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Visual recognition

amusement park UK
sky Activities
Scenes
The Wicked Cedar Point Locations
Twister Text / writing
| ; Faces
Ferris . Gestures
wheel | 4 . Motions
A se ’ 'Emotions...




Recognition: as seen by its benchmarks
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How do our systems learn about the
V|sual world today’?

Expensive and

restrlctlve |n scope




Big picture goal: Embodied visual learning

Status quo:

Learn from “disembodied”
bag of labeled snapshots.

Our goal:

Visual learning in the ,
context of acting and moving
iIn the world. \eaaye o

Inexpensive and

unrestricted in scope



Talk overview

Towards embodied visual learning

~
1. Learning representations
tied to ego-motion
Y
S
2. Learning representations
from unlabeled video
J

3. Learning how to move
and where to look




The Kkitten carousel experiment
[Held & Hein, 1963]
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Key to perceptual development
self-generated motion + visual feedback




Our idea: Ego-motion < vision

Goal: Teach computer vision system the connection:
“how | move” < “how my visual surroundings change”

Ego-motion motor signals Unlabeled video

[Jayaraman & Grauman, ICCV 20158]



Ego-motion < vision: view prediction




Approach idea: Ego-motion equivariance

Invariant features: unresponsive to some classes of )
transformations

z(gx) = z(X)
N Y,

Simard et al, Tech Report, '98

Wiskott et al, Neural Comp '02

Hadsell et al, CVPR '06

Mobahi et al, ICML ’09

Zou et al, NIPS 12

Sohn et al, ICML ’12

Cadieu et al, Neural Comp '12

Goroshin et al, ICCV ’15

Lies et al, PLoS computation biology ’14




Approach idea: Ego-motion equivariance

Invariant features: unresponsive to some classes of )
transformations

z(gx) ~ z(x)
- /
/Equivariant features: predictably responsive to )

some classes of transformations, through simple
mappings (e.qg., linear)

“‘equivariance map”
z(gx) = Myz(x)

o /

Invariance discards information;
equivariance organizes it.




Approach idea: Ego-motion equivariance

Training data Equivariant embedding

Unlabeled video + organized by ego-motions
motor signals

C_CU —— ,@

@ Pairs of frames related by
g ERERE } similar ego-motion should
= time — be related by same

feature transformation

[Jayaraman & Grauman, ICCV 2015]



Approach idea: Ego-motion equivariance

Training data Equivariant embedding
Unlabeled video + organized by ego-motions

motor Signals lllllllllllllllllllllllllllllllll
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[Jayaraman & Grauman, ICCV 2015]



Results: Recognition

Learn from unlabeled car video (KITTI)
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‘ Geiger et al, IJRR 13

Exploit features for static scene classification

Xiao et al, CVPR 10



Accuracy (%)

Results: Recognition

Ego-equivariance for unsupervised feature learning
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SUN scenes: 397 multi-class accuracy
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Egomotion-equivariance induces the
strongest representations

1 2 3 4 5

m Series1 m Series?2
Pre-trained models

mCArincn I QCAriAaaA avallable

+ Hadsell, Chopra, LeCun, “Dimensionality Reduction by Learning an Invariant Mapping”, CVPR 2006
* Agrawal, Carreira, Malik, “Learning to see by moving”, ICCV 2015



Next steps: One-shot shape
reconstruction for feature learning

cabinet car
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Jayaraman et al. 2017



Talk overview

Towards embodied visual learning

N
1. Learning representations
tied to ego-motion
J
S
2. Learning representations
from unlabeled video
J

3. Learning how to move
and where to look




earning from arbitrary
unlabeled video?
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Prior work: Slow feature analysis
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Wiskott et al, 2002
Hadsell et al. 2006
Mobahi et al. 2009
Bergstra & Bengio 2009
Goroshin et al. 2013
Wang & Gupta 2015
Gao et al. 2016

Learn feature map z(.) such that:
z(a) = z(b) (invariance)



