



































































































































Why deep nets
Is deep better than shallow
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Approximation Theory

why is depth better



Shallow networks
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Deep Networks
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Networkstoappnoxuriate
representfunctions

Are deep nets better

than shallow ones

The answer in the SO

was no

We will see

proof of above
a new answer deep
nets can be much

better for certain f



key ideas in approximation
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Density
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Curse ofdimensionalityIn

Bellman's term

a optimization
cannot be done by
Rs

a function approximation
requires yd evaluations

for f Lipschitz order E

D integration



Blessings of

a Smoothness
Barrow's Green

2 compositionelity



Examples
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Kd monomials

A function of 10 Variables
corresponds to a 10 D

table If each dimension

is discretized vi Just 10

partitions I have table with

10 entries If D 100 pixels
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Summary proof
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Logic of t t

Networks approximate univariate poly

Univariate get in CW X represent

multivariate gel
Multivariate pet approximate
Sobolev functions
Thus theorem



Any univariate p x

can be represented as linear

combination of smooth ReLU
proof
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p a of a

Second derivative which

needs 3 terms gives x

0 0 0

Thus Nr is dense in C CH

because of Weierstrass theorem
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We want to show that
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Remarks

c Even without a shallow
net can represent arts Well

polynomials in PL with

2 units 2 fed



Depths e

For general functions
shallow and deep nets

suffer curse ofdrinensionality

But for Local Hierarchical
Compositional functions
deep nets unlike shallow

ones do not have curse
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a deep net n 3 t 3 10

Intuition
Thf shallow wet f

4 units

deep wet f
2

for each node

6
N A

fer total 3 12 units

Another ee.am

y VsinCX.exz oCxzeXuY

h6 h h2C4xz has 34



Theorem
Deep nets with same graph

approximate functions in d

variables in WE with 4 units

per node r O m fer

total units 0 Kd D Th
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O units We assume
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This theorem may eeplain
why deep nets are successful

and why all the really good
ones are C N Ns h h
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Locality is hey not

weight sharing of weight

sharing helps butuoteepuentially




