φ,φ ′ are both σ-strongly convex. Suppose w,w ′ satisfy
∇φ(w) = ∇φ ′(w ′) = 0. Then

φ(w ′) ≥ φ(w) + σ
2
∥w −w ′∥2

and
φ
′(w) ≥ φ ′(w ′) + σ

2
∥w −w ′∥2

As a trivial consequence,

σ ∥w −w ′∥2 ≤ [φ(w ′) −φ ′(w ′)] + [φ ′(w) −φ(w)]
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Proof (stability of Kernel Ridge Regression)

Now take

φ(f) = 1

n
∑
i∈S

(f(xi) − yi)2 + λ ∥f∥2K

and

φ
′(f) = 1

n
∑
i∈S ′

(f(xi) − yi)2 + λ ∥f∥2K

where S and S ′ differ in one element: (xi,yi) is replaced with (x ′i,y ′i).

Let f̂n, f̂ ′n be the minimizers of φ,φ ′, respectively. Then

φ(f̂ ′n) −φ ′(f̂ ′n) ≤
1

n
((f̂ ′n(xi) − yi)2 − (f̂ ′n(x ′i) − y ′i)2)

and

φ
′(f̂n) −φ(f̂n) ≤

1

n
((f̂n(x ′i) − y ′i)2 − (f̂n(xi) − yi)2)

NB: we have been operating with f as vectors. To be precise, one needs to
define the notion of strong convexity over H. Let us sweep it under the rug
and say that φ,φ ′ are 2λ-strongly convex with respect to ∥⋅∥K.
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Proof (stability of Kernel Ridge Regression)

Then ∥f̂n − f̂ ′n∥
2

K
is at most

1

2λn
((f̂ ′n(xi) − yi)2 − (f̂n(xi) − yi)2 + (f̂n(x ′i) − y ′i)2 − (f̂ ′n(x ′i) − y ′i)2)

which is at most

1

2λn
C ∥f̂n − f̂ ′n∥∞

where C = 4(1 + c) if ∣Yi∣ ≤ 1 and ∣f̂n(xi)∣ ≤ c.

On the other hand, for any x

f(x) = ⟨f,Kx⟩ ≤ ∥f∥K ∥Kx∥ = ∥f∥K
√

⟨Kx,Kx⟩ = ∥f∥K
√
K(x,x) ≤ κ ∥f∥K

and so
∥f∥∞ ≤ κ ∥f∥K .
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Proof (stability of Kernel Ridge Regression)

Putting everything together,

∥f̂n − f̂ ′n∥
2

K
≤ 1

2λn
C ∥f̂n − f̂ ′n∥∞ ≤ κC

2λn
∥f̂n − f̂ ′n∥K

Hence,

∥f̂n − f̂ ′n∥K ≤ 1

2λn
C ∥f̂n − f̂ ′n∥∞ ≤ κC

2λn

To finish the claim,

(f̂n(xi) − yi)2 − (f̂ ′n(xi) − yi)2 ≤ C ∥f̂n − f̂ ′n∥∞ ≤ κC ∥f̂n − f̂ ′n∥K ≤ O( 1

λn
)
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