
Basic Calculus Review

CBMM Summer Course, Day 2 - Machine Learning



Vector Spaces

Functionals and Operators (Matrices)



Vector Space

I A vector space is a set V with binary operations

+: V × V → V and · : R× V → V

such that for all a,b ∈ R and v,w, x ∈ V:

1. v+w = w+ v
2. (v+w) + x = v+ (w+ x)
3. There exists 0 ∈ V such that v+ 0 = v for all v ∈ V
4. For every v ∈ V there exists −v ∈ V such that v+ (−v) = 0
5. a(bv) = (ab)v
6. 1v = v
7. (a+ b)v = av+ bv
8. a(v+w) = av+ aw

I Example: Rn, space of polynomials, space of functions.
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Inner Product

I An inner product is a function 〈·, ·〉 : V × V → R such
that for all a,b ∈ R and v,w, x ∈ V:

1. 〈v,w〉 = 〈w, v〉
2. 〈av+ bw, x〉 = a〈v, x〉+ b〈w, x〉
3. 〈v, v〉 > 0 and 〈v, v〉 = 0 if and only if v = 0.

I v,w ∈ V are orthogonal if 〈v,w〉 = 0.

I Given W ⊆ V, we have V =W ⊕W⊥, where
W⊥ = { v ∈ V | 〈v,w〉 = 0 for all w ∈W }.

I Cauchy-Schwarz inequality: 〈v,w〉 6 〈v, v〉1/2〈w,w〉1/2.
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Norm

I A norm is a function ‖ · ‖ : V → R such that for all a ∈ R
and v,w ∈ V:

1. ‖v‖ > 0, and ‖v‖ = 0 if and only if v = 0

2. ‖av‖ = |a| ‖v‖
3. ‖v+w‖ 6 ‖v‖+ ‖w‖

I Can define norm from inner product: ‖v‖ = 〈v, v〉1/2.
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Metric

I A metric is a function d : V × V → R such that for all
v,w, x ∈ V:

1. d(v,w) > 0, and d(v,w) = 0 if and only if v = w

2. d(v,w) = d(w, v)

3. d(v,w) 6 d(v, x) + d(x,w)

I Can define metric from norm: d(v,w) = ‖v−w‖.
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Basis

I B = {v1, . . . , vn} is a basis of V if every v ∈ V can be
uniquely decomposed as

v = a1v1 + · · ·+ anvn
for some a1, . . . ,an ∈ R.

I An orthonormal basis is a basis that is orthogonal
(〈vi, vj〉 = 0 for i 6= j) and normalized (‖vi‖ = 1).
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Vector Spaces

Functionals and Operators (Matrices)



Maps

Next we are going to review basic properties of maps on a
Hilbert space.

I functionals: Ψ : H→ R
I linear operators A : H→ H, such that
A(af+ bg) = aAf+ bAg, with a,b ∈ R and f,g ∈ H.



Representation of Continuous Functionals

Let H be a Hilbert space and g ∈ H, then

Ψg(f) = 〈f,g〉 , f ∈ H

is a continuous linear functional.

Riesz representation theorem

The theorem states that every continuous linear functional Ψ
can be written uniquely in the form,

Ψ(f) = 〈f,g〉

for some appropriate element g ∈ H.



Matrix

I Every linear operator L : Rm → Rn can be represented by
an m× n matrix A.

I If A ∈ Rm×n, the transpose of A is A> ∈ Rn×m satisfying

〈Ax,y〉Rm = (Ax)>y = x>A>y = 〈x,A>y〉Rn

for every x ∈ Rn and y ∈ Rm.

I A is symmetric if A> = A.
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Eigenvalues and Eigenvectors

I Let A ∈ Rn×n. A nonzero vector v ∈ Rn is an eigenvector
of A with corresponding eigenvalue λ ∈ R if Av = λv.

I Symmetric matrices have real eigenvalues.

I Spectral Theorem: Let A be a symmetric n× n matrix.
Then there is an orthonormal basis of Rn consisting of the
eigenvectors of A.

I Eigendecomposition: A = VΛV>, or equivalently,

A =

n∑
i=1

λiviv
>
i .
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Singular Value Decomposition

I Every A ∈ Rm×n can be written as

A = UΣV>,

where U ∈ Rm×m is orthogonal, Σ ∈ Rm×n is diagonal,
and V ∈ Rn×n is orthogonal.

I Singular system:

Avi = σiui AA>ui = σ
2
iui

A>ui = σivi A>Avi = σ
2
ivi
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Matrix Norm

I The spectral norm of A ∈ Rm×n is

‖A‖spec = σmax(A) =
√
λmax(AA>) =

√
λmax(A>A).

I The Frobenius norm of A ∈ Rm×n is

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2ij =

√√√√min{m,n}∑
i=1

σ2i .
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Positive Definite Matrix

A real symmetric matrix A ∈ Rm×m is positive definite if

xtAx > 0, ∀x ∈ Rm.

A positive definite matrix has positive eigenvalues.

Note: for positive semi-definite matrices > is replaced by >.


	Vector Spaces
	Functionals and Operators (Matrices)

