Class 26:
Theory for Deep Nets and future breakthroughs

Tomaso Poggio,
9.520/6.860



Training and computation in a neural net

Computation in a neural net —

NS Y
N ;
I[ I[ Rectified linear unit (RelLLU)
f(x) = fo(... fa(f1(x)))

LLELELE

2 QOO0

S
=
<

p—



Gradient descent

argvf’nin ZE(zi, f(xiiw)) = L(w)

One Iteration of gradient descent:
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Deep Networks: three theory questions

* Approximation Theory: When and why are deep
networks better than shallow networks?



A new way to avoid the curse for compositional functions:
deep networks

f(Xl,Xz 9°°°9x8) — g3(g21(g11(x1,x2),g12 (X3 s Xy ))gzz(g11(x5 9x6)9g12(x7 > Xg )

/ / .

Theorem, Mhaskar, Poggio, Liao 2016 (informal statement)

Suppose that a function of d variables is hierarchically locally compositional . Both
shallow and deep network can approximate f equally well. The number of parameters of
the shallow network depends exponentially on d as O(e™*) whereas the deep networks

show  O(de™) vs O(e™)

Note: Locality, not weight sharing, avoids the curse of dimensionality



Deep Networks: three theory questions

» Approximation Theory: When and why are deep
networks better than shallow networks?

» Optimization: What is the landscape of the empirical
risk’?

» Dynamics of learning: What are the solutions”? Are
they stable” Maximum margin®

* Learning Theory: How can deep learning not overfit?



SGDL and SGD observation: summary

e [here are may zero minimizer with overparametrized deep
networks because of Bezout theorem

e SGDL finds with very high probabillity large volume, flat zero-
minimizers; empirically SGD behaves in a similar way

e Hat minimizers correspond to degenerate zero-minimizers and
thus to global minimizers;
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Deep Networks: three theory questions

* Approximation Theory: When and why are deep
networks better than shallow networks?

» Optimization: What is the landscape of the empirical
risk’?

* Dynamical System Approach: Characterizing SGD
solutions. Are they stable”? Control of norm”? Maximum
margin

* Learning Theory: How can deep learning not overfit?



Dynamical Systems approach:
degenerate minima in DNNs
represent the main obstacle in extending analysis
from linear to nonlinear networks

What happens in the simplest case, that is linear one layer networks?
Degenerate Hessian, no norm control!

Regularization is needed....



Explicit regularization is OK
In the degenerate linear one-layer case under square loss

N
L= (v, —w"x’ )+ Alw, I
N
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H, ].:Zx;x,;f + Al is positive definite for arbitrarily small A!
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Hyperbolic minimum, non degenerate Hessian, does not depend
on initial conditions/perturbations
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Even just implicit regularization by GD+SGD “works”
In the degenerate linear one-layer case under square loss

144 W =YX"

X, Xyeuoo X, X,

Corollary 1. When initialized with zero, both GD and SGD converges to the minimum-norm
solution.

Min norm solution is the limit for A — () of reqularized solution

G | cENTERFOR
Gy | Brains
sammme: | Minds+
K .....-\‘g-g.g,......_..........., :
Machines




Degenerate Hessian

2 Emor
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Deep linear network: GD as implicit regularizer
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Linearization yields dynamics of nonlinear RELU network
around a minimum if Hessian is non degenerate

Hartman-Grobman Theorem Consider a system evolving in time as w = —F(w) with
F =V,L(w) a smooth map F : R* — R%. If F has a hyperbolic equilibrium state w* and the
Jacobian of F' at w* has no zero eigenvalues, then there erist a neighborhood N of w* and a
homeomorphism h : N — R, s.t. h(w*) =0 and in N the flow of w = —F(w) is topologically
conjugate by the continuous map U = h(w) to the flow of the linearized system U = —HU where
H is the Hessian of L.

Qianli Liao, Andrzej Barbuski



Deep RELU networks under square loss
are usually degenerate

Theorem 4 (K. Takeuchi) Let H be a positive integer. Let hy = Wio(hi_1) € RNk
fork € {2,....H + 1} and hy = W1 X, where Ny+1 = d'. Consider a set of H-hidden
layer models of the form, Y,(w) = hy+1, parameterized by w = vec(Wy, ..., Wyq) €
RAN1+N1 N2+ NoNa+--+NuNus1 | Let L(w) = %H}A’n(w) — Y3 be the objective function. Let
w* be any twice differentiable point of L such that L(w*) = %Ilf’n(w"‘) —Y||7 = 0. Then,
if there exists k € {1,...,H + 1} such that NpNg—1 > n - min(Ng, Ni+1,..., Ny+1) where
No=dand Ny.q =d (i.e., overparametrization), there exists a zero eigenvalue of Hessian

