
Introductory Machine Learning
Notes1

Lorenzo Rosasco
DIBRIS, Universita’ degli Studi di Genova

LCSL, Massachusetts Institute of Technology and Istituto Italiano di

Tecnologia
lrosasco@mit.edu

October 10, 2016

1

These notes are an attempt to extract essential machine learning concepts for be-
ginners. They are a draft and will be updated. Likely they won’t be typos free for
a while. They are dry and lack examples to complement and illustrate the general
ideas. Notably, they also lack references, that will (hopefully) be added soon. The
mathematical appendix is due to Andre Wibisono’s notes for the math camp of the
9.520 course at MIT.

ABSTRACT. Machine Learning has become a key to develop intel-
ligent systems and analyze data in science and engineering. Ma-
chine learning engines enable systems such as Siri, Kinect or the
Google self driving car, to name a few examples. At the same time
machine learning methods help deciphering the information in
our DNA and make sense of the flood of information gathered on
the web. These notes provide an introduction to the fundamental
concepts and methods at the core of modern machine learning.

Contents

Chapter 1. Statistical Learning Theory 1
1.1. Data 1
1.2. Probabilistic Data Model 1
1.3. Loss Function and and Expected Risk 3
1.4. Stability, Overfitting and Regularization 4

Chapter 2. Local Methods 5
2.1. Nearest Neighbor 5
2.2. K-Nearest Neighbor 6
2.3. Parzen Windows 7
2.4. High Dimensions 8

Chapter 3. Bias Variance and Cross-Validation 9
3.1. Tuning and Bias Variance Decomposition 9
3.2. The Bias Variance Trade-Off 10
3.3. Cross Validation 10

Chapter 4. Regularized Least Squares 13
4.1. Regularized Least Squares 13
4.2. Computations 14
4.3. Interlude: Linear Systems 14
4.4. Dealing with an Offset 15

Chapter 5. Regularized Least Squares Classification 17
5.1. Nearest Centroid Classifier 17
5.2. RLS for Binary Classification 18
5.3. RLS for Multiclass Classification 19

Chapter 6. Feature, Kernels and Representer Theorem 21
6.1. Feature Maps 21
6.2. Representer Theorem 22
6.3. Kernels 23

Chapter 7. Regularization Networks 25
7.1. Empirical Risk Minimization 25
7.2. Hypotheses Space 25

iii

iv CONTENTS

7.3. Tikhonov Regularization and Representer Theorem 26
7.4. Loss Functions and Target Functions 27

Chapter 8. Logistic Regression 29
8.1. Interlude: Gradient Descent and Stochastic Gradient 29
8.2. Regularized Logistic Regression 31
8.3. Kernel Regularized Logistic Regression 32
8.4. Logistic Regression and Confidence Estimation 32

Chapter 9. From Perceptron to SVM 33
9.1. Perceptron 33
9.2. Margin 33
9.3. Maximizing the Margin 35
9.4. From Max Margin to Tikhonov Regularization 36
9.5. Computations 36
9.6. Dealing with an off-set 36

Chapter 10. Dimensionality Reduction 37
10.1. PCA & Reconstruction 38
10.2. PCA and Maximum Variance 38
10.3. PCA and Associated Eigenproblem 39
10.4. Beyond the First Principal Component 39
10.5. Singular Value Decomposition 40
10.6. Kernel PCA 41

Chapter 11. Variable Selection 43
11.1. Subset Selection 43
11.2. Greedy Methods: (Orthogonal) Matching Pursuit 44
11.3. Convex Relaxation: LASSO & Elastic Net 45

Chapter 12. A Glimpse Beyond The Fence 49
12.1. Different Kinds of Data 49
12.2. Data and Sampling Models 50
12.3. Learning Approaches 50
12.4. Some Current and Future Challenges in Machine

Learning 50

Appendix A. Mathematical Tools 53
A.1. Structures on Vector Spaces 53
A.2. Matrices 56

CHAPTER 1

Statistical Learning Theory

Machine Learning deals with systems that are trained from data
rather than being explicitly programmed. Here we describe the data
model considered in statistical learning theory.

