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with Baccus lab:  inferring  
hidden circuits in the retina 
w/ Niru Maheswaranathan and Lane McIntosh 
 
with Clandinin lab: unraveling the  
computations underlying fly motion  
vision from whole brain optical imaging 
w/ Jonathan Leong, Ben Poole and Jennifer Esch 
 
with the Giocomo lab: understanding 
the internal representations of space  
in the mouse entorhinal cortex  
w/ Kiah Hardcastle and Sam Ocko 
 
with the Shenoy lab: a theory of neural 
dimensionality, dynamics and measurement 
w/ Peiran Gao, Eric Trautmann 
 
with the Raymond lab: theories of how 
enhanced plasticity can either enhance 
or impair learning depending on experience  
w/ Subhaniel Lahiri, Barbara Vu, Grace Zhao 

      Neural circuits and behavior: theory, computation and experiment 



•  What does it mean to understand the brain (or a neural 
circuit?) 

•  We understand how the connectivity and dynamics of a neural 
circuit gives rise to behavior. 

•  And also how neural activity and synaptic learning rules 
conspire to self-organize useful connectivity that subserves 
behavior. 

 
•  The field of machine learning has generated a plethora of 

learned neural networks that accomplish interesting functions. 

•  We know their connectivity, dynamics, learning rule, and 
developmental experience, *yet*, we do not have a 
meaningful understanding of how they learn and work! 

 Motivations for an alliance between theoretical neuroscience and                           
                                  theoretical machine learning 

On simplicity and complexity in the brave new world of large scale 
neuroscience, Peiran Gao and S. Ganguli, Curr. Op. in Neurobiology, 2015.



Theoretical physics and 
applied mathematics

Machine Learning and 
Computer Science

Neuroscience

Towards a unification of disparate fields

Complex systems analysisProofs of principle; clues from 
psychology and biophysics

i.e. understanding the trainability, expressivity, and generalizability of neural 
networks, and machine learning algorithms, especially in high dimensions

i.e. the neuron principle, convolutional 
architectures, substrates for 
reinforcement learning, memory, 
attention, multiple timescales

i.e. statistical physics of quenched 
disorder, spin glasses, dynamical 
criticality, chaos theory

Engineering intuitions and theorems as 
at to what works
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Improved multitask learning through synaptic intelligence.

Protecting deep networks from adversarial examples. 

Deep learning models of the retinal response to natural scenes.

Synaptic complexity -> multitask learning

Dendritic biophysics + Kurtotic weights -> adversarial robustness

Computational reconstruction of the interior of the retina. 
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Improved multitask learning through synaptic intelligence

Improved multitask learning through synaptic intelligence, Friedemann 
Zenke, Ben Poole, Surya Ganguli, arxiv.org/abs/1703.04200, under review. 

A memory frontier for complex synapses, S. Lahiri and S. Ganguli, NIPS 
2014. (outstanding paper award)
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Machine Learning 
 
 

Improved multitask learning through synaptic intelligence

Biological Learning 
 
 Training phase 

 
 

Adjust synaptic weights 
 
 

Freeze weights 
 
 
Testing phase 
 
 If data distribution changes,  

must retrain entire network 
 

Lifelong learning 
 
Continuous adaptation to 
changing domains with  
evolving data distributions 
 
Can solve new tasks without 
forgetting old tasks 
 
 

Question:  How can take steps toward multitask learning in 
artificial neural networks?   
 



Coba et. al. 
Science Signalling 2009 

Experimentalist:  AMPA, NMDA, CAMKII, MAPK, CREB, 
   MHC-I, second messengers, membrane protein regulation, 
   intracellular trafficking, new protein synthesis ………. 

Theorist:           Wij   or  Jij    ~   size of postsynaptic potential  

What is a synapse from neuron j to neuron i? 

               A gulf between theory and experiment 



          Memory capacity with scalar analog synapses 

Consider the number of associations a neuron 
with N afferent synapses can store.   

                        

ξ(κ) 

J(k) 

σ(k) 
σ(k)  =  sgn (J . ξ(κ) − θ)   

Memory capacity:  How far back into the past can synapses reliably  
                                recall previously stored associations? 

