



































































































































Caution remark

Ongoing work

likely

Possible terrors to



SolutiousferDNNI

dynamicsanduorurst
Dynamical system approach square less

Linear case one layer

Multilayer nonlinear

Gingleity control uninium noun

2 Dynamical systemapproach i up losses
I layer luiear I layer nonlinear Srebo us

normalisation regularisation worm control
min noun



Dyuam.ca sappread

squareloss

We are interested in characterizing which

solutions G D converges To One reason

eventually
is to understand uhwch Raid ofcomplexity
control takes place in deep nets



Notation

fcxi.uEimi.f ii4Cwi5x.f

Jacobian of fur w

22LHessian of Lnp
2 windwad

Why t

An intuition for a non discrete math guy is given by
jet x 0

Solution is t e
ft t d t

For convergence to minium g we need f j M d t a

Fer robusteren againstnoise such as discretization noise in

k t g t f t UCH a o

we also need g t O



Gradient dynamical systems and GD

The loss function is potential Liquor
function Lek hi fucci Yi

The gradientdynamical system induced by GD
is

VV a y w L I FF

Square loss p li wait Yi

We are interested in equilibriumpoints cowagence ofGD
ther is w't s t w

We are interested in stability of W For this

we look at Hessian of L that is

H
it ebdwin 2WTk

H of cower function is pos def U



Linear one layer networks

In this case IE l and

f cry W x Wt x

Thus
w

f 2 Yu W'JxF ye IR Gil
T Eu Eu

x c lad

w u s t Y W X W Y X
i

Suppose overyarametrization that is Ns d

Then f fits data that is Eu O tu i N

at which fruit in T 0

Notice that during dynamics only the weights that

are in the span of the change The others in the

null spaceof X decretchange thegradient is zero

The Heswanef L is

His E x x

at min Z Xu get



Zu E

that is the sum of auto covariance matrices each one

being sewi e prithee Thus there are zero

eigenvalues

Shou slide U

h this situation degenerate H there is no unique
minimum and we explicit control of noun

Regularization Adding an arbitrarily small

regularization term solves the problem here
instead of w

L Zu Yu W'Jx

I use L 21 yn W't xf I2,1W t

Thus
viii Eu Eu x x w't

which is called weightdecay

The equilibrium pint shifts to
N

t w t 2 En x 26 w'T x that is



i w u t nd c S

d W fixe w xixEf

corresponding to

HEY W X Xt th Wao
Y Xt t w I X E D

text W XXT d I I
W 7 Xt xxted I

l

The Hessian is now

Hip x x d I

always positivedefinite fer f d 00
mm



harpbatregularization

For square loss and linear networks GD converges
to the same solution ofregularization w U d o

which is the pseudoinverse solutionIn

W Y Xt Xi 7 Xt which is

the minium nerve solution
In

The condition for thus to happen is that the

initial condition for G D is WON 0

Then the degenerate components of the gradient
2 0 do not change the weights wit

which remain 0 thus ruin nerve



Nouncoutrolgregularizationunplicitregularisation

the regularisation win is hyperbolic and

independentof initial conditions This also means one

can perturb andget back To sanne W

the implicitregularization win is degenerate and

dzdq.mil Eious This means that
perturbations during G D will change final W

A similar situation holds for

multilayer linear networks

a



Deepnetsisquareless
F or general networks fax WITSC 6 wit xD

the gradient equations are

Wii Zaw h E E 3 wait

H ish 22
b h L

2Wint I want

In 3 3 En
w

f t Ii

As for his ear networks there is no finite
equilibriumpoint because It is in general
degenerate This is clear in the deep polynomial
case because only the wins in the span of the tqchange If N s a t w there is degeneracy





Harriman Groburan Theorem

Dynamical system V.V F w Vw L

If F has hyperbolicequilibrium W and Herman

of LAdes not have 2ero eigenvalues there then
7 N of W and homeomorphism he N a Rd s t

h I 0 and ni N the flow of W f w

is topologically conjugate by the continuous map
U h to the flow of linearized system
in Hu



ExtensiontodeepuetsweHGfasquarelossI
can

Regularization transform degenerate Heman

at a min into hyperbolic min

Consider

Wii 2µL Eu Eu III it WI

W s t W O f En fu fkn w yn E

Then

f
H I 37,3 En I w

DI

can be pos def





T.casysTems

expueutialtypelosN
Exponential loss p L Zu Li

Yi fGil
li l

yo I 1

Linear net f cry W xp

Assuming separable date yn f 720 fan
G D generate dynamical system

I e
I

4 e

with vector notation W I

I In e
wt x

Thus the componentsof W grow positive
or negative To infinity slower and slower





p ef a ly eng gea

Because of e it seems we have

similar situation as ifor square loss

regularisation Endperhaps normalization

can guarantee hyperbolewhy thus

validity of Hartman Grobman and thus

extension to D N Ns including control

of noun

Next we study the effectofregularization
and normalization



RegularizationferluicaruetsuilheeploI

in EwChe dat x it d w

The minimum wk is given by
t

xu e w

Xa t E e n

X K a

more in general w Wo is a hiv car combination of
support vectors thus wt xn i

t
w Xu

H In Xu Xue JI

which is a stable win XuXE has aero

eigenvalues

This recovers the jest of Srebo result

for d 0



RELWandhomogeueitypopediaofDNNSDefiuitc.eu

of Renu uirphies

6Gt ZEE z
22

and

f x II gu Ftw.it x

where Sn WI'T Wins

and fu HWun

Furthermore Sasha etat I
win 2 fax th



Nama lization

I I UTU z l
tWII

g WI I
2W

2 YI I Ew S
HWU

3 Sw S E 0

Let us reparametuise GD in terms of E g
i leye starting from

int 2 aye fan
e

d WT

This goes a men dynamed system

www.g 2mL in Ftw



H h a f W w w
d to

E few we s in

Thus

j YE I ist g En ist ice
always growing

it Zu ist
Tu IE e fan

For linear networks

IS
It

wut

I Xu Tut xu

f



f

gI Xu
Define X leg Xu

Then stationary print in W satisfies

X TV I X O

D I I

If e
Enter

KH

S x x then

at minium

H CI Tutt Xt t f Xt w xt

which is pos def unlike

However the argument depends on once

effect in Eu e
t

which is not true in general



Summary
Square loss

Hyperbolic behaviour is guaranteed for 1 layer
can happenfamulriple layers by
small d regularization In this case

H G guarantees extension oflinear analysis to

nonlinear deep nets Theusolutiousion
Winton O

o Exponential loss
GDcourage to hyperb solution independent of initial crudities
in termsof normalised weights for linear networks freebie

We prove the same is true for regularised GD not true

for normalized C Dad true fer Early stroppy GD




