Basic Calculus Review

CBMM Summer Course, Day 2 - Machine Learning

Vector Spaces

Functionals and Operators (Matrices)

Vector Space

- A vector space is a set V with binary operations

$$
+: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{~V} \text { and } \quad:: \mathbb{R} \times \mathrm{V} \rightarrow \mathrm{~V}
$$

such that for all $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ and $v, w, \mathrm{x} \in \mathrm{V}$:

1. $v+w=w+v$
2. $(v+w)+x=v+(w+x)$
3. There exists $0 \in \mathrm{~V}$ such that $v+0=v$ for all $v \in \mathrm{~V}$
4. For every $v \in \mathrm{~V}$ there exists $-v \in \mathrm{~V}$ such that $v+(-v)=0$
5. $a(b v)=(a b) v$
6. $1 v=v$
7. $(a+b) v=a v+b v$
8. $a(v+w)=a v+a w$

Vector Space

- A vector space is a set V with binary operations

$$
+: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{~V} \text { and } \quad:: \mathbb{R} \times \mathrm{V} \rightarrow \mathrm{~V}
$$

such that for all $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ and $v, w, \mathrm{x} \in \mathrm{V}$:

1. $v+w=w+v$
2. $(v+w)+x=v+(w+x)$
3. There exists $0 \in \mathrm{~V}$ such that $v+0=v$ for all $v \in \mathrm{~V}$
4. For every $v \in \mathrm{~V}$ there exists $-v \in \mathrm{~V}$ such that $v+(-v)=0$
5. $a(b v)=(a b) v$
6. $1 v=v$
7. $(a+b) v=a v+b v$
8. $\mathfrak{a}(v+w)=a v+a w$

- Example: \mathbb{R}^{n}, space of polynomials, space of functions.

Inner Product

- An inner product is a function $\langle\cdot, \cdot\rangle: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}$ such that for all $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ and $v, w, x \in \mathrm{~V}$:

Inner Product

- An inner product is a function $\langle\cdot, \cdot\rangle: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}$ such that for all $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ and $v, w, \mathrm{x} \in \mathrm{V}$:

1. $\langle v, w\rangle=\langle w, v\rangle$
2. $\langle\mathrm{a} v+\mathrm{b} w, \mathrm{x}\rangle=\mathrm{a}\langle v, \mathrm{x}\rangle+\mathrm{b}\langle w, \mathrm{x}\rangle$
3. $\langle v, v\rangle \geqslant 0$ and $\langle v, v\rangle=0$ if and only if $v=0$.

Inner Product

- An inner product is a function $\langle\cdot, \cdot\rangle: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}$ such that for all $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ and $v, w, \mathrm{x} \in \mathrm{V}$:

1. $\langle v, w\rangle=\langle w, v\rangle$
2. $\langle\mathrm{a} v+\mathrm{b} w, \mathrm{x}\rangle=\mathrm{a}\langle v, \mathrm{x}\rangle+\mathrm{b}\langle w, \mathrm{x}\rangle$
3. $\langle v, v\rangle \geqslant 0$ and $\langle v, v\rangle=0$ if and only if $v=0$.

- $v, w \in \mathrm{~V}$ are orthogonal if $\langle v, w\rangle=0$.

Inner Product

- An inner product is a function $\langle\cdot, \cdot\rangle: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}$ such that for all $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ and $v, w, x \in \mathrm{~V}$:

1. $\langle v, w\rangle=\langle w, v\rangle$
2. $\langle\mathrm{a} v+\mathrm{b} w, \mathrm{x}\rangle=\mathrm{a}\langle v, \mathrm{x}\rangle+\mathrm{b}\langle w, \mathrm{x}\rangle$
3. $\langle v, v\rangle \geqslant 0$ and $\langle v, v\rangle=0$ if and only if $v=0$.

- $v, w \in \mathrm{~V}$ are orthogonal if $\langle v, w\rangle=0$.
- Given $\mathrm{W} \subseteq \mathrm{V}$, we have $\mathrm{V}=\mathrm{W} \oplus \mathrm{W}^{\perp}$, where $W^{\perp}=\{v \in \mathrm{~V} \mid\langle v, w\rangle=0$ for all $w \in W\}$.