An online learning rule to store the desired association: 

J(k+1) = e-1/τ J(k) +  σ(k) ξ(κ) 

i.e.  1) Allows analog weights to decay slightly (forget the past inputs) 
       2) Add in the new association to the weight (learn a new input).   

Answer:  If τ is O(N) then the past O(N) associations can be recalled.                    

Problem:  This solution relies on individual synapses to reliably  
                 maintain O(N) distinguishable analog states.                    Fusi and Amit 92 



                   Memory capacity with binary synapses 

Ji=-1  Ji=+1  

q 

Ji=-1  Ji=+1  

q 

Potentiation  Depression 

q = prob a synapse changes strength under appropriate conditions 
N = number of synapses 

q = O(1)               log N                 Quickly learn, quickly forget 
q = O(N-1/2)             N1/2                 Sluggish to learn, slow to forget    

Memory Capacity 

Fusi and Amit 92 



  Synaptic complexity: from scalars to dynamical systems 

                        

 Experiment 

        We must expand our theoretical conception of  
     a synapse from that of a simple scalar value to  
an entire (stochastic) dynamical system in its own right.   

 Theory 

              This yields a large universe of  
synaptic models to explore and understand. 



Theoretical approach:  
 
A synapse is an arbitrary stochastic  
dynamical system with M internal states. 
 
Some internal states correspond to a  
strong synapse, others a weak synapse. 
 
A candidate potentiation (depression) 
event induces an arbitrary stochastic  
transition between states.   
           
 

Montgomery 
and Madison 
Neuron 
2002 

Mpot Mdep 

              Framework for synaptic dynamical systems 



A continuous stream of memories are 
stored (at poisson rate r) in a population 
of N synapses with M internal states. 
 
The memory stored at time t=0 demands 
that some synapses potentiate, while 
others depress, yielding an ideal  
synaptic weight vector wideal.  
  
The storage of future memories after 
t=0 changes the weight vector to w(t).  
 
An upper bound on the quality of memory  
retrieval of any memory readout using  
neural activity is given by the SNR curve:           
 

Each choice of 
 
N,  M,  Mpot  and Mdep 
 
yields a different memory 
curve.  

              Ideal observer measure of memory capacity: SNR 

Fusi et. al. 2005, Fusi et. al. 2007, Barrett and van Rossum, 2008 



         A frontier beyond whose bourn no curve can cross  
Area bound implies a maximal achievable memory at any finite time given N 
synapses with M internal states:   

Chains with different transition rates come close to the frontier at late times. 

Various measures of memory (area, frontier, lifetime)  grow linearly with 
the number of internal states M, but grow only as the square root of  
the number of synapses N.  

Lahiri and Ganguli,  NIPS 2014, outstanding paper award (3/1400) 



    The dividends of understanding synaptic complexity 

        A theory of 
complex synapses 

                       A framework for interpreting  
                       molecular neurobiology data 

 Neurobiology 

 Mathematics  Technology 

New theorems about  
      perturbations  
to stochastic processes. 

The next generation of  
artificial neural networks? 

              (Cerebellar learning with complex synapses) 

                      (Spatiotemporal credit assignment) 
                              (Learning as message passing) 

                       
                                      (Tighter bounds) 



Improved multitask learning through synaptic intelligence

Task 1 constrains certain dimensions in weight space but 
leaves other dimensions unconstrained.  

Task 2 constrains different dimensions in weight space, and 
leaves a different set of dimensions unconstrained. 
  
Idea: Each synapse keeps track of its importance in solving all previous 
tasks and uses this importance to freeze its learning dynamics. 

Theory: This local online synaptic computation can approximately compute 
The sum of the Hessians of all previous tasks! 



Local synaptic path integral -> Global computation of Hessian

During each task, each synapse computes its contribution to 
the path integral that measures change in loss.   
 
 
This is a local computation that involves multiplying gradient 
of error with change in synaptic 

A local-to-global theorem: under gradient descent dynamics 
on a low rank quadratic error landscape, the importance 
parameters are proportional to the diagonal elements of the 
Hessian!! 



Split MNIST 

Sequen'ally	
  learn	
  to	
  classify	
  0	
  vs.	
  1,	
  then	
  2	
  vs.	
  3,	
  
….,	
  8	
  vs.	
  9	
  



Permuted MNIST 



Split CIFAR-10 
Task A Task B 

Chance accuracy is 0.2 (⅕) 

Train on task A, then on task B. Evaluate test accuracy on both: 



Talk Outline

Improved multitask learning through synaptic intelligence.