1.1. Data

The goal of supervised learning is to find an underlying input-output
relation

f(xnew) ∼ y,

given data.
The data, called training set, is a set of n input-output pairs,

S = {(x1, y1), . . . , (xn, yn)}.
Each pair is called an example or sample, or data point. We consider
the approach to machine learning based on the so called learning from
examples paradigm.

Given the training set, the goal is to learn a corresponding input-
output relation. To make sense of this task, we have to postulate
the existence of a model for the data. The model should take into
account the possible uncertainty in the task and in the data.

1.2. Probabilistic Data Model

The inputs belong to an input space X , we assume throughout
that X ⊆ RD. The outputs belong to an output space Y . We con-
sider several possible situations: regression Y ⊆ R, binary classi-
fication Y = {−1, 1} and multi-category (multiclass) classification
Y = {1, 2, . . . , T}. The space X × Y is called the data space.

We assume there exists a fixed unknown data distribution p(x, y)
according to which the data are identically and independently dis-
tributed (i.i.d.) 1. The probability distribution p models different
sources of uncertainty. We assume that it factorizes as p(x, y) =
pX(x)p(y|x), where

1the examples are sampled independently from the same probability distribu-
tion p

1

2 1. STATISTICAL LEARNING THEORY

• the conditional distribution p(y|x), see Figure 1, describes a
non deterministic relation between input and output.
• The marginal distribution pX(x) models uncertainty in the

sampling of the input points.
We provide two classical examples of data model, namely regression
and classification.

EXAMPLE 1 (Regression). In regression the following model is often
considered y = f ∗(x)+ε.Here f ∗ is a fixed unknown function, for example
a linear function f ∗(x) = xTw∗ for some w∗ ∈ RD and ε is random noise,
e.g. standard Gaussian N (0, σ), σ ∈ [0,∞). See Figure 2 for an example.

EXAMPLE 2 (Classification). In binary classification a basic exam-
ple of data model is a mixture of two Gaussians, i.e. p(x|y = −1) =
1
Z
N (−1, σ−), σ− ∈ [0,∞) and p(x|y = 1) = 1

Z
N (+1, σ+), σ+ ∈ [0,∞),

where 1
Z

is a suitable normalization. For example in classification, a noise-
less situation corresponds to p(1|x) = 1 or 0 for all x.

YX

p (y|x)

x

FIGURE 1. For each input x there is a distribution of
possible outputs p(y|x) (yellow). The green area is the
distribution of all possible outputs.

FIGURE 2. Fixed unknown linear function f ∗ and
noisy examples sampled from the y = f ∗(x) + ε model.

1.3. LOSS FUNCTION AND AND EXPECTED RISK 3

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

FIGURE 3. 2D example of a dataset sampled from a
mixed Gaussian distribution. Samples of the yellow
class are realizations of a Gaussian centered at (−1, 0),
while samples of the blue class are realizations of a
Gaussian centered at (+1, 0). Both Gaussians have
standard deviation σ = 0.6.

1.3. Loss Function and and Expected Risk

The goal of learning is to estimate the “best” input-output rela-
tion, rather than the whole distribution p.

More precisely, we need to fix a loss function

` : Y × Y → [0,∞),

which is a (point-wise) measure of the error `(y, f(x)) we incur in
when predicting f(x) in place of y. Given a loss function, the ”best”
input-output relation is the target function f ∗ : X → Y minimizing
the expected loss (or expected risk)

E(f) = E[`(y, f(x))] =

∫
dxdyp(x, y)`(y, f(x)).

which can be seen as a measure of the error on past as well as future
data. The target function cannot be computed since the probability
distribution p is unknown. A (good) learning algorithm should pro-
vide a solution that behaves similarly to the target function, and pre-
dict/classify well new data. In this case, we say that the algorithm
generalizes.

