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Humans have “strong perception.” Can we reverse engineer that?
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Image adapted from MIT Street Scenes Database (Courtesy of Tommy Poggio)



We started (~2000) by trying to reverse engineer object detection
and categorization

Building Other latent variabies
Tree | pertaining to each object: s

Sign position, size, pose, etc.

Lamp post

Image adapted from MIT Street Scenes Database (Courtesy of Tommy Poggio)



Constraints from brain and cognitive sciences... Central ~10 degrees




Constraints from brain and cognitive sciences... ~200 ms snapshots
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Image adapted from MIT Street Scenes Database (Courtesy of Tommy Poggio)



Object detection/categorization as solved by primates

Core object perception |

central ~10 deg of visual field
~200 ms viewing duration




Not surprisingly, the primate brain excels at core object perception

~ Core object perception |

central ~10 deg of visual field
~200 ms viewing duration




8 deg image at center of gaze, |00 ms viewing time




Human object categorization accuracy as a function
of image viewing time
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will show you today fixation duration

during active behavior



A stepwise approach to NI

Natural Intelligence (NI)

Strong
scene understanding (secs)

“Core visual
object perception”
(~200 ms)

Early vision
(~50 ms)

“Core auditory
perception”

Scene




A stepwise approach toNI

Core visual object perception
(central 10 deg, first ~200 ms)

o,

Where do
currently™
engineered
systems fall
down (relative to
the human primate) ?

02,

Which human
primate
measurements
are likely to be

©

How do we
forward
engineer from
such

most informative? measurements?

(behavior, blood flow,
neural activity, anatomy,
neural perturbation, sub-
cellular, genetics, etc.)

Can we get those

measurements (during

system operation) ?



Q1 Where do (did?) engineered systems fall down (relative to humans)*

@i Identity preserving image variation

View: position, size, pose, illumination

level variation

Clutter, occlusion
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DiCarlo and Cox, TICS (2007), Pinto, Cox, and DiCarlo, PLoS Comp Bio (2008),

Poggio, Ullman, Grossberg, Edleman, Biederman, efc. DiCarlo, Zoccolan and Rust, Neuron (2012)



Q1 2009: Machines vs. humans on our benchmarks

Human (n=10)

———

Humans outperform
machines under high
view uncertainty

1 - Machine

(V1-like model)
0 - — ~state-of-the-art (2009)

Performance (d’)
N
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0 2 4 6
Amount of identity preserving variation

Data merged here: 48 basic-level tasks (s 1abels x 6 level of variation)



Q2 Decision to gather data from the non-human primate

Decision
and action

"& Memory
Ventral visual stream w

We know which brain regions house the most
critical computations.

We know the system anatomy at a course grain.

We have models of the elemental computations.

We can systematically measure and manipulate every
stage of the processing stream, at the level of spiking
neural activity, at msec resolution, in behaving subjects. e
(not currently possible in the human brain) o R




Q2 Decision to gather data from the non-human primate
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Human Rhesus monkey

Camel
Dog
Rhino
Elephant
Wrench
Knife
Hanger -
Fork -
Guitar

Bird - [

Table
Calculator
Spider
Leg AN
Zebra
House
Bear \
Shorts
Watch

N
%..\ “‘camel’

-' 1 confused with
g dog”

Upshot: human behavior = non-human primate behavior

NGl b ' .
‘j mm ' . Io.05
| “tank” confused Wlth “truck”
e 3 .

(at least for basic level core object categorization)

T ©

Comparis One consequence: we may not need “pr_inciples g
R. Rajaling neurally-mapped models can suffice

R. Raja/ingnam, K=Scnmiat;J.J7prcario; " J."INedroscience(zu1ys)

B I
Adapted from Motter and Mountcastle 1981



Q2 Constraint data from the non-human primate

~0.5M
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Q2 Constraint data from the non-human primate
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Q2 Constraint data from the non-human primate

pixel RGC LGN



Q2 Constraint data from the non-human primate

Ventral visual stream

N 4 w

~60ms _ ~2000: We had NO engineering
0 + specification of the linkage between

- ' it neural activity and ob/ect behavior.
b E&» O O

~2000: we had (almost) NO engineering specification of the neural l

population “image” transformations at work along this pathway

pixel RGC LGN Vi V2 V4 IT



~2005: we discovered that population of IT features
| (aka “neurons”) was much more powerful than
state-of-the-art computer vision features

Examples of IT single unit spiking responses

~2000: We had NO engineering

-
» specification of the linkage between
** neural activity and objec t beha vior.

pixel RGC LGN V1 V2 V4 IT



Upshot: learned weighted sums of IT features achieve high performance.

Hypothesis: This approximates the IT
feature vector for this image

Population activity
| I ] |neuron1—>
| | N
LT
I |
I
L

NI
1 E Rl
|

NI
I |
I = weighted sum of input

I | |||| IHI : neural activity

. Response vector

| | neuron N Biologically constrained engineering
specification of downstream neural
Simple 100 ms rate code mechanlsm

(one of many possible codes)

“Face present”
(perceptual report)

Hung*, Kreiman*, Poggio and DiCarlo, Science (2005);
Rust & DiCarlo, J Neuroscience (2010)




In the language of machine learning: the IT neural population
was (and still is) a remarkably powerful set of features.