Protecting deep networks from adversarial examples. 

Deep learning models of the retinal response to natural scenes.

Synaptic complexity -> multitask learning

Dendritic biophysics + Kurtotic weights -> adversarial robustness

Computational reconstruction of the interior of the retina. 



         Protecting deep networks from adversarial examples

Nayebi and S. Ganguli, Biologically inspired protection of deep networks from 
adversarial attacks, arxiv.org/abs/1703.09202, under review.
 

anayebi@stanford.edu  
Aran Nayebi 



                      The problem of adversarial examples

Goodfellow, Shlens, Szegedy, ICLR 2015 

These neural networks do not fundamentally understand the task in the same 
way we do.  

Technological concern:  adversarial examples generalize across different  
Architectures and subsets of training data -> black box attacks. 

Scientific concern: as foundational models in neuroscience, they get fooled by 
examples that do not fool us -> our models are missing biological ingredients  



                 A linear explanation of adversarial examples

Goodfellow, Shlens, Szegedy, ICLR 2015 

Idea behind adversarial example generation: 
 
x = test example 
x + dx = perturbed example 
 
Choose dx so as to maximize error E subject to an L∞ bound on dx. 
 
This optimization is difficult, so linearize the error as a function over input  
space to get a gradient vector g, and optimize: 
 
 
 

dx

⇤
= arg max

dx

g · dx, such that ||dx||1  ✏

dx

⇤ = ✏ sign(g)

dE = ✏ ||g||1

The adversarial perturbation.  

The increase in error.  

Intuition: due to linear summation of many variables, one can change each 
individual variable by a small amount, while moving the sum by a lot. 



              The brain likely never linearly sums many variables

Poirazi, Brannon, Mel, Neuron 2015 

The biophysical basis for linear summation: 
linear superposition of trans-membrane voltages 
under passive cable theory.  
 
However, active ionic conductances can destroy 
linear superposition by introducing nonlinear 
saturating thresholds. 
 
Individual dendritic branches can be in highly 
saturated states or be far below threshold. 
 
Either way, small input perturbations cannot 
easily propagate through such a nonlinear 
system. 
 
# synapses on a branch that can linearly sum is 
O(10) to O(100).  



 Avoiding adversarial examples by exploring the saturated regime

Overall idea: penalize neurons according to how far their 
activation lies from the saturated regime.  
 
Problem:  If many neurons are saturated it can be difficult to 
learn due to vanishing gradient problem.  
 
Solution: Anneal the penalty that promotes saturation over 
time in the training process.  
 
Results on MNIST: 
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         Riemannian geometry of input-output map 

✓

h(✓)

Metric on manifold coordinate θ
induced by metric in  
internal representation space h.  

@h(✓)

@✓

dLE =
q

gE(✓)d✓
Length element: if one moves from  
Θ  to Θ+ dΘ along the manifold, 
then one moves a distance dLE  

in internal representation space 

gE(✓) =

✓
@h(✓)

@✓

◆T

gF (h)
@h(✓)

@✓
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                 Outcome of geometric analysis 

Adversarially robust networks form highly flat input-output 
maps. 
 
One must move large distances in input space to move a 
given distance in output space.  
 
 
These maps compress at center of decision volumes and 
expand at boundaries. 
 
 
Even at expansion points, networks are sensitive to only one 
dimension of input perturbations. 
 
This greatly reduces the number dimensions an adversary 
can exploit to fool the network.  
 
 
 



 Comparison to a random network: input-output             
         chaos as a source of expressivity 

Stanford                                                  Google 

Ben Poole 
     Jascha 
Sohl-
Dickstein 

    Subhaneil  
       Lahiri 

     Maithra  
     Raghu 

Expressivity: what kinds of functions can a deep network express that  
shallow networks cannot?  
 
Exponential expressivity in deep neural networks through transient chaos,  B. Poole, S. Lahiri,M. Raghu, 
J. Sohl-Dickstein, S. Ganguli, NIPS 2016. 

