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What computers can do [2014]




Humans vs. machines, 2014



Biologically-inspired computation

Claim:

Interesting solutions to difficult problems have emerged through changes in
neuronal circuits over millions of years of evolution
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“... the great events of the world take place in the brain” (Oscar Wilde)









A flower, as seen by a computer




Vision as a summer project...






Partial Summary

1. Understanding neural circuits codes - Biologically-inspired
algorithms underlying intelligent computations



Visual system circuitry

Primary visual cortex (V1)

Lateral geniculate nucleus

Optic nerve

Right visual field

Left visual field

Modified from Society for Neuroscience Brain Facts



Magic in the brain: ventral visual cortex

NOTE:

* This is only a coarse description
of the circuit

« Many (most?) connections are
still probably missing

 We do not understand the

functional role for most of the
connections Felleman and Van Essen. Cerebral Cortex 1991



Neocortical circuits can be quite specific

-Unable to visually recognize friends,
famous people, relatives, even self

-Could not learn to recognize new faces Distribution of lesion sites in cases
(but could learn to recognize new of face agnosia
people from voice and other cues) Damasio et al. Face agnosia and the neural

substrates of memory. Annual Review of

-Normal language, memory, learning, Neuroscience (1990). 13:89-109

non-face object recognition

-Many normal visual functions






Methods to study the brain at different scales

Kreiman. Physics of Life Reviews 2004



Reading out the biological source code



Neurons show sensitivity to special visual features

Newsome et al (1989)
Nature 341:52-54

Kuffler, S. (1953)

Physiol. 148: 574-591 l

Desimone et al (1984)
J. Neurosci. 4:2051-2062



Invasive physiological recordings in the human brain

ePatients with pharmacologically intractable epilepsy

eMultiple electrodes implanted to localize seizure
focus

eTargets typically include the temporal lobe (inferior
temporal cortex, fusiform gyrus), medial temporal
lobe (hippocampus, entorhinal cortex, amygdala and
parahippocampal gyrus)

ePatients stay in the hospital for about 7-10 days

eCannot choose type of electrodes
eCannot choose number of electrodes

eCannot choose electrode location ltzhak Fried (UCLA)
eLimits on recording time Joseph Madsen (Harvard)
Alex Golby (Brigham and Women)

eMany other limitations Stanley Anderson (J. Hopkins)



A panoply of different types of electrodes
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eTargets typically include the medial temporal
(hippocampus, entorhinal cortex, amygdala
and parahippocampal gyrus)

*40 micron diameter, impedance ~ 1 MOhm

eAction potentials, LFPs

Itzhak Fried (UCLA), Joseph Madsen (Harvard), Alex Golby (Brigham and Women), Stanley Anderson (Hopkins)



Reliable, selective and rapid responses In
human inferior temporal cortex

animals al
a2
a3
ad
a5

chairs

faces

vehicles

fruits

Inferior temporal gyrus

Gross, Desimone, Logothetis, Richmond,
Tanaka, Vogels, Rolls, Connors, Ito, Perret

Hanlin Tang



Selective responses are stable over multiple days

) )
46 hours 24 hours

IFP = intracranial field potential cf. Tolias, DiCarlo, Leopold Bansal et al 2012



Tolerance to scale and rotation changes

Right Medial Temporal Gyrus, Parahippocampal Part
(Talairach: [32,-34,-14])

Liu et al 2009



Responses are tolerant to small amounts of clutter

Left Occipito-Temporal Fusiform Gyrus [-42,-44 ,-24]

Agam et al 2010



Highly selective and tolerant responses in
the human medial temporal lobe
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Quian Quiroga, Reddy, Kreiman, Koch, Fried. Nature 2005

25 splkes/sec




Electrical stimulation can bias visual perception

Afraz et al. Microstimulation of inferotemporal cortex influences face
categorization. Nature (2006) 442: 692-695.



Electrical stimulation in the human brain

Before the removal was. carried out, stimulation at points 5 and 7 produced the
following experiential responses.

