Basic Calculus Review

CBMM Summer Course, Day 2 - Machine Learning

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Vector Spaces

Functionals and Operators (Matrices)

Vector Space

► A vector space is a set V with binary operations

 $+: V \times V \to V \text{ and } \cdot: \mathbb{R} \times V \to V$

such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

1.
$$v + w = w + v$$

2. $(v + w) + x = v + (w + x)$
3. There exists $0 \in V$ such that $v + 0 = v$ for all $v \in V$
4. For every $v \in V$ there exists $-v \in V$ such that $v + (-v) = 0$
5. $a(bv) = (ab)v$
6. $1v = v$
7. $(a + b)v = av + bv$
8. $a(v + w) = av + aw$

Vector Space

▶ A vector space is a set V with binary operations

 $+\colon V\times V\to V \quad \mathrm{and} \quad \cdot : \mathbb{R}\times V\to V$

such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

1.
$$v + w = w + v$$

2. $(v + w) + x = v + (w + x)$
3. There exists $0 \in V$ such that $v + 0 = v$ for all $v \in V$
4. For every $v \in V$ there exists $-v \in V$ such that $v + (-v) = 0$
5. $a(bv) = (ab)v$
6. $1v = v$
7. $(a + b)v = av + bv$
8. $a(v + w) = av + aw$

• Example: \mathbb{R}^n , space of polynomials, space of functions.

▶ An inner product is a function $\langle \cdot, \cdot \rangle$: $V \times V \rightarrow \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

▶ An inner product is a function $\langle \cdot, \cdot \rangle$: $V \times V \rightarrow \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1.
$$\langle v, w \rangle = \langle w, v \rangle$$

2. $\langle av + bw, x \rangle = a \langle v, x \rangle + b \langle w, x \rangle$

3.
$$\langle \nu, \nu \rangle \ge 0$$
 and $\langle \nu, \nu \rangle = 0$ if and only if $\nu = 0$.

▶ An inner product is a function $\langle \cdot, \cdot \rangle$: $V \times V \rightarrow \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- 1. $\langle v, w \rangle = \langle w, v \rangle$
- 2. $\langle av + bw, x \rangle = a \langle v, x \rangle + b \langle w, x \rangle$
- 3. $\langle \nu, \nu \rangle \ge 0$ and $\langle \nu, \nu \rangle = 0$ if and only if $\nu = 0$.
- ▶ $v, w \in V$ are orthogonal if $\langle v, w \rangle = 0$.

▶ An inner product is a function $\langle \cdot, \cdot \rangle$: $V \times V \rightarrow \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

うして ふゆう ふほう ふほう ふしつ

- 1. $\langle v, w \rangle = \langle w, v \rangle$
- 2. $\langle av + bw, x \rangle = a \langle v, x \rangle + b \langle w, x \rangle$
- 3. $\langle \nu, \nu \rangle \ge 0$ and $\langle \nu, \nu \rangle = 0$ if and only if $\nu = 0$.

▶
$$\nu, w \in V$$
 are orthogonal if $\langle \nu, w \rangle = 0$.

• Given $W \subseteq V$, we have $V = W \oplus W^{\perp}$, where $W^{\perp} = \{ v \in V \mid \langle v, w \rangle = 0 \text{ for all } w \in W \}.$

- ▶ An inner product is a function $\langle \cdot, \cdot \rangle$: $V \times V \rightarrow \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:
 - 1. $\langle v, w \rangle = \langle w, v \rangle$
 - 2. $\langle av + bw, x \rangle = a \langle v, x \rangle + b \langle w, x \rangle$
 - 3. $\langle \nu, \nu \rangle \ge 0$ and $\langle \nu, \nu \rangle = 0$ if and only if $\nu = 0$.
- ▶ $v, w \in V$ are orthogonal if $\langle v, w \rangle = 0$.
- Given $W \subseteq V$, we have $V = W \oplus W^{\perp}$, where $W^{\perp} = \{ v \in V \mid \langle v, w \rangle = 0 \text{ for all } w \in W \}.$
- Cauchy-Schwarz inequality: $\langle v, w \rangle \leq \langle v, v \rangle^{1/2} \langle w, w \rangle^{1/2}$.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Norm

• Can define norm from inner product: $\|v\| = \langle v, v \rangle^{1/2}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Norm

- ▶ A norm is a function $\|\cdot\|$: $V \to \mathbb{R}$ such that for all $a \in \mathbb{R}$ and $v, w \in V$:
 - 1. $\|\mathbf{v}\| \ge 0$, and $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = 0$

2.
$$||av|| = |a| ||v||$$

3.
$$\|v + w\| \leq \|v\| + \|w\|$$

• Can define norm from inner product: $\|v\| = \langle v, v \rangle^{1/2}$.

Metric

▶ Can define metric from norm: $\mathbf{d}(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\|$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Metric

- A metric is a function d: V × V → ℝ such that for all v, w, x ∈ V:
 - 1. $d(v, w) \ge 0$, and d(v, w) = 0 if and only if v = w

2.
$$d(v,w) = d(w,v)$$

3.
$$d(v, w) \leq d(v, x) + d(x, w)$$

• Can define metric from norm: $\mathbf{d}(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\|$.

Basis

▶ $B = \{v_1, ..., v_n\}$ is a **basis** of V if every $v \in V$ can be uniquely decomposed as

$$v = a_1v_1 + \cdots + a_nv_n$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

for some $a_1, \ldots, a_n \in \mathbb{R}$.