REMARK 1 (Decision Surface/Boundary). In classification we of-
ten visualize the so called decision boundary (or surface) of a classification
solution f . The decision boundary is the level set of points x for which
f(x) = 0.

4 1. STATISTICAL LEARNING THEORY

1.4. Stability, Overfitting and Regularization

A learning algorithm is a procedure that given a training set S com-
putes an estimator fS . Ideally, an estimator should mimic the target
function, in the sense that E(fS) ≈ E(f ∗). The latter requirement
needs some care since fS depends on the training set and hence is
random. For example, one possibility is to require an algorithm to
be good in expectation, in the sense that

ES[E(fS)− E(f ∗)],

is small.
More intuitively, a good learning algorithm should be able to de-

scribe well (fit) the data, and at the same time be stable with respect
to noise and sampling. Indeed, a key to ensure good generalization
properties is to avoid overfitting, that is having estimators which
are highly dependent on the data (unstable), possibly with a low er-
ror on the training set and yet a large error on future data. Most
learning algorithms depend on one (or more) regularization param-
eters that control the trade-off between data-fitting and stability. We
broadly refer to this class of approaches as regularization algorithms
and their study is our main topic of discussion.

CHAPTER 2

Local Methods

We describe a simple yet efficient class of algorithms, the so called
memory based learning algorithms, based on the principle that nearby
input points should have a similar/the same output.

2.1. Nearest Neighbor

Consider a training set

S = {(x1, y1), . . . , (xn, yn)}.

Given an input x̄, let

i′ = arg min
i=1,...,n

‖x̄− xi‖2

and define the nearest neighbor (NN) estimator as

f̂(x̄) = yi′ .

Every new input point is assigned the same output as its nearest
input in the training set. We add few comments.

First, while in the above definition we simply considered the Eu-
clidean norm, the method can be promptly generalized to consider
other measures of similarity among inputs. For example, if the input
are binary strings, i.e. X = {0, 1}D, one could consider the Hamming
distance

dH(x, x̄) =
1

D

D∑
j=1

1[xj 6=x̄j]

where xj is the j-th component of a string x ∈ X .
5

6 2. LOCAL METHODS

-2 -1 0 1 2 3

-1.5

-1

-0.5

0

0.5

1

1.5

FIGURE 1. Decision boundary (red) of a nearest neigh-
bor classifier in presence of noise.

Second, the complexity of the algorithm for predicting any new
point is O(nD)– recall that the complexity of multiplying two D-
dimensional vectors is O(D).

Finally, we note that NN can be fairly sensitive to noise. To see
this it is useful to visualize the decision boundary of the nearest
neighbor algorithm, as shown in Figure 1.

2.2. K-Nearest Neighbor

Consider
dx̄ = (‖x̄− xi‖2)ni=1

the array of distances of a new point x̄ to the input points in the
training set. Let

sx̄

be the above array sorted in increasing order and

Ix̄

the corresponding vector of indices, and

Kx̄ = {I1
x̄, . . . , I

K
x̄ }

be the array of the first K entries of Ix̄. Recalling that Y = {−1, 1}
in binary classification, the K-nearest neighbor estimator (KNN) can
be defined as

f̂(x̄) =
∑
i′∈Kx̄

yi′ ,

or
f̂(x̄) =

1

K

∑
i′∈Kx̄

yi′ .

2.3. PARZEN WINDOWS 7

A classification rule is obtained considering the sign of f̂(x̄).
In classification, KNN can be seen as a voting scheme among the

K nearest neighbors and K is taken to be odd to avoid ties. The
parameter K controls the stability of the KNN estimate: when K
is small the algorithm is sensitive to the data (and simply reduces
to NN for K = 1). When K increases the estimator becomes more
stable. In classification, f̂(x̄) eventually simply becomes the ratio of
the number of elements for each class. The question of how to best
choose K will be the subject of a future discussion.