V2L(w*).
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Degenerate minima of Deep RELU networks under square loss
can (?) be regularized (dynamically)

Usual regularization is not sufficient because regularization
shifts the minimum

N

H = -2 Z(Vvt--'kf(w'; l’n))(vwk'f("vé l’n)) — Ak Ok L.

n=1

However regularization “switched on” centered at w where the Hessian is
degenerate and loss is very small, should enforce positive definiteness of
the Hessian. The minimum in this dynamically regularized version of GD
controls now the Frobenius norm at each layer k. The argument can be
applied to DNNs because of Hartman-Grobman.

Qianli Liao, Andrzej Barbuski



Dynamical Systems Approach:
linear networks and exponential loss

N
L — Ze_yanxn
n
N T
W = Ze_y"w X
n
n

There is no minimum, weights grow to infinity. In analogy with the linear case but
for completely different reasons Srebro et al. proved (2017) that there can be
convergence to the minimum L_2 solution independently of initial conditions at
infinite time of L . It is still unclear whether experiments (next slide)
support this.



Exponential loss linear net, these simulations show
no convergence at finite time, dependence on perturbations
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Dynamical Systems Approach:
linear networks, exponential loss and regularization

N
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There is a stable minimum, also independent of initial conditions, and the
Hessian of L is positive definite
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Qianli Liao, Andrzej Barbuski



Exponential loss linear net, regularization, does not depend on perturbations

—Sim
O 95 - - error

©
©

0.85

0.2 [

Error on Test Set (another curve)
- O
~J o0

0.65 r

Similarity of Errors Made in Test Set
to the last model before the 2 perturbation

0‘6 | | | | | | | |
0 1 2 3 4 5 6 7 3

Epochs in Gradient Descent. 4 Perturbations 104

Qianli Liao, Andrzej Barbuski



Homogeneity properties of RELU networks

For RELUs o0(z) =z 0o and

0z
f (W; x) = H p, f(V;x) where p,vi/ =wi', p? = Z(W,i’j )7
i\j

Also (Rakhlin et al., 2017)
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Qianli Liao, Andrzej Barbuski



Dynamical Systems Approach:
Deep Networks, exponential loss
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The minimum is usually degenerate (first term has correct sign but is rank one).

Qianli Liao, Andrzej Barbuski



Dynamical Systems Approach
A (slightly) different algorithm: time-dependent regularization

Al 0
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Switching on a regularization term at large time creates a regularized minimum
where L Is close to zero and H Is degenerate. That minimum is stable with
arbitrarily small A . Hartman-Grobman can now be used to guarantee norm
control at each layer of a deep network for this algorithm.

Qianli Liao, Andrzej Barbuski



Dynamical Systems Approach:
Deep Networks, exponential loss, weight normalization

Weight normalization (different forms of it) induce a regularization-like term and
maximize f - to be precise max min y f(x )-subjectto ||V =1.

This does not guarantees stable minima: there is in fact a counterexample for
the linear network case. However, from the point of view of learning theory

adding the constraint |vJ =1 to the dynamical system does not change it: this
shows that normalization is enforced!.

e Define mrr = w; thus w = [|w||w with |[@]| =1

e We assume f(w) = f(||lw||,®) = ||lw||f(1,w) = H"L’Hf

Qianli Liao, Andrzej Barbuski



Dynamical Systems Approach: conjecture

The vanilla SGD algorithms do not converge to a stable minimum. They minimize
the margin, Y =pf — avoiding the classification errors by growing the norm. It
seems that separating the data may be good enough in most cases. Empirically
the convergence seems to be to a degenerate minimum as indicated by Theory |l
and the linear network case. The weight normalization algorithms satisfy the key

requirement of maximizing f while strictly enforcing the normalization constraint.
However they converge to degenerate minima.

—_—

-~ e~ ) : e
Recall EL,(fn) <ELy(fn) + ;%(}') and that the goal is to minimize

R __P__1 thatis to maximize F subjectto |[vi|| =1
y oyl f

Qianli Liao, Andrzej Barbuski



Dynamical Systems Approach:
New SGD algorithm for maximizing f with non degenerate minimum.

