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Generalization

Denote data by S = {Z1, . . . ,Zn}.

Recall the problem of bounding generalization gap

E[L(f̂n) − L̂(f̂n)]

The difficulty is in dependence of f̂n on the data on which it is being
evaluated. We saw that the difference is generally nonzero (bias). But how
strong is the dependence of f̂n on data? If not too strong – the empirical
loss should be roughly an unbiased estimate of the expected performance.

Today: information-theoretic notions of dependence of an algorithm on
data. We have to consider randomized algorithms, however. This approach
will not work with deterministic methods.

We shall frame the question of bias in the context of a more general
question of bias in adaptive data analysis.
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Consider a randomized algorithm f̂n[S,ξ], where ξ is internal
randomization of the method. Since the notation becomes cumbersome,
let’s shorten it to W = f̂n[S,ξ] where W will be treated as a random
variable taking values in an abstract set (say, a class of functions).

Let PW∣S denote the distribution of W conditionally on data.
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Differential Privacy

Definition: a randomized algorithm is (ε, δ)-differentially private if

PW∣S=s(A) ≤ eε ⋅ PW∣S=s ′(A) + δ

for any measurable A and any two datasets s and s ′ differing in one
example.

Assume loss function is bounded in [0, 1], unless otherwise specified.
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Differential Privacy

For a differentially private method, for any given S, z ′, and z,

Eξ [`(f̂n[Si,z
′

,ξ], z)] ≤ eε ⋅ Eξ [`(f̂n[S,ξ], z)] + δ

since loss is bounded by 1. Rearranging and using boundedness of loss,

Eξ [`(f̂n[Si,z
′

,ξ], z)] − Eξ [`(f̂n[S,ξ], z)] ≤ (eε − 1) + δ

This is uniform stability (extended to randomized algorithms) from
previous lecture. Note that eε − 1 ≤ 2ε for ε ∈ [0, 1].

Conclusion: differential privacy is a stronger notion than uniform stability
(if loss function is bounded). In particular, differential privacy also yields a
bound on generalization gap

E [L(f̂n) − L̂(f̂n)]

Let us discuss a few weaker notions that still yield small generalization gap.
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Notions of “distances”

Relative entropy:

D(P∣∣Q) = EP log
dP

dQ

Total variation distance:

dTV(P,Q) = sup
A

∣P(A) −Q(A)∣

Max divergence:

D∞(P∣∣Q) = sup
A

log
P(A)
Q(A)

Approximate max divergence:

D
δ
∞(P∣∣Q) = sup

A∶P(A)>δ

log
P(A) − δ
Q(A)

Eγ-divergence (γ ≥ 1):

Eγ(P∣∣Q) = sup
A

P(A) − γQ(A)
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Relations among these “distances”

dTV(P,Q) ≤
√

1

2
D(P∣∣Q)

D(P∣∣Q) ≤ D∞(P∣∣Q)

1 − γ(1 − dTV(P,Q)) ≤ Eγ(P∣∣Q)
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Corresponding notions of “independence”

(U,V) with joint law PUV and marginals PU, PV .

Mutual information
I(U;V) = D(PUV ∣∣PU ⊗ PV)

T -information
T(U;V) = dTV(PUV ,PU ⊗ PV)

Max-information
I∞(U;V) = D∞(PUV ∣∣PU ⊗ PV)

Approximate max-information

I
δ
∞(U;V) = Dδ∞(PUV ∣∣PU ⊗ PV)

Conditional notions of information are defined as integrated versions

I(U;V ∣Y) = ∫ PY(dy)D(PUV ∣Y=y∣∣PU∣Y=y ⊗ PV ∣Y=y)
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Differential Privacy

(ε, δ)-differential privacy can be written as

Eeε(PW∣S=s∣∣PW∣S=s ′) ≤ δ

or as
D
δ
∞(PW∣S=s∣∣PW∣S=s ′) ≤ ε

for s, s ′ differing in one example.
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From differential Privacy to max-information

(ε, 0)-differential privacy:

log
PW∣S=s(A)
PW∣S=s ′(A) ≤ ε

where s, s ′ differ in one coordinate. Applying repeatedly,

log
PW∣S=s(A)
PW∣S=s ′′(A) ≤ nε

for any two datasets s, s ′′. Then, trivially,

I∞(W;S) ≤ nε ⋅ log(e).
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From differential Privacy to max-information

It is also possible to show (Dwork et al ’15) a stronger result by giving up
in δ:

I
δ
∞(W;S) ≤ O(nε2 + ε

√
n log(1/δ)).

Furthermore, (ε, δ)-differential privacy implies (Rogers et al ’16)

I
β
∞(W;S) ≤ O(nε2 + n

√
δ/ε), β = O(n

√
δ/ε)

Advantage of I∞ over mutual info or other measures: possible to prove high
probability bounds – see (Dwork et al ’15).
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Incremental notions of independence

Define erasure mutual information

I
−(W;S) =

n

∑
i=1

I(W;Zi∣S−i)

where S = {Z1, . . . ,Zn} and S−i is with Zi removed.