Inner Product

- An inner product is a function $\langle\cdot, \cdot\rangle: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}$ such that for all $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ and $v, w, \mathrm{x} \in \mathrm{V}$:

1. $\langle v, w\rangle=\langle w, v\rangle$
2. $\langle\mathrm{a} v+\mathrm{b} w, \mathrm{x}\rangle=\mathrm{a}\langle v, \mathrm{x}\rangle+\mathrm{b}\langle w, \mathrm{x}\rangle$
3. $\langle v, v\rangle \geqslant 0$ and $\langle v, v\rangle=0$ if and only if $v=0$.

- $v, w \in \mathrm{~V}$ are orthogonal if $\langle v, w\rangle=0$.
- Given $\mathrm{W} \subseteq \mathrm{V}$, we have $\mathrm{V}=\mathrm{W} \oplus \mathrm{W}^{\perp}$, where $W^{\perp}=\{v \in \mathrm{~V} \mid\langle v, w\rangle=0$ for all $w \in \mathbb{W}\}$.
- Cauchy-Schwarz inequality: $\langle v, w\rangle \leqslant\langle v, v\rangle^{1 / 2}\langle w, w\rangle^{1 / 2}$.

Norm

- Can define norm from inner product: $\|v\|=\langle v, v\rangle^{1 / 2}$.

Norm

- A norm is a function $\|\cdot\|: V \rightarrow \mathbb{R}$ such that for all $a \in \mathbb{R}$ and $v, w \in \mathrm{~V}$:

1. $\|v\| \geqslant 0$, and $\|v\|=0$ if and only if $v=0$
2. $\|\mathrm{a} v\|=|\mathrm{a}|\|v\|$
3. $\|v+w\| \leqslant\|v\|+\|w\|$

- Can define norm from inner product: $\|v\|=\langle v, v\rangle^{1 / 2}$.

Metric

- Can define metric from norm: $\mathrm{d}(v, w)=\|v-w\|$.

Metric

- A metric is a function $\mathrm{d}: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}$ such that for all $v, w, x \in V$:

1. $\mathrm{d}(v, w) \geqslant 0$, and $\mathrm{d}(v, w)=0$ if and only if $v=w$
2. $\mathrm{d}(v, w)=\mathrm{d}(w, v)$
3. $\mathrm{d}(v, w) \leqslant \mathrm{d}(v, x)+\mathrm{d}(\mathrm{x}, w)$

- Can define metric from norm: $\mathrm{d}(v, w)=\|v-w\|$.

Basis

- $\mathrm{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V if every $v \in \mathrm{~V}$ can be uniquely decomposed as

$$
v=\mathrm{a}_{1} v_{1}+\cdots+\mathrm{a}_{\mathrm{n}} v_{\mathrm{n}}
$$

for some $a_{1}, \ldots, a_{n} \in \mathbb{R}$.

Basis

- $\mathrm{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V if every $v \in \mathrm{~V}$ can be uniquely decomposed as

$$
v=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

for some $a_{1}, \ldots, a_{n} \in \mathbb{R}$.

- An orthonormal basis is a basis that is orthogonal $\left(\left\langle v_{\mathfrak{i}}, v_{\mathfrak{j}}\right\rangle=0\right.$ for $\left.\mathfrak{i} \neq \mathfrak{j}\right)$ and normalized $\left(\left\|v_{\mathfrak{i}}\right\|=1\right)$.

Vector Spaces

Functionals and Operators (Matrices)

Maps

Next we are going to review basic properties of maps on a Hilbert space.

- functionals: $\Psi: \mathcal{H} \rightarrow \mathbb{R}$
- linear operators $A: \mathcal{H} \rightarrow \mathcal{H}$, such that
$A(a f+b g)=a A f+b A g$, with $a, b \in \mathbb{R}$ and $f, g \in \mathcal{H}$.

Representation of Continuous Functionals

Let \mathcal{H} be a Hilbert space and $g \in \mathcal{H}$, then

$$
\Psi_{g}(f)=\langle f, g\rangle, \quad f \in \mathcal{H}
$$

is a continuous linear functional.
Riesz representation theorem
The theorem states that every continuous linear functional Ψ can be written uniquely in the form,

$$
\Psi(f)=\langle f, g\rangle
$$

for some appropriate element $\mathrm{g} \in \mathcal{H}$.

Matrix

- Every linear operator $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ can be represented by an $m \times n$ matrix A.

Matrix

- Every linear operator $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ can be represented by an $m \times n$ matrix A.
- If $A \in \mathbb{R}^{m \times n}$, the transpose of A is $A^{\top} \in \mathbb{R}^{n \times m}$ satisfying

$$
\langle A x, y\rangle_{\mathbb{R}^{m}}=(A x)^{\top} y=x^{\top} A^{\top} y=\left\langle x, A^{\top} y\right\rangle_{\mathbb{R}^{n}}
$$

for every $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$.

