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Learning from Examples

I Machine Learning deals with systems that are trained from data
rather than being explicitly programmed

I Here we describe the framework considered in statistical learning
theory.
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Supervised Learning

The goal of supervised learning is to find an underlying input-output
relation

f(xnew) ∼ y,

given data.

The data, called training set, is a set of n input-output pairs (examples)

S = {(x1, y1), . . . , (xn, yn)}.
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We Need a Model to Learn

I We consider the approach to machine learning based on the learning
from examples paradigm

I Goal: Given the training set, learn a corresponding I/O relation

I We have to postulate the existence of a model for the data

I The model should take into account the possible uncertainty in the
task and in the data
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Data Space

I The inputs belong to an input space X, we assume that X ⊆ RD

I The outputs belong to an output space Y , typycally a subset of R

I The space X × Y is called the data space
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Examples of Data Space

We consider several possible situations:

I Regression: Y ⊆ R

I Binary classification Y = {−1, 1}

I Multi-category (multiclass) classification Y = {1, 2, . . . , T}.
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Modeling Uncertainty in the Data Space

I Assumption: ∃ a fixed unknown distribution p(x, y) according to
which the data are identically and independently sampled

I The distribution p models different sources of uncertainty

I Assumption: p factorizes as p(x, y) = pX(x)p(y|x)
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Marginal and Conditional

p(y|x) can be seen as a form of noise in the output

YX

p (y|x)

x

Figure: For each input x there is a distribution of possible outputs p(y|x).

The marginal distribution pX(x) models uncertainty in the sampling of
the input points.
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Data Models

I In regression, the following model is often considered:

y = f∗(x) + ε

where:

– f∗: fixed unknown (regression) function
– ε: random noise, e.g. standard Gaussian N (0, σI), σ ∈ [0,∞)

I In classification,

p(1|x) = 1− p(−1|x),∀x

Noiseless classification, p(1|x) = {1, 0},∀x ∈ X
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Loss Function

Goal of learning: Estimate “best” I/O relation (not the whole p(x, y))

I We need to fix a loss function

` : Y × Y → [0,∞)

`(y, f(x)) is a point-wise error measure. It is the cost of when
predicting f(x) in place of y
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Expected Risk and Target Function

The expected loss (or expected risk)

E(f) = E[`(y, f(x))] =
∫
p(x, y)`(y, f(x))dxdy

can be seen as a measure of the error on past as well as future data.

Given ` and a distribution, the ”best” I/O relation is the target function

f∗ : X → Y

that minimizes the expected risk
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Learning from Data

I The target function f∗ cannot be computed, since p is unknown

I The goal of learning is to find an estimator of the target function
from data
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Learning Algorithms and Generalization

I A learning algorithm is a procedure that given a training set S
computes an estimator fS

I An estimator should mimic the target function, in which case we say
that it generalizes

I More formally we are interested in an estimator such that the excess
expected risk

E(fS)− E(f∗),

is small

The latter requirement needs some care since fS depends on the training
set and hence is random

L.Rosasco, ISML - ML 2015 17



Learning Algorithms and Generalization

I A learning algorithm is a procedure that given a training set S
computes an estimator fS

I An estimator should mimic the target function, in which case we say
that it generalizes

I More formally we are interested in an estimator such that the excess
expected risk

E(fS)− E(f∗),

is small

The latter requirement needs some care since fS depends on the training
set and hence is random

L.Rosasco, ISML - ML 2015 18



Learning Algorithms and Generalization

I A learning algorithm is a procedure that given a training set S
computes an estimator fS

I An estimator should mimic the target function, in which case we say
that it generalizes

I More formally we are interested in an estimator such that the excess
expected risk

E(fS)− E(f∗),

is small

The latter requirement needs some care since fS depends on the training
set and hence is random

L.Rosasco, ISML - ML 2015 19



Learning Algorithms and Generalization

I A learning algorithm is a procedure that given a training set S
computes an estimator fS

I An estimator should mimic the target function, in which case we say
that it generalizes

I More formally we are interested in an estimator such that the excess
expected risk

E(fS)− E(f∗),

is small

The latter requirement needs some care since fS depends on the training
set and hence is random

L.Rosasco, ISML - ML 2015 20



Generalization and Consistency

A natural approach is to consider the expectation of the excess expected
risk

ES [E(fS)− E(f∗)]

I A basic requirement is consistency

lim
n→∞

ES [E(fS)− E(f∗)] = 0

I Learning rates provide finite sample information, for all ε > if
n ≥ n(ε), then

ES [E(fS)− E(f∗)] ≤ ε,
I n(ε)is called sample complexity
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Generalization: Fitting and Stability

How to design a good algorithm?

Two concepts are key:

I Fitting: an estimator should fit data well

I Stability: an estimator should be stable, it should not change much
if data change slightly
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Generalization: Fitting and Stability

How to design a good algorithm?

We say that an algorithms overfits, if it fits the data while being unstable

We say that an algorithms oversmooth, if it is stable while disregarding
the data
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Regularization as a Fitting-Stability Trade-off

I Most learning algorithms depend on one (or more) regularization
parameter, that controls the trade-off between data-fitting and
stability

I We broadly refer to this class of approaches as regularization
algorithms, our main topic of discussion
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Wrapping up

In this class, we introduced the basic definitions in statistical learning
theory, including the key concepts of overfitting, stability and
generalization.
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Next Class

We will introduce the a first basic class of learning methods, namely local
methods, and study more formally the fundamental trade-off between
overfitting and stability.
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