Basis

▶ $B = \{v_1, ..., v_n\}$ is a **basis** of V if every $v \in V$ can be uniquely decomposed as

$$v = a_1v_1 + \cdots + a_nv_n$$

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

for some $a_1, \ldots, a_n \in \mathbb{R}$.

• An orthonormal basis is a basis that is orthogonal $(\langle v_i, v_j \rangle = 0 \text{ for } i \neq j)$ and normalized $(||v_i|| = 1)$.

Vector Spaces

Functionals and Operators (Matrices)

Next we are going to review basic properties of maps on a Hilbert space.

- functionals: $\Psi : \mathcal{H} \to \mathbb{R}$
- ▶ linear operators $A : \mathcal{H} \to \mathcal{H}$, such that A(af + bg) = aAf + bAg, with $a, b \in \mathbb{R}$ and $f, g \in \mathcal{H}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Representation of Continuous Functionals

Let \mathcal{H} be a Hilbert space and $g \in \mathcal{H}$, then

$$\Psi_g(f) = \left< f, g \right>, \qquad f \in \mathcal{H}$$

is a continuous linear functional.

Riesz representation theorem

The theorem states that every continuous linear functional Ψ can be written uniquely in the form,

 $\Psi(f)=\langle f,g\rangle$

うして ふゆう ふほう ふほう ふしつ

for some appropriate element $g \in \mathcal{H}$.

• Every linear operator L: $\mathbb{R}^m \to \mathbb{R}^n$ can be represented by an $m \times n$ matrix A.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Matrix

▶ Every linear operator L: $\mathbb{R}^m \to \mathbb{R}^n$ can be represented by an $m \times n$ matrix A.

► If $A \in \mathbb{R}^{m \times n}$, the transpose of A is $A^{\top} \in \mathbb{R}^{n \times m}$ satisfying $\langle Ax, y \rangle_{\mathbb{R}^m} = (Ax)^{\top}y = x^{\top}A^{\top}y = \langle x, A^{\top}y \rangle_{\mathbb{R}^n}$ for every $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Matrix

- ▶ Every linear operator L: $\mathbb{R}^m \to \mathbb{R}^n$ can be represented by an $m \times n$ matrix A.
- ▶ If $A \in \mathbb{R}^{m \times n}$, the transpose of A is $A^{\top} \in \mathbb{R}^{n \times m}$ satisfying $\langle Ax, y \rangle_{\mathbb{R}^m} = (Ax)^{\top}y = x^{\top}A^{\top}y = \langle x, A^{\top}y \rangle_{\mathbb{R}^n}$ for every $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

• A is symmetric if $A^{\top} = A$.

► Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^n$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $Av = \lambda v$.

・ロト ・ 日 ・ モー・ モー・ うへぐ

► Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^n$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $Av = \lambda v$.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

▶ Symmetric matrices have real eigenvalues.

- ► Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^n$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $Av = \lambda v$.
- ▶ Symmetric matrices have real eigenvalues.
- ▶ **Spectral Theorem:** Let A be a symmetric n × n matrix. Then there is an orthonormal basis of ℝⁿ consisting of the eigenvectors of A.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- ► Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^n$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $Av = \lambda v$.
- ▶ Symmetric matrices have real eigenvalues.
- ▶ Spectral Theorem: Let A be a symmetric n × n matrix. Then there is an orthonormal basis of ℝⁿ consisting of the eigenvectors of A.
- Eigendecomposition: $A = VAV^{\top}$, or equivalently,

$$A = \sum_{i=1}^{n} \lambda_i \nu_i \nu_i^\top.$$

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Singular Value Decomposition

• Every $A \in \mathbb{R}^{m \times n}$ can be written as

 $A = U \Sigma V^{\top},$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where $U \in \mathbb{R}^{m \times m}$ is orthogonal, $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal, and $V \in \mathbb{R}^{n \times n}$ is orthogonal.

Singular Value Decomposition

• Every $A \in \mathbb{R}^{m \times n}$ can be written as

 $A = U \Sigma V^{\top},$

where $U \in \mathbb{R}^{m \times m}$ is orthogonal, $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal, and $V \in \mathbb{R}^{n \times n}$ is orthogonal.

► Singular system:

$$\begin{aligned} Av_i &= \sigma_i u_i & AA^{\top} u_i = \sigma_i^2 u_i \\ A^{\top} u_i &= \sigma_i v_i & A^{\top} Av_i = \sigma_i^2 v_i \end{aligned}$$

ション ふゆ マ キャット しょう くしゃ

Matrix Norm

▶ The spectral norm of $A \in \mathbb{R}^{m \times n}$ is

$$\|A\|_{\rm spec} = \sigma_{\rm max}(A) = \sqrt{\lambda_{\rm max}(AA^{\top})} = \sqrt{\lambda_{\rm max}(A^{\top}A)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Matrix Norm

▶ The spectral norm of $A \in \mathbb{R}^{m \times n}$ is

$$\|A\|_{\mathrm{spec}} = \sigma_{\max}(A) = \sqrt{\lambda_{\max}(AA^{\top})} = \sqrt{\lambda_{\max}(A^{\top}A)}.$$

 \blacktriangleright The Frobenius norm of $A \in \mathbb{R}^{m \times n}$ is

$$\|A\|_{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{ij}^{2}} = \sqrt{\sum_{i=1}^{\min\{m,n\}} \sigma_{i}^{2}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

A real symmetric matrix $A \in \mathbb{R}^{m \times m}$ is positive definite if $x^{t}Ax > 0, \quad \forall x \in \mathbb{R}^{m}.$

A positive definite matrix has positive eigenvalues.

Note: for positive semi-definite matrices > is replaced by \ge .

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