. Patient did not.reply.

. Repeated. ‘‘Something.”

. Patient did not reply.

. Repeated. ‘“‘Something.”

. Repeated again. ‘“‘People’s voices talking.” When asked, he said he could not

tell what they were saying. They seemed to be far away.

Stimulation without warning. He said, “Now I hear them.” Then he added, “A

little like in a dream.”

“Like footsteps walking—on the radio.”

. Repeated. *Like company in the room.”

Repeated. He explained “it was like being in a dance hall, like standing in the

doorway—in a gymnasium—like at the Kenwood Highschool.” He added, “If 1

wanted to go there it would be similar to what I heard just now.”

7. Repeated. Patient said, ‘“Yes, yes, yes.”” After withdrawal of the stimulus, he
said it was “like a lady was talking to a child. It seemed like it was in a room,
but it seemed as though it was by the ocean—at the seashore.”

7. Repeated. ‘I tried to think.” When asked whether he saw something or heard
something, he said, ‘I saw and heard. It seemed familiar, as though I had been
there.” :

5. Repeated (20 minutes after last stimulation at 5). “People’s voices.” When
asked, he said, “Relatives, my mother.” When asked if it was over, he said, “I
do not know.” When asked if he also realized he was in the operating room, he
said “‘Yes.” He explained it seemed like a dream.

S. Repeated. Patient said, “I am trying.” After withdrawal of the electrode he
said, ‘It seemed as if my niece and nephew were visiting at my home. It hap-
pened like that many times. They were getting ready to go home, putting their
things on—their coats and hats.” When asked where, he said, “In the dining
room—the front room—they were moving about. There were three of them
and my mother was talking to them. She was rushed—in a hurry. I could
not see them clearly or hear them clearly.”

Penfield & Perot. The brain's record of auditory and visual experience.
A final summary and discussion. Brain (1963) 86:595-696
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Partial Summary

1. Understanding neural circuits codes = Biologically-inspired
algorithms underlying intelligent computations

2. Responses along the ventral visual stream
-- Increase in receptive field sizes
-- Selectivity to different shapes
-- Tolerance to transformations (scale, position, some rotation)
-- Rapid responses (100-150 ms)



Deciphering the neural code

Hung et al, 2005



Machine learning approach to decode neural
signals






Decoding selective and transformation tolerant
information






Partial Summary

1. Understanding neural circuits codes = Biologically-inspired
algorithms underlying intelligent computations

2. Responses along the ventral visual stream
-- Increase in receptive field sizes
-- Selectivity to different shapes
-- Tolerance to transformations (scale, position, some rotation)
-- Rapid responses (100-150 ms)

3. We can use a machine learning approach to read out biological
codes in single trials



From biological code to computer code



A biologically-inspired, bottom-up,
hierarchical model of object recognition

Cadieu, Knoblich, Kouh, Mutch, Riesenhuber, Serre, Poggio






Scale and position tolerance when decoding from ITC and
model units

Support vector machine classifier

Linear kernel

Pseudo-population of 64 inferior temporal
cortex neurons [white]

Model: 64 random C2-level units

Categorization performance

Chance =1/8

Cross-validation

with Chou Hung, Jim DiCarlo, Tommy Poggio Hung et al 2005



Model performance in the presence of clutter



Towards understanding vision in real scenes



Partial Summary

1. Understanding neural circuits codes = Biologically-inspired
algorithms underlying intelligent computations

2. Responses along the ventral visual stream
-- Increase in receptive field sizes
-- Selectivity to different shapes
-- Tolerance to transformations (scale, position, some rotation)
-- Rapid responses (100-150 ms)

3. We can use a machine learning approach to read out biological
codes in single trials

4. Divide and conquer: a biologically inspired bottom-up hierarchical
model can capture essentials aspects of object recognition



Objects can be recognized from partial information



Object completion task






Limited object completion in feed-forward model

(full images)