 
On the expressive power of deep neural networks,  M.Raghu, B. Poole,J. Kleinberg, J. Sohl-Dickstein, S. 
Ganguli, under review, arxiv/1606.05336 
 
 



   Propagation of a manifold through a deep network  
 
h1

(✓) =
p

N1q⇤
⇥
u0

cos(✓) + u1
sin(✓)

⇤ A great circle  
input manifold 



   Propagation of a manifold through a deep network  
 



   More powerful, iterative second order adversaries 

Pick the least confident image from a source class.  
 
For each target class:  decrease source prob and increase target prob 
 
Use 1000 iterations of LBFGS. 



   More powerful, iterative second order adversaries 

Pick the most confident image from a source class.  
 
For each target class:  decrease source prob and increase target prob 
 
Use 1000 iterations of LBFGS. 



Role of weight kurtosis: a linear protective mechanism 

Consider linear classification with two cluster prototype vectors w1 and w2 
A test example x is class 1  iff  
 
x = w1 be a test example 
x + dx = perturbed example 
 
A bounded l∞ norm perturbation will 
fool the system iff: 
 
 
 
 

w1 · x > w2 · x

✏ > ✏min ⌘ ||w1||22
||w2 �w1||1

1  ||w||1 
p
NFor unit l2 norm w:  

 
 
 

w1

w2
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Deep neural network models of the 
retinal response to natural scenes!

Lane McIntosh and Niru Maheswaranathan, Aran Nayebi, 
Surya Ganguli and Stephen Baccus!

McIntosh, L.*, Maheswaranathan, N.*, Nayebi, A., Ganguli, S., 
Baccus, S.A. Deep Learning Models of the Retinal Response to 

Natural Scenes. NIPS 2016.!



A brief tour of the retina!

G!

P!

A!

H!
B!

microelectrode array

visual stimulus

From	
  Rachel	
  Wong’s	
  Lab	
  



Multielectrode array (MEA)!

Visual Stimulus!

Chichilnisky 2001
Baccus and Meister 2002

Pillow et al 2005, 2008

Stimulus


Response


Spatiotemporal Filter


Nonlinearity


Linear-Nonlinear models!



How well do linear-nonlinear models explain 
the retina in natural vision?!

Pearson correlation !
of 0.36!

see also!
Heitman et al., 2014!



Modeling ganglion cells with convolutional 
neural networks (CNNs)!

Train the model to minimize the error 
between predictions and recorded data!

CNNs!



Modeling ganglion cells with convolutional 
neural networks (CNNs)!

Models are complex, can easily !
over-fit training data!

Challenges!

trainability!
CNNs!



Modeling ganglion cells with convolutional 
neural networks (CNNs)!

No reason why the structure or features of 
learned CNNs would be similar to the retina!

Challenges!

neural structure!
CNNs!



Modeling ganglion cells with convolutional 
neural networks (CNNs)!

Algorithms identified by the model may not 
be the same as those used by the retina!

Challenges!

neural function!
CNNs!



CNNs capture substantially more retinal 
responses than previous models!

CNNs generalize better than !
simpler models!

CNN internal units correspond to 
interneurons in the retinal circuitry!

CNNs learn aspects of retinal variability, 
computation, and adaptation!



Convolutional neural network model!

… …

time
8 subunits 16 subunits

convolution

convolution

dense
responses

Three layers works best!!



CNNs approach retinal reliability!
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CNNs trained on less data outperform 
simpler models on more data!



Features bear striking resemblance to 
internal structure in retina!

CNN first layer pre-ReLU activity
Bipolar cell membrane potential

Intracellular data courtesy of
Pablo Jadzinsky and David Kastner



Most retinal neurons have sub-Poisson variability!
(while LNP models are Poisson)!



We can inject Gaussian noise into each 
hidden unit of our CNN model!



Model has lower variance than data!
A B
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However model uncertainty has same 
scaling relationship as the retina!A B
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Capturing contrast adaptation from retinal 
responses to natural scenes!

Smirnakis et al., 1997
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Summary!
CNNs capture substantially more retinal 
responses than previous models.!
!
CNNs also generalize better to different 
stimuli classes.!

CNNs learn the internal, nonlinear 
structure of the retina!

Our CNN models reproduce principles of 
signal processing inside retina without 
having direct access to it!!

We can capture not only the mean 
response, but also how variability scales 
with the mean!