Similarly, erasure T -information is

T
−(W;S) =

n

∑
i=1

T(W;Zi∣S−i)
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Upper bounds on generalization gap

If loss is bounded 0 ≤ ` ≤ 1,

E [L(W) − L̂(W)] ≤ 1

n
T
−(W;S)

If loss `(w,Z) is σ2-subgaussian for any w (loss can be unbounded),

E [L(W) − L̂(W)] ≤
√

2σ2

n
I(W;S)

If data in S are assumed to be independent,

I(W;S) ≤ I−(W;S).

If for any s, s ′ differing in one example,

▸ D(PW∣S=s∣∣PW∣S=s ′) ≤ ε, then I−(W;S) ≤ nε
▸ 1

n ∑
n
i=1D(PW∣S=s∣∣PW∣S=s−i) ≤ ε, then I−(W;S) ≤ nε

▸ dTV(PW∣S=s∣∣PW∣S=s ′) ≤ ε, then T−(W;S) ≤ nε
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Example: Gibbs algorithm
Suppose algorithm takes values in a set F and loss 0 ≤ ` ≤ 1. Let Q be some
prior distribution on F . For a fixed dataset s, define the Gibbs measure

PW∣S=s(dw) ∝ exp{−βL̂s(w)}Q(dw)

Large β means distribution is focused on minimum loss (ERM). On the
other hand β = 0 means no dependence on data. We should expect bounds
on generalization gap to be vacuous when β is too large, and 0 when β = 0.

A direct computation shows that

D(PW∣S=s∣∣PW∣S=s ′) ≤
β2

2n2

whenever s, s ′ differ in one example. Hence,

I
−(W;S) ≤ β

2

2n

Since subgaussianity parameter σ2 = 1/4, we get

E [L(W) − L̂(W)] ≤
√

2σ2β2

2n2
= β

2n
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Decoupling lemma

Mutual information upper bound on generalization gap is a consequence of
the following general lemma.

Let U,V be random vars with joint PUV . Let Ū, V̄ ∼ PU ⊗ PV be inde-
pendent copies from marginals. Assume f(u,V) is σ2-subgaussian for
any u. Then

∣Ef(U,V) − Ef(Ū, V̄)∣ ≤
√

2σ2I(U;V)

This is a consequence of Donsker-Varadhan.
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Adaptive composition

Suppose we execute m algorithm sequentially, with input to each algorithm
Ai being the output of all previous Aj, j ≤ i − 1, and the dataset S.

If each algorithm Ai is (εi, δi)-differentially private, then the composition is
(∑εi,∑ δi)-differentially private. This is “linear” composition.

Advanced composition: m-fold composition of (ε, δ) diff private
mechanisms, enjoys (ε ′,mδ + δ ′) differential privacy for

ε ′ =
√

2m ln(1/δ ′)ε+mε(eε − 1). That is, sublinear composition for small ε.

Composition (of the linear type) also holds for max-information I∞() ,
erasure mutual information I−(), and other KL-based notions of stability
from previous slide.

See the survey by (Dwork and Roth) for more information (and other refs
at the end of these slides).
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Adaptive data analysis

Decoupling lemma can also be used in a slightly different context of
adaptive data analysis. Imagine we compute various statistics

Φ = (φ1(S), . . . ,φm(S))

(not necessarily average loss). Let W be a (possibly randomized) selection
rule in values in {1, . . . ,m}. Then

∣E(W,S)[φW(S)] − EW[µW]∣

is the bias of our procedure, where µj = Eφj(S).
▸ The quantity E[φW(S)] is the expected value of the statistic chosen

after seeing the data S. Expectation is over joint (W,S). This can
introduce bias.

▸ EW[µW] is the decoupled version – “future performance” of the chosen
statistic. Imagine we had a fresh dataset S̄. Then φW(S̄) would an
unbiased estimate of EW[µW].
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Data Split: Train-Validate-Test

One often trains multiple models on a given training dataset and evaluates
each model on a validation set (this is the collection of φi’s). The model
with best performance is then reported. The result is precisely the bias
described above.

To report an unbiased estimate of true expected performance, one needs to
leave out a (third) test dataset and evaluate on this fresh dataset only once
(e.g. 5 min before the paper deadline). Of course, it is difficult to police
this practice.
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Adaptive data analysis

Lemma: if φi − µi is σ2-subgaussian,

∣E[φW(S)] − EW[µW]∣ ≤
√

2σ2I(W;Φ)

Note that
I(W;Φ) ≤ I(W;S)

by data-processing inequality.

Proof of Lemma: use Decoupling Lemma with U =W, V = S, and
f(W,S) = φW(S). Then

E[f(W,S)] = EφW(S), E[f(W̄, S̄)] = EφW̄(S̄) = EµW
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