Matrix

- Every linear operator $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ can be represented by an $m \times n$ matrix A.
- If $A \in \mathbb{R}^{m \times n}$, the transpose of A is $A^{\top} \in \mathbb{R}^{n \times m}$ satisfying

$$
\langle A x, y\rangle_{\mathbb{R}^{m}}=(A x)^{\top} y=x^{\top} A^{\top} y=\left\langle x, A^{\top} y\right\rangle_{\mathbb{R}^{n}}
$$

for every $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$.

- A is symmetric if $A^{\top}=A$.

Eigenvalues and Eigenvectors

- Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^{n}$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $A \nu=\lambda \nu$.

Eigenvalues and Eigenvectors

- Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^{n}$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $A \nu=\lambda \nu$.
- Symmetric matrices have real eigenvalues.

Eigenvalues and Eigenvectors

- Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^{n}$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $A \nu=\lambda \nu$.
- Symmetric matrices have real eigenvalues.
- Spectral Theorem: Let A be a symmetric $n \times n$ matrix. Then there is an orthonormal basis of \mathbb{R}^{n} consisting of the eigenvectors of A.

Eigenvalues and Eigenvectors

- Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^{n}$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $A \nu=\lambda \nu$.
- Symmetric matrices have real eigenvalues.
- Spectral Theorem: Let A be a symmetric $n \times n$ matrix. Then there is an orthonormal basis of \mathbb{R}^{n} consisting of the eigenvectors of A.
- Eigendecomposition: $\mathrm{A}=\mathrm{V} \wedge \mathrm{V}^{\top}$, or equivalently,

$$
A=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{\top}
$$

Singular Value Decomposition

- Every $A \in \mathbb{R}^{m \times n}$ can be written as

$$
A=U \Sigma V^{\top}
$$

where $\mathrm{U} \in \mathbb{R}^{\mathrm{m} \times \mathrm{m}}$ is orthogonal, $\Sigma \in \mathbb{R}^{\mathrm{m} \times n}$ is diagonal, and $V \in \mathbb{R}^{n \times n}$ is orthogonal.

Singular Value Decomposition

- Every $A \in \mathbb{R}^{m \times n}$ can be written as

$$
A=U \Sigma V^{\top}
$$

where $\mathrm{U} \in \mathbb{R}^{\mathrm{m} \times m}$ is orthogonal, $\Sigma \in \mathbb{R}^{\mathrm{m} \times n}$ is diagonal, and $\mathrm{V} \in \mathbb{R}^{\mathrm{n} \times n}$ is orthogonal.

- Singular system:

$$
\begin{array}{rlrl}
A v_{i} & =\sigma_{i} u_{i} & A A^{\top} u_{i} & =\sigma_{i}^{2} u_{i} \\
A^{\top} u_{i} & =\sigma_{i} v_{i} & A^{\top} A v_{i} & =\sigma_{i}^{2} v_{i}
\end{array}
$$

Matrix Norm

- The spectral norm of $A \in \mathbb{R}^{m \times n}$ is

$$
\|A\|_{\text {spec }}=\sigma_{\max }(A)=\sqrt{\lambda_{\max }\left(A A^{\top}\right)}=\sqrt{\lambda_{\max }\left(A^{\top} A\right)}
$$

Matrix Norm

- The spectral norm of $A \in \mathbb{R}^{m \times n}$ is

$$
\|A\|_{\text {spec }}=\sigma_{\max }(A)=\sqrt{\lambda_{\max }\left(A A^{\top}\right)}=\sqrt{\lambda_{\max }\left(A^{\top} A\right)} .
$$

- The Frobenius norm of $A \in \mathbb{R}^{m \times n}$ is

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}}=\sqrt{\sum_{i=1}^{\min \{\mathfrak{m}, n\}} \sigma_{i}^{2}}
$$

Positive Definite Matrix

A real symmetric matrix $A \in \mathbb{R}^{\mathfrak{m} \times \mathfrak{m}}$ is positive definite if

$$
x^{\mathrm{t}} A x>0, \quad \forall x \in \mathbb{R}^{m}
$$

A positive definite matrix has positive eigenvalues.

Note: for positive semi-definite matrices $>$ is replaced by \geqslant.