2.3. Parzen Windows

In KNN, each of the K neighbors has equal weights in determin-
ing the output of a new point. A more general approach is to con-
sider estimators of the form,

f̂(x̄) =

∑n
i=1 yik(x̄, xi)∑n
i=1 k(x̄, xi)

,

where k : X × X → [0, 1] is a suitable function, which can be seen
as a similarity measure on the input points. The function k defines a
window around each point and is sometimes called a Parzen window.
In many examples the function k depends on the distance ‖x − x′‖,
x, x′ ∈ X . For example,

k(x′, x) = 1‖x−x′‖≤r

where 1A(X) → {0, 1} is the indicator function and is 1 if x ∈ A, 0
otherwise. This choice induces a Parzen window analogous to KNN,
but here the parameter K is replaced by the radius r. More generally,
it is interesting to have a decaying weight for points which are fur-
ther away. For example considering

k(x′, x) = (1− ‖x− x′‖)+1‖x−x′‖≤r,

where (a)+ = a, if a > 0 and (a)+ = 0, otherwise (see Figure 2).
Another possibility is to consider fast decaying functions such as:

Gaussian k(x′, x) = e−‖x−x
′‖2/2σ2

.

or
Exponential k(x′, x) = e−‖x−x

′‖/
√

2σ.

In all the above methods there is a parameter r or σ that controls the
influence that each neighbor has on the prediction.

8 2. LOCAL METHODS

FIGURE 2. Window k(x′, x) = (1 − ‖x − x′‖)+1‖x−x′‖≤r
for r > 1 (top) and r < 1 (bottom).

2.4. High Dimensions

The following simple reasoning highlights a phenomenon which
is typical of dealing with high dimensional learning problems. Con-
sider a unit cube inD dimensions, and a smaller cube of edge e. How
shall we choose e to capture 1% of the volume of the larger cube?
Clearly, we need e = D

√
.01. For example, e = .63 for D = 10 and

e = .95 for D = 100. The edge of the small cube is virtually the same
length of that of the large cube. The above example illustrates how
in high dimensions our intuition of neighbors and neighborhoods is
challenged.

CHAPTER 3

Bias Variance and Cross-Validation

Here we ask the question of how to choose K: is there an opti-
mum choice ofK? Can it be computed in practice? Towards answer-
ing these questions, we investigate theoretically the question of how
K affects the performance of the KNN algorithm.

3.1. Tuning and Bias Variance Decomposition

Ideally, we would like to choose K that minimizes the expected
error

ESEx,y(y − f̂K(x))2.

We next characterize the corresponding minimization problem to
uncover one of the most fundamental aspect of machine learning.
For the sake of simplicity, we consider a regression model

yi = f∗(xi) + δi, EδI = 0,Eδ2
i = σ2 i = 1, . . . , n.

Moreover, we consider the least squared loss function to measure
errors, so that the performance of the KNN algorithm is given by the
expected loss

ESEx,y(y − f̂K(x))2 = ExESEy|x(y − f̂K(x))2︸ ︷︷ ︸
ε(K)

.

To get an insight on how to choose K, we analyze theoretically how
this choice influences the expected loss. In fact, in the following we
simplify the analysis considering the performance of KNN ε(K) at a
given point x.

First, note that by applying the specified regression model,

ε(K) = σ2 + ESEy|x(f∗(x)− f̂K(x))2,

where σ2 can be seen as an irreducible error term. Second, to study
the latter term we introduce the expected KNN algorithm,

Ey|xf̂K(x) =
1

K

∑
`∈Kx

f∗(x`).

9

10 3. BIAS VARIANCE AND CROSS-VALIDATION

FIGURE 1. The Bias-Variance Tradeoff. In the KNN
algorithm the parameter K controls the achieved
(model) complexity.

