Visual recognition: peeking inside computations in the brain

Gabriel Kreiman

Gabriel.kreiman@tch.harvard.edu

klab.tch.harvard.edu Center for Brains, Minds and Machines

Camille Gomez

Hanlin Tang

Richard Born

Thomas Miconi

Jojo Nassi

Bill Lotter

Laura Groomes

David Cox

Biologically-inspired computations are powerful

Over millions of years of evolution, "interesting" solutions to difficult problems have emerged through changes in neuronal circuits

- Hardware and software that work for many decades
- Parallel computation (with serial bottlenecks)
- Reprogrammable architecture
- Low power
- Single-shot learning
- "Discover" structure in data
- Fault tolerance
- Robustness to sensory transformations
- Component interaction and integration of sensory modalities

Algorithms, solutions

Bottom-up models of object recognition

Fukushima, Mel, Olshausen, LeCun, Riesenhuber, Rolls, DiCarlo, ...

Serre et al 2007

Deep convolutional networks

There is more. Much more.

A schematic diagram of visual cortex connections in macaque monkeys

This is a major oversimplification ...

Each box contains a bewildering and magnificient world of computations

Felleman and Van Essen 1991

Why are there so many feedback and recurrent connections?

There are more horizontal + top-down projections than bottom-up ones (e.g. Douglas 2004, Callaway 2004)

Computational roles of recurrent/feedback signals

- 1. Pattern completion (recurrent computations)
- 2. Predictive coding (feedback computations)

Image by Hanlin Tang

Pattern completion as a hallmark of intelligence

an

Also: Other sensory modalities Music Social interactions

Objects can be recognized from partial information

Evaluating pattern completion

Strong robustness to limited visibility

Backward masking interrupts processing (presumably of feedback/recurrent computations)

Masks:

Lamme V, Roelfsema P (2000)

- Short delays (SOA<20ms): mask reduces visibility
- Longer delays: mask is purported to disrupt recurrent/top-down processing

V1: Bridgeman 1980, Maknik and Livinsgtone 1998, Lamme et al 2002

IT: Kovacs et al 1995, Rolls et al 1999

Evaluating pattern completion abilities

Backward masking disrupts pattern completion

Peeking inside the human brain

- •Multiple electrodes implanted to localize seizure focus
- •Patients stay in the hospital for about 7-10 days
- •All experiments are approved by the Institutional Review Boards
- •All testing is performed with the subjects' consent

Neurosurgeons: William Anderson, Joseph Madsen, Itzhak Fried

Reliable, selective and rapid responses in human inferior temporal cortex

450

0 200 400 600

Time (ms)

Tang et al 2014

Visual selectivity along the human ventral visual cortex

2205 electrodes

Main areas showing visual selectivity

Inferior-occipital gyrus Fusiform gyrus Medial temporal gyrus Inferior temporal gyrus Temporal pole

Example responses during object completion

Inferior Temporal Gyrus Tang et al, 2014

The behavioral effect of masking correlated with the neural response latency on an image-by-image basis

Bottom-up models significantly underperform in recognition of partial images

See also Pepik et al 2015, Wyatte et al 2012

2D object representation at the top of the model hierarchy is not robust to occlusion

The neural latency for each image was correlated with the distance to category center

Hopfield network with binary neurons

Each neuron *i* has two states: $V_i=0$ or $V_i=1$

Ensemble: $V = [V_1, V_2, ..., V_N]$ Note: V=V(t)

Synaptic strength: T_{ij}

If two neurons are not connected: $T_{ij} = 0$

No self connections: $T_{ii} = 0$

Update rule: $V_i(t) = 1$ iff $\sum_i T_{ij} V_j(t) > 0$

A recurrent network may ameliorate the problem of missing information

p = prototypes (fixed)

Recurrent Hopfield network (RNN_h) improves recognition performance for partial images

NOTE: 0 free parameters

Training with occluded objects leads to matching human performance in pattern completion

Temporal evolution in recurrent networks

Correlation between RNN models and human performance for individual objects

Recurrent neural networks match human performance in pattern completion

Computational roles of recurrent/feedback signals

- 1. Pattern completion (recurrent computations)
- 2. Predictive coding (feedback computations)

Image by Hanlin Tang

Neurophysiology led the way to basic filters

Orientation selectivity

Gabor function

$$D(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left[-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}\right] \cos(kx - \phi)$$

Hubel and Wiesel 1968

Hubel – Nobel Lecture

Area summation curve in V1

Reversible inactivation of feedback signals (from V2/V3 to V1)

Feedback inactivation does not change orientation or direction selectivity

Feedback inactivation leads to reduced surround suppression

Nassi et al 2013, Gomez-Laberge et al 2014, 2016

Recurrent connections also contribute to surround suppression (Adesnik et al 2012)

A simple normalization model to explain area summation curves

Predictive coding in visual cortex

Rao and Ballard, 1999

Deep Learning Implementation of Predictive Coding

Essential elements:

- "Representation"neurons: hold "state of world"
- Predictions
- Targets
- "Error" neurons

"PredNet" Details

$$A_{l}^{t} = \begin{cases} x_{t} & l=0\\ \text{MAXPOOL}(\text{ReLU}(\text{CONV}(E_{l-1}^{t}))) & l>0 \end{cases}$$

$$\hat{A}_l^t = \text{ReLU}(\text{Conv}(R_l^t))$$

$$E_l^t = [\text{ReLU}(A_l^t - \hat{A}_l^t); \text{ReLU}(\hat{A}_l^t - A_l^t)]$$

$$R_l^t = \text{CONVLSTM}(E_l^{t-1}, R_l^{t-1}, \text{UPSAMPLE}(R_{l+1}^t))$$

$$L = \sum_{t=0}^{T} \lambda_{t} \sum_{l=0}^{N_{l}} \lambda_{l} / n_{l} \sum_{i=1}^{n_{l}} E_{l}^{t}(i)$$

Testing the model with rotating faces

Training for prediction \rightarrow successful image classification

Feedback signals in visual search

Summary

100-

Pattern completion: Recurrent connections can help recognize heavily occluded objects and pattern completion

Feedback signals enhance surround suppression and may provide a signal for predictive coding that can help in unsupervised learning

From biological codes to computational codes

Visual recognition: peeking inside computations in the brain

Gabriel Kreiman

gabriel.kreiman@tch.harvard.edu klab.tch.harvard.edu

Center for Brains, Minds and Machines

Camille Gomez

Hanlin Tang

Richard Born

Thomas Miconi

Jojo Nassi

Bill Lotter

Laura Groomes

David Cox

