Basic Calculus Review

CBMM Summer Course, Day 2 - Machine Learning



Vector Spaces

Functionals and Operators (Matrices)



Vector Space

» A vector space is a set V with binary operations

+:VxV—=V and -:RxV-—->V

such that for all a,b € R and v,w,x € V:

PN TN

V+W=wW-+V

vV+w)+x=v+ (w+x)

There exists 0 € V such that v+ 0=v forallveV

For every v € V there exists —v € V such that v+ (—v) =0
a(bv) = (ab)v

lv=v

(a+b)v=av+bv

alv+w)=av+aw
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» A vector space is a set V with binary operations
+:VxV—=V and -:RxV =V

such that for all a,b € R and v,w,x € V:

(a+b)v=av+bv
alv+w)=av+aw

L.v+w=w+v

2. (v+w)+x=v+ (w+x)

3. There exists 0 € V such that v+ 0=v forallveV

4. For every v € V there exists —v € V such that v+ (—v) =0
5. a(bv) = (ab)v

6. lv=v

7.

8.

» Example: R™, space of polynomials, space of functions.
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Inner Product

» An inner product is a function (-,-): V x V — R such
that for all a,b € R and v,w,x € V:

Lo (v,w) = (w,v)

2. {(av+bw,x) = a{v,x) + b(w,x)

3. (v,v) =20 and (v,v) =0 if and only if v = 0.
» v,w € V are orthogonal if (v,w) = 0.

» Given W C V, we have V=W @ W+, where
Wt={veV|{wvw) =0 forallwe W}

» Cauchy-Schwarz inequality: (v, w) < (v,v)1/2(w, w)1/2,



Norm

» Can define norm from inner product: |[v|| = (v,v)/2.



Norm

» A norm is a function || - ||: V — R such that for all a € R
and v,w € V:

1. |[v]| = 0, and ||v|| = 0 if and only if v =0
2. |Jav]| = lal []v]
3o v+ wl < vl + [lwl]

» Can define norm from inner product: [|v|| = (v,v)1/2.



Metric

» Can define metric from norm: d(v,w) = |[v—w]|.



Metric

» A metric is a function d: V x V — R such that for all
v, W, x € V:

1. d(v,w) >0, and d(v,w) =0 if and only if v=w
2. dv,w) = d(w,v)
3. d(v,w) < d(v,x) +d(x,w)

» Can define metric from norm: d(v,w) = |[v—w]|.



Basis

» B={vi,...,vn}is a basis of V if every v € V can be
uniquely decomposed as

for some ai,...,an € R.



Basis

» B={vi,...,vn}is a basis of V if every v € V can be
uniquely decomposed as

for some ai,...,an € R.

» An orthonormal basis is a basis that is orthogonal
((vi,vj) =0 for i #j) and normalized (||vi]| =1).



Functionals and Operators (Matrices)



Maps

Next we are going to review basic properties of maps on a
Hilbert space.
» functionals: W:H — R

» linear operators A : H — H, such that
A(af +bg) = aAf +bAg, with a,b € R and f,g € H.



Representation of Continuous Functionals

Let J{ be a Hilbert space and g € JH, then
Yg(f) ={f,9), feH

is a continuous linear functional.

Riesz representation theorem

The theorem states that every continuous linear functional W
can be written uniquely in the form,

for some appropriate element g € K.



Matrix

» Every linear operator L: R™ — R™ can be represented by
an m x n matrix A.
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for every x € R™ and y € R™.



Matrix

» Every linear operator L: R™ — R™ can be represented by
an m x n matrix A.

» If A € R™*™ the transpose of A is AT € R™*™ gatisfying
(Ax,y)pm = (Ax) Ty =xTATy = (x, ATy)gn
for every x € R™ and y € R™.

» A is symmetric if AT = A.
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of A with corresponding eigenvalue A € R if Av = Av.
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Eigenvalues and Eigenvectors

» Let A € R™*™. A nonzero vector v € R™ is an eigenvector
of A with corresponding eigenvalue A € R if Av = Av.

» Symmetric matrices have real eigenvalues.

» Spectral Theorem: Let A be a symmetric n X n matrix.
Then there is an orthonormal basis of R™ consisting of the
eigenvectors of A.

» Eigendecomposition: A = VAV, or equivalently,

n
A= Z ?\iviv?
i=1



Singular Value Decomposition

» Every A € R™*™ can be written as
A=ULV',

where U € R™*™ ig orthogonal, £ € R™*™ is diagonal,
and V € R™*™ is orthogonal.



Singular Value Decomposition

» Every A € R™*™ can be written as

A=UIV',
where U € R™*™ ig orthogonal, £ € R™*™ is diagonal,
and V € R™*™ is orthogonal.

» Singular system:

A\)i = 0oiluy AATui = O'%ui

T T 2
Aup = 0oV A Avi = o{vq



Matrix Norm

» The spectral norm of A € R™*™ ig

HAHspec = Gmax(A) = \/Amax(AAT) = \/AmaX(ATA)~



Matrix Norm

» The spectral norm of A € R™*™ ig

HAHspec = Gmax(A) = \/Amax(AAT) = \/AmaX(ATA)~

» The Frobenius norm of A € R™*X™ ig

[AllF =

i=1j=1



Positive Definite Matrix

A real symmetric matrix A € R™*™ ig positive definite if
x'Ax >0, VxeR™

A positive definite matrix has positive eigenvalues.

Note: for positive semi-definite matrices > is replaced by >.
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