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 Training and computation in a neural net
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• Approximation Theory: When and why are deep 
networks better than shallow networks? 

• Optimization: What is the landscape of the empirical 
risk? 

• Dynamical System Approach: Characterizing SGD 
solutions. Are they stable? Control of norm? Maximum 
margin? 

• Learning Theory: How can deep learning not overfit? 

 Deep Networks: three theory questions



When is deep better than shallow

Theorem, Mhaskar, Poggio, Liao 2016 (informal statement)

Suppose that a function of d variables is hierarchically locally compositional . Both 
shallow and deep network can approximate f equally well. The  number of parameters of 
the shallow network depends  exponentially on d as             whereas the deep networks 
show  

O(ε −d )
O(dε −2 ) vs O(ε −d )

f (x1, x2,..., x8 ) = g3(g21(g11(x1, x2 ),g12 (x3, x4 ))g22 (g11(x5, x6 ),g12 (x7, x8 )))

A new way to avoid the curse for compositional functions: 
deep networks

 Note: Locality, not weight sharing,  avoids the curse of dimensionality



• Approximation Theory: When and why are deep 
networks better than shallow networks? 

• Optimization: What is the landscape of the empirical 
risk? 

• Dynamics of learning: What are the solutions? Are 
they stable? Maximum margin? 

• Learning Theory: How can deep learning not overfit? 

 Deep Networks: three theory questions



When is deep better than shallow

• There are may zero minimizer with overparametrized deep 
networks because of Bezout theorem 

• SGDL finds with very high probability  large volume, flat zero-
minimizers; empirically SGD behaves in a similar way 

• Flat minimizers correspond to degenerate zero-minimizers and 
thus to global minimizers;  

SGDL and SGD observation: summary

Poggio, Rakhlin, Golovitc, Zhang, Liao, 2017 



• Approximation Theory: When and why are deep 
networks better than shallow networks? 

• Optimization: What is the landscape of the empirical 
risk? 

• Dynamical System Approach: Characterizing SGD 
solutions. Are they stable? Control of norm? Maximum 
margin? 

• Learning Theory: How can deep learning not overfit? 

 Deep Networks: three theory questions



When is deep better than shallow

Dynamical Systems approach: 
degenerate minima in DNNs 

represent the main obstacle in extending analysis  
from linear to nonlinear networks

What happens in the simplest case, that is linear one layer networks? 

Degenerate Hessian, no norm control! 

Regularization is needed….



Explicit regularization is OK 
in the degenerate linear one-layer case under square loss
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Hyperbolic minimum, non degenerate Hessian, does not depend  
on initial conditions/perturbations



Even just implicit regularization by GD+SGD “works” 
in the degenerate linear one-layer case under square loss

W

∑

x1   x2....  xd−1   xd
W = YX †

Min norm solution is the limit for                  of regularized solutionλ→ 0



Degenerate Hessian



Degenerate Hessian,  
depends on initial conditions/perturbations 
which affect minimum norm property and 
may decrease test performance



 Deep linear network: GD as implicit regularizer

GD regularizes implicitly deep linear networks as it does for linear networks



Linearization yields dynamics of nonlinear RELU network 
around a minimum if Hessian is non degenerate

Qianli Liao, Andrzej Barbuski



Deep RELU networks under square loss  
are usually degenerate



Degenerate minima of Deep RELU networks under square loss  
can (?) be regularized (dynamically)

Usual regularization is not sufficient because regularization 
shifts the minimum

However regularization “switched on” centered at       where the Hessian is 
degenerate and loss is very small, should enforce positive definiteness of 
the Hessian. The minimum in this dynamically regularized version of GD 
controls now the Frobenius norm at each layer k. The argument can be 
applied to DNNs because of Hartman-Grobman.

w*

Qianli Liao, Andrzej Barbuski

H



Dynamical Systems Approach:  
linear networks and exponential loss

There is no minimum, weights grow to infinity. In analogy with the linear case but 
for completely different reasons Srebro et al. proved (2017) that there can be 
convergence to the minimum L_2 solution independently of initial conditions at 
infinite time of                      . It is still unclear whether experiments (next slide)        
support this.  
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Exponential loss linear net, these simulations show  
no convergence at finite time, dependence  on perturbations

Qianli Liao, Andrzej Barbuski



Dynamical Systems Approach:  
linear networks, exponential loss and regularization

There is a stable minimum, also independent of initial conditions, and the 
Hessian of L is positive definite  
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Qianli Liao, Andrzej Barbuski



Exponential loss linear net, regularization, does not depend on perturbations

Qianli Liao, Andrzej Barbuski



Homogeneity properties of RELU networks

Qianli Liao, Andrzej Barbuski

For RELUs  σ (z) = z ∂σ
∂z

 and 
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Dynamical Systems Approach:  
Deep Networks, exponential loss

L = e− yn f (xn )
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The minimum is usually degenerate (first term has correct sign but is rank one).

Qianli Liao, Andrzej Barbuski



Dynamical Systems Approach 
A (slightly) different algorithm: time-dependent regularization

Switching on a regularization term at large time creates a regularized minimum 
where L is close to zero and H is degenerate. That minimum is stable with 
arbitrarily small    .  Hartman-Grobman can now be used to guarantee norm 
control at each layer of a deep network for this algorithm.