We define Wi = gV where we split each weight matrix into a matrix of
unit Frobenius norm and the scalar norm. Then we use a penalty term in the
loss to control the Frobenius norm

N K
J = Ze—f(xn)yn 4 Zﬂ/(‘ ‘Vk‘ ‘2 —1)
n k

The resulting GD equations give the dynamical system

N N
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Qianli Liao, Andrzej Barbuski



Dynamical Systems Approach:
new SGD algorithm for maximizing margin with “early stopping”

Consider the dynamical system

N f 7 - N 7 f . .
p=2.e""f(x,) 59 = pY ol L) 55,0

i
v,

n

N ~ ~
with %\ VI[ =2p> e F(x)-2A|V.I[ =2(pp—A|V][") implying that for

N ~ ~
A= PZ e " f(x ) then ||V ||=1,the constraint is enforced, SGD should be stopped

while the loss 1s being minimized and the margin maximized under the constraint

Qianli Liao, Andrzej Barbuski



Remarks

Set yf(x)=yp f (x) where p=H p, and f (x) contains

the "to-be-normalized" weight matrices V, with components v,”.

N
Then minimization of L= Ee_y”f(x”) with the max effect in the exponential

corresponds to maximizing the margin ~ min_y, f(x,)=min, ynpf(xn)

The complexity of the solution attained by GD can be measured in terms of its Rademacher averages
which are bounded by the product of the Frobenius norms of the weight matrices of the network and
normalized by the margin. Thus

» the margin normalized complexity which is relevant for bounding the expected error in classification
IS proportional to f

» the complexity which is relevant for bounding the expected loss in terms of the cross-entropy loss is
given by the Rademacher average and thus here by p

Qianli Liao, Andrzej Barbuski



Remarks
These properties

* the margin normalized complexity which is relevant for bounding the expected error in classification
Is proportional to f

» the complexity which is relevant for bounding the expected loss in terms of the cross-entropy loss is
given by the Rademacher average and thus here by p

explain a few little puzzles:

» we can dial down complexity of f by setting p=1 : then this (scaled
down) empirical minimizer predict well its expected /oss...it can even
predict expected from empirical error on randomly labeled examples
(disproving claims in Zhang et al paper)!

* one of the next slides shows that test loss can increase while the
classification error does not: this is because p increases affecting the
bound on regression error but this does not affect the margin normalized
complexity which is the key for bounding classification error.



UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

Chiyuan Zhang” Samy Bengio Moritz Hardt
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Classical generalization bounds are surprisingly
tight for Deep Networks
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How to generate minima with zero training error but different test errors
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Test Loss (Network Unnormalized)

Unnormalized mess
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The magic of layer-wise normalization
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Tes! Loss (Network Urmormslized)
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The reason Is that we are looking at generalization In
regression (not classification)

Consider typical generalization bounds for regression: they have the following form:

With probability > (1-0)

In—

EC) - Es (NS 2R )+ ]g




Good generalization with less data than # weights
Large capacity: fitting randomly labeled data

Model #params: 9370
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Deep nets puzzle: p grows and f does not

Training data size: 50000

Loss on CIFAR-10
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General musings

The evolution of computer science

» there were programmers
 there are now labelers

» there may be schools for bots...



Today’s science, tomorrow’s engineering:
learn like children learn

The first phase (and successes) of ML:

from programmers...
...to labelers...
...to computers that learn like chilaren...

The next phase of ML: implicitly supervised learning,
learning like children do, small data: n — 1



G, Kreiman, M. Wilson, B. Desimo

MODULE TWO

MODULE FOUR

Towards Symbols

LONG-TERM PLANNING ABSTRACTION LANGUAGE

!

Brain OS

WORKING MEMORY VISUAL ROUTINES ATTENTION

B. Katz, A. Barbu, S. Ullman, J. Tenenbaum

J. Tenenbaum, N. Kanwisher, Spelke
MODULE THREE

31/2D
Sketch —

Running routines... '

Cognitive Core

INTUITIVE PHYSICS GEOMETRY (3D) INTUITIVE PSYCHOLOGY _D_epos’.to'_‘y Of
vision routines...

MODULE ONE

Visual Stream

FOVEA DEEP FEED-FORWARD NETWORKS BACK PROJECTIONS

synthesizing
routines as needed




Musings on Near Future Breakthroughs

* new architectures/class of applications from basic DCN block
(example GAN + RL/DL + ...)

 I[mplicit labeling: evolution is opportunistic...few bits...face area...motion
machinery...bootstrapping...predicting next “frame”...

* Learning and representing symbols...with networks of neurons ...abstract
concepts, relations, routines...new circuit motif in addition to DCN?

G

* New learning algorithm — more biologically plausible than SGD ...



