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Biologically-inspired	computations	are	powerful

Algorithms, 
solutions

Theories

Technology

Computational models

Tools, hypotheses, 
hardware

Listening to neuronal 
circuits

Decoding activity

Writing-in information

Over millions of years of evolution, “interesting” solutions to 
difficult problems have emerged through changes in neuronal 
circuits

• Hardware and software that work for many decades
• Parallel computation (with serial bottlenecks)
• Reprogrammable architecture
• Low power
• Single-shot learning
• “Discover” structure in data
• Fault tolerance
• Robustness to sensory transformations
• Component interaction and integration of sensory modalities



Bottom-up	models	of	object	recognition

Krizhevsky et	al,	NIPS	2012

Serre	et	al	2007

Fukushima,	Mel,	
Olshausen,	LeCun,	
Riesenhuber,	Rolls,	
DiCarlo,	…	

Deep	convolutional	networks



There	is	more.	Much	more.	

Felleman and Van Essen 1991

A	schematic	diagram	
of	visual	cortex	
connections	in	
macaque	monkeys

This	is	a	major	
oversimplification	…	

Each	box	contains	a	
bewildering	and	
magnificient	world	of	
computations



Why are there so many feedback and recurrent 
connections?

Markov et al 2014

V2

There are more horizontal + top-down projections than 
bottom-up ones (e.g. Douglas 2004, Callaway 2004)

What are feedback/recurrent signals doing? 
When?
Why?
How?  



Computational roles of recurrent/feedback signals

1. Pattern completion (recurrent computations)
2. Predictive coding (feedback computations)

Image	by	Hanlin	Tang



Pattern	completion	as	a	hallmark	of	intelligence

A, C, E, G, 

1, 2, 3, 5, 7, 11, 

Even though it was raining heavily, 
Jonathan decided to go out without 
an 

V-s-a- R-c-g-i-i-n

I

13

Visual Recognition

Umbrella

Also: 
Other sensory modalities
Music
Social interactions



Objects	can	be	recognized	from	partial	information

20	bubbles

10	bubbles

6	bubbles

4	bubbles



Evaluating	pattern	completion
20	bubbles

10	bubbles

6	bubbles

4	bubbles

Hanlin	Tang,	Bill	Lotter,	Martin	Schrimpf



Strong robustness to limited visibility



• Short	delays	(SOA<20ms):	mask	reduces	visibility

• Longer	delays:	mask	is	purported	to	disrupt	recurrent/top-down	processing

Backward masking interrupts processing 
(presumably of feedback/recurrent computations)

Models: Masks:

Lamme V,	Roelfsema P	(2000)

V1:	Bridgeman	1980,	Maknik and	Livinsgtone 1998,	Lamme et	al	2002
IT:	Kovacs	et	al	1995,	Rolls	et	al	1999



Evaluating	pattern	completion	abilities

20	bubbles

10	bubbles

6	bubbles

4	bubbles



Backward masking disrupts pattern completion



Peeking inside the human brain

•Patients with pharmacologically intractable epilepsy
•Multiple electrodes implanted to localize seizure focus

•Patients stay in the hospital for about 7-10 days

•All experiments are approved by the Institutional Review Boards

•All testing is performed with the subjects’ consent

Neurosurgeons: William Anderson, Joseph Madsen, Itzhak Fried

Time (sec)

V 
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Reliable, selective and rapid responses in human inferior 
temporal cortex

Inferior temporal gyrus

Tang et al 2014



Visual selectivity along the human ventral visual cortex

2205 electrodes
27 subjects

Main areas showing visual 
selectivity
Inferior-occipital gyrus
Fusiform gyrus
Medial temporal gyrus
Inferior temporal gyrus
Temporal pole

Agam, Liu, Singer, Tang
Gross, Desimone, Logothetis, Richmond, 
Tanaka, DiCarlo, Rolls, Connors, Ito, Vogels



Example	responses	during	object	completion

Inferior Temporal Gyrus Tang	et	al,	2014



The	behavioral	effect	of	masking	correlated	with	the	
neural	response	latency	on	an	image-by-image	basis



Bottom-up	models	significantly	underperform	in	
recognition	of	partial	images

See	also	Pepik et	al	2015,	Wyatte	et	al	2012



2D	object	representation	at	the	top	of	the	model	
hierarchy	is	not	robust	to	occlusion

Stochastic	neighborhood	embedding.	Van	der	Maaten 2008



The	neural	latency	for	each	image	was	correlated	with	
the	distance	to	category	center



Hopfield	network	with	binary	neurons

Each neuron i has two states: Vi=0 or Vi=1

V = [V1,V2 ,...,VN ]Ensemble: 

Synaptic strength: Tij

If two neurons are not connected: Tij=0

No self connections: Tii=0

V=V(t)

Tij
j
∑ Vj (t) > 0Update	rule: Vi(t)=1 iff	

Note:

Hopfield,	1982



A	recurrent	network	may	ameliorate	the	
problem	of	missing	information

p = prototypes  (fixed)



Recurrent	Hopfield	network	(RNNh)	improves	
recognition	performance	for	partial	images

NOTE:			0	free	parameters



Training	with	occluded	objects	leads	to	matching	
human	performance	in	pattern	completion



Temporal	evolution	in	recurrent	networks



Correlation	between	RNN	models	and	human	
performance	for	individual	objects



Recurrent	neural	networks	match	human	
performance	in	pattern	completion



Computational roles of recurrent/feedback signals

1. Pattern completion (recurrent computations)
2. Predictive coding (feedback computations)

Image	by	Hanlin	Tang



Neurophysiology led the way to basic filters

Hubel – Nobel Lecture
Hubel and Wiesel 1968 

Orientation selectivity
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Area summation curve in V1



Reversible inactivation of feedback signals (from 
V2/V3 to V1)

Camille	Gomez-Laberge,	JoJo Nassi and	Richard	Born



Nassi et al 2013, Gomez-Laberge et al 2014, 2016

Feedback inactivation does not change 
orientation or direction selectivity



Composite
1.5 columns

Sp
ik

e 
ra

te

Feedback inactivation leads to reduced surround 
suppression
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Stimulus diameter (degrees)
Nassi et al 2013, Gomez-Laberge et al 2014, 2016 Recurrent	connections	also	contribute	to	surround	

suppression	(Adesnik et	al	2012)



Composite
1.5 columns

B

A simple normalization model to explain area 
summation curves

RROG (x) = R0 +
D(x)

σ + N(x)

RROG (x) = R0 +
kD[wDerf (x / 2wD )

2 ]
σ + kN [wNerf (x / 2wN )

2 ]



Predictive coding in visual cortex

Rao and	Ballard,	1999



Deep Learning Implementation of Predictive Coding

Essential elements:
– “Representation” 

neurons:  hold “state of 
world”

– Predictions

– Targets

– “Error” neurons

Bill	Lotter	and	David	Cox



“PredNet” Details
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Testing the model with rotating faces



Training for prediction à successful image classification



Feedback 
signals in 
visual 
search

Miconi	et	al,	2016



Summary

Pattern completion: Recurrent 
connections can help recognize heavily 
occluded objects and pattern completion

Feedback signals enhance surround 
suppression and may provide a signal for 
predictive coding that can help in 
unsupervised learning



From biological codes to computational codes

Biological	
codes

Computer	
codes
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