Our idea: Steady feature analysis

Higher order
temporal coherence

Learn feature map z(.) such that:

z(a) = z(b)

z(a) — Z(b) ~ Z(b) — Z(C) (equivariance)

(invariance)

[Jayaraman & Grauman, CVPR 2016]



Pre-training a representation

. Supervised
. pre-training

Labeled images

from a related domain

Unsupervised
“pre-training”
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Few labeled images
for target task /
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Results: Can we learn more from unlabeled
video than “related” labeled images?
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Results: Can we learn more from unlabeled
video than “related” labeled images?

PASCAL-10 actions

+ HMDB

(unlabeled video)
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Better even than providing 50,000 extra manua
labels for auxiliary classification task!
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Talk overview

Towards embodied visual learning

N
1. Learning representations
tied to ego-motion
Y
<
2. Learning representations
from unlabeled video
J

3. Learning how to move
and where to look




Current recognition benchmarks
Passive, disembodied snapshots at fest time, too

Object recognition




Moving to recognize

Time to revisit active recognition in
challenging settings!

Bajcsy 1985, Aloimonos 1988, Ballard 1991, Wilkes 1992, Dickinson 1997, Schiele & Crowley
1998, Tsotsos 2001, Denzler 2002, Soatto 2009, Ramanathan 2011, Borotschnig 2011, ...



Moving to recognize

Difficulty: unconstrained visual input

ImageNet Web images



Moving to recognize

Difficulty: unconstrained visual input

Opportunity: ability to move to change input
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Components of active recognition
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Our idea: Multi-task training of active
recognition components + look-ahead.
Jayaraman and Grauman, ECCV 2016




Experiments

How to evaluate active recognition?

Instances, turntables Custom robot setting

[Nene 1996, Schiele 1998, Denzler 2003, Ramanathan 2011...]
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Jayaraman and Grauman, ECCV 2016



End-to-end active recognition: results

SUN 360
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Strongly outperform traditional active
recognition approaches.

Jayaraman and Grauman, ECCV 2016



End-to-end active recognition: example

((BLOIE) (82.88)
Top 3 guesses: ReBtaasant Thteabdr Plaz&latatyard
TraiCavierior Redfaueant LobBtragtium

Bérangh Plaza courtyard TSteabdr




End-to-end active recognition: example

Predicted

GERMS dataset: Malmir et al. BMVC 2015

[Jayaraman and Grauman, ECCV 2016]



FusionSeg:
Pulling objects out of video

Input Image Optical Flow Image Joint model (Ours-Joint)
¥ L4 [ =
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Challenge of viewing 360° videos

Control by mouse

Il » < 006/249

How to find the right direction to watch?



New problem:
Pano2Vid automatic videography

Pano2Vid Definition
Input: 360° video
Output: natural-looking normal-field-of-view video

Jask: control the virtual camera direction )

[Su etal. ACCV 2016, Su & Grauman CVPR 2017]



Our approach — AutoCam

Learn videography tendencies from unlabeled
Web videos

 Diverse capture-worthy content
* Proper composition

Human-captured NFOV ST-glimpses
videos (“HumanCam”) ;

“ (11| Tube

" LIVE |

house.in |

How close?

—)

Unlabeled video
[Su etal. ACCV 2016, Su & Grauman CVPR 2017]



Example AutoCam Output 2

e

Input 360° Video
+

Camera Trajectories

AutoCam
Output Video

With Without

Zooming Zooming
[Su & Grauman CVPR 2017]
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Visual learning benefits from

— context of action and motion in the world

— continuous unsupervised observations

Dinesh
Jayaraman

 New ideas:

— “Embodied” feature learning via visual
and motor signals

— Feature learning from unlabeled video
via higher order temporal coherence

— Active policies for view selection and
camera control

Code and pre-trained models available Ruohan
http://www.cs.utexas.edu/~grauman/research/pubs.html Ggo
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