

Tutorial **Psychophysics**

CENTER FOR Brains Minds+ Machines

Kohitij Kar PostdoctoralAssociate DiCarlo Lab

Just a reminder of how you might start thinking about systems neuroscience

Psychophysics

Three methods of measuring perception

Two alternative forced choice experiments and Signal Detection Theory

Brief intro to Amazon Mechanical Turk

Three methods of measuring perception

Two alternative forced choice experiments and Signal Detection Theory

Brief intro to Amazon Mechanical Turk

Three methods for measuring perception

- 1. Magnitude estimation
- 2. Matching
- 3. Detection/discrimination

Psychophysics

LiveSlide Site https://isle.hanover.edu/Ch02Methods/Ch02MagnitudeEstimationLineLength_evt.html

LiveSlide Site https://isle.hanover.edu/Ch02Methods/Ch02MagnitudeEstimation_evt.html

Magnitude estimation

Have subject rate (e.g., 1-10) some aspect of a stimulus (e.g., how bright it appears or how load it sounds)..

Magnitude estimation

Steven's power law

Stevens (1957, 1961) developed an equation to try to encapsulate this full range of possible data sets. It is called Stevens' Power Law

$$P = c * I^{b}$$

Relationship between intensity of stimulus and perception of magnitude follows the same general equation in all senses

Steven's power law

	Continuum	b	Stimulus condition +	
	Angular acceleration	1.4	5 s rotation	
-	Brightness	0.33	5° target in dark	
	Brightness	0.5	Point source	
	Brightness	0.5	Brief flash	
	Brightness	1	Point source briefly flashed	
	Cold	1	Metal contact on arm	
	Discomfort, cold	1.7	Whole-body irradiation	
	Discomfort, warm	0.7	Whole-body irradiation	
	Duration	1.1	White-noise stimuli	
	Electric shock	3.5	Current through fingers	
	Finger span	1.3	Thickness of blocks	
	Heaviness	1.45	Lifted weights	
	Lightness	1.2	Reflectance of gray papers	
	Loudness	0.67	Sound pressure of 3000 Hz tone	
	Muscle force	1.7	Static contractions	
	Pressure on palm	1.1	Static force on skin	
	Redness (saturation)	1.7	Red-gray mixture	
	Smell	0.6	Heptane	
	Tactual hardness	0.8	Squeezing rubber	
	Tactual roughness	1.5	Rubbing emery cloths	
	Taste	1.3	Sucrose	
	Taste	1.4	Salt	
	Taste	0.8	Saccharin	
	Thermal pain	1	Radiant heat on skin	
	Vibration	0.95	Amplitude of 60 Hz on finger	
	Vibration	0.6	Amplitude of 250 Hz on finger	
	Viscosity	0.42	Stirring silicone fluids	
	Visual area	0.7	Projected square	
	Visual length	1	Projected line	
	Vocal effort	1.1	Vocal sound pressure	
	Warmth	1.6	Metal contact on arm	
	Warmth	1.3	Irradiation of skin, small area	
	Warmth	0.7	Irradiation of skin, large area	

LiveSlide Site https://isle.hanover.edu/Ch02Methods/Ch02PowerLaw_evt.html

Matching

In a matching experiment, the subject's task is to adjust one of two stimuli so that they look/sound the same in some respect.

LiveSlide Site https://graphics.stanford.edu/courses/cs178/applets/colormatching.html

Psychophysical vs. Physiological Results

Matching

DeValois & DeValois (1975) Monkey LGN data

Boynton & Gordon's (1965) **Color Naming Results**

Present brief-flash of monochromatic light; Identify appearance using four color categories: RED, YELLOW, GREEN or **BLUE**

Detection / discrimination

In a detection experiment, the subject's task is to detect small differences in the stimuli.

Psychophysical procedures for detection experiments

- Method of adjustment.
- · Yes-No/method of constant stimuli.
- Forced choice.

Detection/Discrimination

The method of adjustment

Ask observer to adjust the intensity of the light until they judge it to be just barely detectable

Example: you get fitted for a new eye glasses prescription. Typically the doctor drops in different lenses and asks you if this lens is better than that one.

