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In this lecture we will discuss a couple of ways to analyze sample
complexity of neural networks.

First result is concerned with the VC dimension of neural networks.

(Bartlett et al ’17): fix an architecture of a neural network with L

layers, W parameters, and ReLU activation. Then VC dimension of the
collection of functions is O(WL logW).

See above paper for a more general statement, other activation functions,
etc.

Since typical VC bounds scale with VCdim(F)

n
, the bound is vacuous

whenever WL logW exceeds n.
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However, as we saw earlier, VC dimension is only a loose upper bound on
the generalization performance. We saw this on the example of Perceptron,
where the dimension could be taken to be infinite, yet inverse margin (or `2
norm of the separating hyperplane) can determine sample complexity.

In particular, we saw that for Perceptron we could analyze (with the help of
the margin bound) the Rademacher averages of the class

Flin = {x↦ ⟨w,x⟩ ∶ ∥w∥ ≤ 1}.

We saw that

R̂n(Flin) ≤
1√
n

irrespective of dimensionality, assuming ∥xi∥ ≤ 1.
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Fix an architecture of a neural network. Recall our notation:

fW(x) =WL
σ (WL−1

σ (. . .σ (W1
x) . . .))

where we abbreviate W = (W1, . . . ,WL).

Just as in the case of Flin, we would like to define a “ball” in the space of
neural networks:

{fW ∶ compl(W1, . . . ,WL) ≤ 1}

for some notion of complexity compl.

Note: many tuples (W1, . . . ,WL) lead to the same function fW . Example:
take ReLU activation, scale one layer up by 100, another down by 100.
Function does not change. This is “invariance” to a transformation. There
are many transformations that leave the function intact. We would like to
make sure compl does not assign different values of complexity to different
sets of parameters if they lead to same function.
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Example: take Frobenius norm of all the layers:

compl(W) =
L

∑
j=1

∥Wj∥
F

since this is a natural “generalization” of the corresponding Euclidean norm
for Flin. Unfortunately, this measure does not capture the scaling
invariance of the layers. However, a product of Frobenius norms would
reflect the invariance (though it may not reflect many other invariances)

compl(W) =
L

∏
j=1

∥Wj∥
F

Of course, it is not at all clear that the Rademacher averages of a unit ball
defined with respect to this complexity is non-vacuous. Remember that we
relied heavily on linearity of functions to analyze R̂n(Flin).
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Norms based on spectrum
Before we start, some other norms of a d1 × d2 matrix A:

Operator norm (or, spectral norm, or 2-norm) of a matrix A:

∥A∥ = σmax(A) =
√
λmax(A∗A)

and can also be written as

∥A∥ = max
x≠0

∥Ax∥
∥x∥

General Schatten norms:

∥A∥p =
⎛
⎝

min(d1,d2)

∑
i=1

σ
p
i

⎞
⎠

1/p

The p = 2 case coincides with the Frobenius norm.

The p = 1 case is termed nuclear norm, or trace norm, or Ky Fan norm:

∥A∥nuc =
min(d1,d2)

∑
i=1

σi = trace(
√
A∗A).
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Entrywise norms

Sum of `2 norms of columns:

∥A∥2,1 =
d2

∑
j=1

∥A⋅,j∥ =
d2

∑
j=1

(
d1

∑
i=1

A
2
i,j)

1/2

Maximum `2 norm of columns:

∥A∥2,∞ = max
j=1...d2

∥A⋅,j∥

For general p,q ≥ 1,

∥A∥p,q =
⎛
⎝

d2

∑
j=1

(
d1

∑
i=1

∣Ai,j∣p)
q/p⎞
⎠

1/q
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Sample complexity by recursive peeling

Define the class of L-layer neural networks (with fixed architecture)
recursively as

Fi =
⎧⎪⎪⎨⎪⎪⎩
x↦

di−1

∑
j=1

wjσ(fj(x)) ∶ fj ∈ Fi−1, ∥w∥1 ≤ Bi
⎫⎪⎪⎬⎪⎪⎭

where di is number of hidden units in ith layer. Think of this class as a
class of real valued functions implementable as a linear combination of
lower-level functions using `1-bounded combination. We assume that σ is
1-Lipschitz. Base class F1 is some class (e.g. linear functions computed by
first layer). Think of w as any row of Wi.