1.0

Computer vision
feature based codes

~2010
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Number of features

Invariant categorization performance



Methods advance: large scale neuronal recording along the ventral stream

Data collection rate

(nlmages x nSites per day)

etriple array
echannel
harvest
1,500K «RSVP
behavior
1,000K Wi I
Array 3
\ (in place)
e :
500K Y / g
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standard, single
electrode methods

7K

2005 2010 2011

2007

2008

Year

2009
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(All at high SNR: ~50 repetitions)

Image #




From IT features to performance (behavior). This is easy!

Performance patterns

. Calsnel [ | ]
IT neural population patterns Rhing m =g

The IT feature set convey’s biology’s solution mg
to intelligent object sensing. =

\ \ \ \ \ \ \ ———————— ... N

The IT feature set is a high performance basis for low-

dimensional, linear read of object category and identity. (+ung,
Kreiman, Poggio, DiCarlo 2005; Rust and DiCarlo 2010)

The IT feature set is Computed in less that 200 ms. (Hung, Kreiman, Poggio,
DiCarlo 2005; Rust and DiCarlo 2010; Majaj, Hong, Soloman and DiCarlo, 2015)

The IT feature set is a GENERAL BASIS — it immediately
supports rapid, linear-read, learning of any new object category
and identity. AND it supports report of object position, pose,
Scale, etc. (Hong, Yamins, Majaj, Dicarlo 2016)

An engineering spec of the above (LAWS of RAD IT) accurately
predicts the difficulty of all tested object recognition tasks in

humans and monkeys. (Majaj, Hong, Soloman, and DiCarlo, 2015; Rajalinghan, Schmidt and

DiCarlo 2015). ’
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The IT feature set convey’s biology’s solution

to intelligent object sensing.

Forward engineering within
biological constraints.

o
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~2000: we had (almost) NO engineering specification of the neural
population “image” transformations at work along this pathway

pixel RGC LGN V1 V2 V4 IT



Forward engineering (model building) within

i

known constraints on the ventral stream
Ventral stream is a “deep” stack of areas

Each area conveys a retinotopic map

In each area, the same set of _
operations is applied at each location
in the map (operating on different inputs).

Those operations depend only
on a local set of outputs from
the previous area.
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Ventral stream is a “deep” stack of areas
Each area conveys a retinotopic map

In each area, the same set of _
operations is applied at each location
in the map (operating on different inputs).

Those operations depend only
on a local set of outputs from
the previous area.

Multiple filter types are applied ! Linear  Gain Output
at each location (e.g. different . operator control nonlinearity :
oriented Gabor filters in V1) _ e

pixel RGC LGN V2

Forward engineering (model building) within
known constraints on the ventral stream

Each neuron is well
approximated as a
linear filter + output
non-linearity + pooling
normalization

Vi

-----------------------------

-

V4 IT



Forward engineering (model building) within
known constraints on the ventral stream

Hubel & Wiesel (1962), Fukushima (1980); Perrett & Oram (1993);Wallis & Rolls (1997); LeCun et al. (1998);
Riesenhuber & Poggio (1999); Serre, Kouh, et al. (2005), etc....

Today, this family of models is called “Deep convolutional
neural networks” (Deep CNN’s)

@ = (Hfilter, chr, Hsat, Hpool, Hnorm)

Pool Normalize

—O

Basic operations:
Filter Threshold &
R, Saturate
X P, Neural-like basic operations

Spatial Convolution

over Image Input

Deep CNN model family

Vi

-----------------------------

-

: Linear ~ Gain Output
+ operator control nonlinearity .

--------------------------------

Top layer has
thousands of
. visual “neurons”
— (aka “features”)



Basic operations:

@ ‘I (inlter, chr, Hsat, onol, Hnorm)

Filter Threshold &
® o, Saturate

X P

qq

f

Pool

Neural-like basic operations

Normalize

—O

Spatial Convolution
over Image Input

Deep CNN model family
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Forward engineering (model building) within
known constraints on the ventral stream

Problem:

——— Thousands of

unknown*
parameters in
each layer

(* not directly
determined by
neurobiology)

Top layer has

thousands of
visual “neurons’
(aka “features”)

—®—>E



Forward engineering (model building) within
known constraints on the ventral stream

How do we determine which model in the deep CNN family,
if any, is the actual mechanism of the ventral stream?

Strategy: Use selection methods to find specific

models (i.e. parameter settings) in this model family.