The method of adjustment

LiveSlide Site https://isle.hanover.edu/Ch02Methods/Ch02MethodOfAdjustment_evt.html

The method of adjustment

Ask observer to adjust the intensity of the light until they judge it to be just barely detectable

⊠introspectionist/subjective.

Example: you get fitted for prescription. Typically the lenses and asks you if this l one.

The method of adjustment

subjects can be inexperienced

Yes/no method of constant stimuli

Yes/no method of constant stimuli

LiveSlide Site https://isle.hanover.edu/Ch02Methods/Ch02MethodOfConstantStimuli_evt.html

Yes/no method of constant stimuli

Yes/no method of constant stimuli **Something is wrong!**

Do these data indicate that Laurie's threshold is lower than Chris's threshold?

All of the trials are signal trials. There are no catch trials (blanks, noise-alone trials). We only get hits and misses. We can make no estimate of false alarms.

Forced Choice

Present signal on some trials, no signal on other trials (catch trials).

Subject is forced to respond on every trial either ``Yes" the thing was presented' or ``No it wasn't". If they're not sure then they must guess.

Advantage: With the forced choice method, we have both types of trials so we can count both the number of hits and the number of false alarms to get an estimate of discriminability independent on the criterion.

Forced Choice

LiveSlide Site https://isle.hanover.edu/Ch02Methods/Ch02Forced-Choice_evt.html

Two Alternative Forced Choice

Forced Choice

The dorsal stream has been linked with motion perception

Visual Neuroscience (1996), 13, 87-100. Printed in the USA. Copyright © 1996 Cambridge University Press 0952-5238/96 \$11.00 + .10

A relationship between behavioral choice and the visual responses of neurons in macaque MT

K.H. BRITTEN,¹ W.T. NEWSOME,¹ M.N. SHADLEN,¹ S. CELEBRINI,¹ AND J.A. MOVSHON²

¹Department of Neurobiology, Stanford University School of Medicine, Stanford ²Howard Hughes Medical Institute and Center for Neural Science, New York University, New York

(RECEIVED February 24, 1995; ACCEPTED May 30, 1995)

Two Alternative Forced Choice

Visual motion discrimination task

Test Stimulus

Random Dot Motion stimulus (coherence = 100 %)

Visual motion discrimination task

Test Stimulus

Random Dot Motion stimulus (coherence = 0 %)

Visual motion discrimination task

Test Stimulus

Random Dot Motion stimulus (coherence = -100 %)

Characterizing a psychometric function

1. Point of Subjective Equality

Characterizing a psychometric function

1. Point of Subjective Equality

2. Slope (Sensitivity) $\Delta y / \Delta x$

Characterizing a psychometric function

1. Point of Subjective Equality

2. Slope (Sensitivity) $\Delta y / \Delta x$

Motion Aftereffect – a consequence of motion adaptation

Adapter Stimulus

Two alternative forced choice experiments and Signal Detection Theory

Brief intro to Amazon Mechanical Turk

Brief intro to signal detection theory:

- Your ability to perform a detection/discrimination task is limited by internal noise.
 - Information (e.g., <u>signal strength</u>) and <u>criterion</u> are the 2 components that affect your decisions. They each have a different kind of effect on the decisions.
- By measuring both hits and false alarms, we can get an estimate of d' that is a measure of task difficulty and that is independent of the criterion.

Signal Detection Theory and the motion discrimination task

Theory on how we detect signals from various sensory stimuli

Lets revisit motion discrimination in the light of SDT

Signal Detection Theory

Signal Detection Theory

Receiver Operating Characteristic (ROC) curve

Two alternative forced choice experiments and Signal Detection Theory

Brief intro to Amazon Mechanical Turk

The original Turk

The Turk, also known as the Mechanical Turk was constructed and unveiled in 1770 by Wolfgang von Kempelen (Hungarian: Kempelen Farkas; 1734–1804) to impress the Empress Maria Theresa of Austria.

It was a fake chess-playing machine constructed in the late 18th century. From 1770 until its destruction by fire in 1854 it was exhibited by various owners as an automaton. The Turk was in fact a mechanical illusion that allowed a human chess master hiding inside to operate the machine.

LiveSlide Site https://requester.mturk.com/

Quality of amazon mechanical turk data

THANKS ...