2000 “C2” units in the model

Model responses to 25 exemplar objects

Consider 20 units with high SNR (training data)
500 repetitions with different bubble locations
Train classifier with 70% of the repetitions

Test classifier on remaining 30% of the repetitions
|dentification task (chance=4%)



Example responses during object completion

Inferior Temporal Gyrus



Delayed responses to partial objects



Object completion requires more time (behavior)
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Walter Hardesty, Hanlin Tang



Top-down / recurrent signals may ameliorate the
problem of missing information

Attractor networks can solve the problem of pattern completion (e.g. Hopfield)

(P, — ,2(t—1))
d(z(t-1),p;)"

p = prototypes (fixed)
i=1,...,25

a, n = parameters

d = Euclidian distance

2= 2t-1)+ 32

Calin Buia, Hanlin Tang



Proof-of-principle: Adding top-down signals improves
recognition performance under occlusion

2000 “C2” units in the model

Model responses to 25 exemplar objects

Consider 20 units with high SNR (training data)
500 repetitions with different bubble locations
Train classifier with 70% of the repetitions

Test classifier on remaining 30% of the repetitions
|dentification task (chance=4%)



Top-down connections help perform object completion

N=Number
of bubbles

Classification performance

Dean Wyatte, Randall O’Reilly, Hanlin Tang Time (model cycles)



Summary (Object completion)

="Object completion presents a challenge for
purely bottom-up architectures

=Neural signals in higher visual areas remain
selective despite showing only a small

fraction of an object e

=Object completion requires additional
computation (i.e. more time) (behavioral and ;
physiological evidence) —

=Recurrent and/or top-down connections
can improve recognition of partial or
occluded objects
=Top-down signals can enhance recognition
under a variety of related roles (not shown)
= Multiple fixations during target search
tasks
=Cluttered scenes
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Increased latency differences in higher visual areas



No change in amplitude. Change in selectivity.



Example responses during object completion

Left Fusiform Gyrus



No changes in eye movements during object completion



Matched amplitude and matched decoding comparisons

Response amplitudes matched

Decoding performance matched



Example responses in the gamma frequency band

70-100 Hz
Fusiform gyrus



Example responses during object completion
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Tracking eye position and mapping receptive fields

EyeLink D1000 System
Temporal resolution: 2 ms
Spatial resolution: < 1 deg
Calibration time: ~ 20 secs
Can track one eye

Head movement tolerance
Real time feedback

Jed Singer



IFP signals are localized within ~10 mm

Units: <200 um
LFPs: 0.3-2 mm
IFPs: <15 mm
EEG: ~10 cm

IFP = intracranial field potential



We can decode object information from the model units

Chou Hung, Jim DiCarlo, Tommaso Poggio



Eye position was near the fixation point during the initial ~200 ms

Note: 2
subjects
only



Example neurophysiological responses [1]

Subject m00026
Channel 49



Example neurophysiological responses [1']

Subject m00026
Channel 49



Example neurophysiological responses [2]

Subject m00032
Channel 21



OBJECT COMPLETION



Left Inferior Occipital Gyrus and Sulcus
Talairach: [-48.8,-69.1,-11.8] Classification performance = 65+5% (change=50%)

Error bars = SEM

Yigal Agam, Hesheng Liu, Joseph Madsen



Example: Reliable and selective responses to a movie



Action potentials versus field potentials

Action potentials

Neurons communicate via action potentials

The biophysics underlying action potentials is
relatively well understood

Typically, action potentials show stronger
specificity than field potentials

Ultimately, our computational models are
inspired by and neurons and synapses. The
models in turn make predictions about
neurons and synapses

Field potentials

We can examine areas currently not studied
with action potentials in the human brain

We can sample a large number of brain areas
Spatial scale of ~0.5 to 20 mm

High signal-to-noise ratio

Strong temporal stability

Comparable trial-to-trial variability to action
potentials

Biophysics less clearly understood



Reliable and selective responses to a movie

Yigal Agam, Hesheng Liu