N Y VoS V-W_V .V V7t d7-V.To1 A T A TS A TS A TS A TES—S A e

What to select for? Models that are good at tasks that we
hypothesize that the ventral stream evolved and/or developed to solve.
Neuroscience data suggest: the task is “invariant” object recognition.
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How to select? Biology does not yet tell us, so we | . |
used engineering optimization methods. (* not directly

thousands of
. visual “neurons”
s (aka “features”)

determined by

\/ neurobiology)
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Basic level
categorizationf™
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First model we (Dan) built
« using this approach (2012)

Performance
(% correct)
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pixel RGC

Do each of
these match?

c)
@,
(mm . Top layer has
Spatial Convolution Ll + th ousan d S Of
over Image Input . “ ”
ions in Linear-Nonlinear Layer visua I neurons

Yamins & DiCarlo, 2014 l.mz htﬁtg (a ka “featu reS”)




pixel RGC

Spatial Convolution
over Image Input

Yamins & DiCarlo, 2014

V4 IT

Metric 1: Single neuron
predictivity:

For each IT neuron: Use
some of its responses
to fit (linear regression)
using the model
features as a basis set

Ask: How well does the
model predict the
neuron’s responses on
novel images?

// 1) W

() - o= Top layer has

hu gfbr + thOUSB ndS Of
Operat/ons in Linear-Nonlinear Layer VI S u al 1 n e u r O n S”
.'F'JE'NQ (aka “features”)




Remarkably ability of these models to explain and predict IT features

(* mean rate
70-170 ms after
image onset)

Response*
of IT neural
site

r----.‘.-- —

HI These are predictions from a model feature set that did
not see any of these objects during feature Iearnmg

Unit 2: r2 = 0.55

Remarkably, no ventral stream neural response data
were (directly) used to create the model feature sets.

Yet, the hidden units of the model network approx:mate
the hidden units of the brain’s network
IT n ol Ml L.

We take this model network as a v:able mechan/sm of

Z’,ﬁé, the bram S online executlon of object Categorlzatlon




pixel RGC

Spatial Convolution
over Image Input

Yamins & DiCarlo, 2014

V4 IT

Metric 1: Single neuron
predictivity:

For each neuron: Use
some of its responses
to fit (linear regression)
using the model

features as a basis set

Ask: How well does the
model predict the
neuron’s responses on
novel images?

// 1) W

() - o= Top layer has

hu gfbr + thOUSB ndS Of
Operat/ons in Linear-Nonlinear Layer VI S u al 1 n e u r O n S”
.'F'JE'NQ (aka “features”)




Explained Variance Fraction
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Median IT site: ~50% response variance predicted.
Dramatic improvement over previous models.

But, we are not finished. Likely more to explain.

IT predictive power
(median over all neurons)

V4 predictive power
(median over all neurons)
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Yamins, Hong, Solomon, Seibert
and DiCarlo PNAS (2014)
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In 2012, this model ﬂ [ % aflh? [ l [ ( AN
elevated deep CNN = | | Il i A P e = e A A R
models to a Th|s was not surprlsmg to (some) neuroscientists.

leadership role in
computer vision

\l |

ThIS partlcular deep CNN predlcts V4 and IT better
. than our previous model!

Traditional CV @ Deep Learning

Deep CNNs

(ImageNet challenge)

Error rate on object categorization



ek Forward engineering summary:

1) neuroscience-constrained architectural family (deep CNN) +
2) cognitive science-derived task (e.g. invariant categorization) +
3) engineering optimization (ImageNet, s. gradient descent, etc.)

—> produces a decent approximation of nature’s neural
mechanism of intelligent object sensing (in primates).

(/)]
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N AlexNet ~
0 ~2012
But these models do not fully Q ~~50% xoo
predict nature’s solution. D o e TR
Q£ ~2014
: : Ea
And primate behavior (and IT) = > ;
are still better than current S i
C ~ Alex5c2f
deep CNNs O
o § coople?
oz B
> - e
E 8 | \IV/IZQRAJB
3 £ e
< kg MSRA-101

Invariant categorization performance



Differences between state-of-the-art deep CNNs and Primates

Q1

Where do
currently
engineered
systems fall
down (relative
to humans)?

Synthetic images Real world images

CV: AlexNet

CV: VGG

CV | Primate

better | better
CV: GoogleNet

Performance difference (Primate -CV)

Test image number 1500

We tested thousands of images and discovered hundreds of
images that are reliably solved by (human AND non-human)
primate brains with only 100 ms viewing duration, but not
solved by current CV systems (red lines).

Kohitij Kar

Kar, Kubilius, Issa, Schmidt & DiCarlo COSYNE 2017



Differences between state-of-the-art deep CNNs and Primates

Each dot is an image

Challenge images
Control images

Monkey* performance (d’)

0 - . .
0 2 4

Deep CNN performance (d’)

( *results are very similar for human performance )



Differences between state-of-the-art deep CNNs and Primates

Q1

Challenge images Control images




We have the experimental resolution to see

that the brain’s solution to each challenge
image is conveyed in the IT feature set

But, we discovered that those solutions
appear ~20 msec later (relative to controls)

BEHAVIOR

Along with controls argues that feedback and recurrent connections
are providing a big performance boost for these challenge images

pixel RGC LGN V1 V2 V4 IT

Notably, deep CNNs best predict the early
enc IT population response, but poorly predict
that later IT population response

linearly
combine

— BEHAVIOR

13 13 13
384 384 256

Deep convolutional neural networks e
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