Qianli Liao, Andrzej Barbuski
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Dynamical Systems Approach:  
Deep Networks, exponential loss, weight normalization

Weight normalization (different forms of it) induce a regularization-like term and 
maximize    - to be precise                               - subject to             .     
 This does not guarantees stable minima: there is in fact a counterexample for 
the linear network case. However, from the point of view of  learning theory 
adding the constraint                to the dynamical system does not change it: this 
shows that normalization is enforced!. 

Qianli Liao, Andrzej Barbuski

!f Vk  = 1

Vk  = 1

max  minnyn !f (xn )



Dynamical Systems Approach: conjecture

Qianli Liao, Andrzej Barbuski

The vanilla  SGD algorithms do not  converge to a stable minimum. They minimize 
the margin,               — avoiding the classification errors by growing the norm. It 
seems that separating the data may be  good enough in most cases. Empirically 
the convergence seems to be to a degenerate minimum as indicated by Theory II 
and the linear network case.    The weight normalization algorithms satisfy the key 
requirement of maximizing   while strictly enforcing the normalization constraint. 
However they converge to degenerate minima.                               

γ = ρ !f

Recall                                            and that the goal is to minimize
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We define                           where we split each weight matrix into a matrix of  
unit Frobenius norm and the scalar norm. Then we use a penalty term in the 
loss to control the Frobenius norm

The resulting GD equations give the dynamical system 

with Hessian

Qianli Liao, Andrzej Barbuski

!f
Dynamical Systems Approach:  

New SGD algorithm for maximizing     with non degenerate minimum..      
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Dynamical Systems Approach:  
new SGD algorithm for maximizing margin with “early stopping”      

Consider the dynamical system 

Qianli Liao, Andrzej Barbuski

!ρ = e−ρ "f (xn )

n

N

∑ "f (xn )                          !vk
i, j = ρ e−ρ "f (xn )

n

N

∑ ∂ "f (xn )   
∂vk

i, j − 2λvk
i, j

with ∂
∂t

Vk
2 = 2ρ e−ρ "f (xn )

n

N

∑ "f (xn )− 2λ Vk
2 = 2(ρ !ρ − λ Vk

2 )  implying that for 

λ = ρ e−ρ "f (xn )

n

N

∑ "f (xn )  then Vk = 1, the constraint is enforced, SGD should be stopped 

while the loss is being minimized and the margin maximized under the constraint



Set yf (x) = yρ !f (x) where ρ= ρk∏  and !f (x) contains

the "to-be-normalized" weight matrices Vk  with components  vk
i, j .

Then minimization of                  

corresponds to maximizing the margin  minn yn f (xn ) = minn ynρ !f (xn )

The complexity of the solution attained by GD can be measured in terms of its Rademacher averages 
which are bounded by the product of the Frobenius norms of the weight matrices of  the network and 
normalized by the margin. Thus 

•  the margin normalized complexity which is relevant for bounding the expected error in classification 
is proportional to  

•  the complexity which is relevant for bounding the expected loss in terms of the cross-entropy loss is 
given by the Rademacher average and thus here by  

!f

Qianli Liao, Andrzej Barbuski
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These properties 

•  the margin normalized complexity which is relevant for bounding the expected error in classification 
is proportional to  

•  the complexity which is relevant for bounding the expected loss in terms of the cross-entropy loss is 
given by the Rademacher average and thus here by 

explain a few little puzzles:  
•  we can dial down complexity of f by setting          : then this (scaled 
down)  empirical minimizer predict well its expected loss…it can even 
predict expected from empirical error on randomly labeled examples 
(disproving claims in Zhang et al paper)!  

•  one of the next slides  shows that test loss can increase while the 
classification error does not: this is because         increases affecting the 
bound on regression error but this does not affect the margin normalized 
complexity which is the key for bounding classification error.
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 How to generate minima with zero training error but different test errors



 Unnormalized mess



 The magic of layer-wise normalization





  
The reason is that we are looking at generalization in 

regression (not classification)

With probability ≥  (1-δ )

E( f )− ES ( f ) ≤ 2! N (F)+
ln 1
δ

2N

Consider typical generalization bounds for regression: they have the following form:



 
Good generalization with less data than # weights 

Large capacity: fitting randomly labeled data



Deep nets puzzle:      growsρ and      does not  !f



General musings

The evolution of computer science 

• there were programmers 

• there are now labelers 

• there may be schools for bots…  



The first phase (and successes) of ML:  
                        supervised learning, big data:   

Today’s science, tomorrow’s engineering:
learn like children learn

n→∞

The next phase of ML: implicitly supervised learning, 
learning like children do, small data: n→ 1

from programmers… 
…to labelers… 
…to computers that learn like children…



T. Poggio, J. Dicarlo, M. Livingstone, S. Ullman

J. Tenenbaum, N. Kanwisher, SpelkeG, Kreiman, M. Wilson, B. Desimone

B. Katz, A. Barbu, S. Ullman, J. Tenenbaum

Running routines…

Depository of 
vision routines… 

synthesizing 
routines as needed



•  new architectures/class of applications  from basic DCN block  
(example GAN + RL/DL + …) 

• Implicit labeling: evolution is opportunistic…few bits…face area…motion 
machinery…bootstrapping…predicting next “frame”… 

• Learning and representing symbols…with networks of neurons …abstract 
concepts, relations, routines…new circuit motif in addition to DCN?         

• New learning algorithm — more biologically plausible than SGD …  

Musings on Near Future Breakthroughs

?