Claim:
R̂n(Fi) ≤ 2BiR̂n(Fi−1)
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Proof:

nR̂n(Fi) = Eε max
∥w∥1≤Bi,fj∈Fi−1

n

∑
t=1

εt∑
j

wjσ(fj(xt))

= Eε max
∥w∥1≤Bi,fj∈Fi−1

∑
j

wj
n

∑
t=1

εtσ(fj(xt))

≤ Eε max
∥w∥1≤Bi,fj∈Fi−1

∥w∥1 max
j

∣
n

∑
t=1

εtσ(fj(xt))∣

where the last step is by the Cauchy-Schwartz inequality. The last
expression is at most

BiEε max
f∈Fi−1

∣
n

∑
t=1

εtσ(f(xt))∣

which is at most

2BiEε max
f∈Fi−1

n

∑
t=1

εtσ(f(xt)).

By contraction property this is at most 2BiR̂n(Fi−1), as claimed.
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Let’s fix
F1 = {x↦ ⟨w,x⟩ ∶ ∥w∥1 ≤ B1}

and assume further that ∥x∥
∞
≤ 1. We have seen that in this case

R̂n(F1) ≤ c
√

logd

n

Putting everything together (Bartlett and Mendelson ’03):

The Rademacher averages of FL, the class of L-hidden-layer neural net-
works with rows of weight matrices Wi bounded by Bi in `1 norm (that
is, ∥(Wi)T∥

1,∞
≤ Bi) is

O
⎛
⎝

2L ⋅
L

∏
i=1

Bi ⋅
√

logd

n

⎞
⎠

▸ Pros: no (explicit) dependence on number of units, only on the size of
weights (similar to Perceptron case in spirit).

▸ Cons: ∥Wi∥
1,∞

may be large. Exponential dependence on depth.
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Is exponential dependence on depth unavoidable?

Consider a thin neural network f(x) = wLσ (. . .σ(w1x) . . .) with w1 ∈ R1×d

and all wj ∈ R≥0 for j > 1 be nonnegative numbers. Take σ to be ReLU.
Then by positive homogeneity of ReLU,

f(x) =∏
j>1

w
j ⋅ ⟨w1,x⟩

Clearly, in this trivial case there is no exponential dependence on depth.
Question is whether this dependence can be avoided beyond this trivial
case. The next positive example is diagonal matrices. Beyond that?
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Some of the existing results

Ignoring logarithmic factors and constants: generalization error bounded by

(Neyshabur and Srebro ’15):

L

∏
j=1

∥Wj∥
F
⋅ 2L ⋅ 1√

n

(Neyshabur et al ’17):

L

∏
j=1

∥Wj∥ ⋅ L ⋅

¿
ÁÁÁÀh

L

∑
j=1

∥Wj∥2F
∥Wj∥2

⋅ 1√
n

(Bartlett et al ’17):

L

∏
j=1

∥Wj∥ ⋅
⎛
⎜
⎝

L

∑
j=1

⎛
⎝
∥Wj∥

2,1

∥Wj∥
⎞
⎠

2/3⎞
⎟
⎠

3/2

⋅ 1√
n

Here h is network width.
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(Golowich et al ’18)

Õ
⎛
⎝

min

⎧⎪⎪⎨⎪⎪⎩

L

∏
j=1

∥Wj∥F ⋅
1

n1/4
,
L

∏
j=1

∥Wj∥F ⋅
√
L

n

⎫⎪⎪⎬⎪⎪⎭

⎞
⎠

.

▸ first regime: Independent of network depth or width

▸ second regime: mild
√
L dependence on depth

This is as close to the Perceptron analogue as we can get at this point.
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One can show (see Golowich et al) that some dependence on width of
network is necessary if one only controls Schatten-p norm for p > 1/2. At
p = 2 (Frobenius norm), one can avoid depth and width dependence.
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