We have

ESEy|x(f∗(x)−f̂K(x))2 = (f∗(x)− ESEy|xf̂K(x))2︸ ︷︷ ︸
Bias

+ESEy|x(Ey|xf̂K(x)− f̂K(x))2︸ ︷︷ ︸
V ariance

Finally, we have

ε(K) = σ2 + (f∗(x) +
1

K

∑
`∈Kx

f∗(x`))
2 +

σ2

K

3.2. The Bias Variance Trade-Off

We are ready to discuss the behavior of the (point-wise) expected
loss of the KNN algorithm as a function of K. As it is clear from
the above equation, the variance decreases with K. The bias is likely
to increase with K, if the function f∗ is suitably smooth. Indeed, for
smallK the few closest neighbors to xwill have values close to f∗(x),
so their average will be close to f∗(x). Whereas, asK increases neigh-
bors will be further away and their average might move away from
f∗(x). A larger bias is preferred when data are few/noisy to achieve
a better control of the variance, whereas the bias can be decreased
as more data become available. For any given training set, the best
choice of K would be the one striking the optimal trade-off between
bias and variance (that is the value minimizing their sum).

3.3. Cross Validation

While instructive, the above analysis is not directly useful in prac-
tice since the data distribution, hence the expected loss, is not acces-
sible. In practice, data driven procedures are used to find a proxy

3.3. CROSS VALIDATION 11

for the expected loss. The simplest such procedure is called hold-out
cross validation. Part of the training S set is hold-out, to compute
a (hold-out) error to be used as a proxy of the expected error. An
empirical bias variance trade-off is achieved choosing the value of
K that achieves minimum hold-out error. When data are scarce, the
hold-out procedure, based on a simple ”two ways split” of the train-
ing set, might be unstable. In this case, so called V -fold cross vali-
dation is preferred, which is based on multiple data splitting. More
precisely, the data are divided in V (non overlapping) sets. Each set
is held-out and used to compute an hold-out error which is eventu-
ally averaged to obtained the final V -fold cross validation error. The
extreme case where V = n is called leave-one-out cross validation.

3.3.1. Conclusions: Beyond KNN. Most of the above reason-
ings hold for a large class of learning algorithms beyond KNN. In-
deed, many (most) algorithms depend on one or more parameters
controlling the bias-variance tradeoff.

CHAPTER 4

Regularized Least Squares

In this class we introduce a class of learning algorithms based on
Tikhonov regularization, a.k.a. penalized empirical risk minimiza-
tion and regularization. In particular, we focus on the algorithm de-
fined by the square loss.

4.1. Regularized Least Squares

We consider the following algorithm

(4.1) min
w∈RD

1

n

n∑
i=1

(yi − w>xi))2 + λw>w, λ ≥ 0.

A motivation for considering the above scheme is to view the empir-
ical error

1

n

n∑
i=1

(yi − w>xi))2,

as a proxy for the expected error∫
dxdyp(x, y)(y − w>x))2,

which is not computable. The term w>w is a regularizer and helps
preventing overfitting by controlling the stability of the solution.
The parameter λ balances the error term and the regularizer. Al-
gorithm (4.1) is an instance of Tikhonov regularization, also called
penalized empirical risk minimization. We have implicitly chosen
the space of possible solutions, called the hypotheses space, to be
the space of linear functions, that is

H = {f : RD → R : ∃w ∈ RD such that f(x) = x>w, ∀x ∈ RD},

so that finding a function fw reduces to finding a vector w. As we
will see in the following, this seemingly simple example will be the
basis for much more complicated solutions.

13

14 4. REGULARIZED LEAST SQUARES

4.2. Computations

In this case it is convenient to introduce the n × D matrix Xn,
where the rows are the input points, and the n × 1 vector Yn where
the entries are the corresponding outputs. With this notation

1

n

n∑
i=1

(yi − w>xi)2 =
1

n
‖Yn −Xnw‖2.

A direct computation shows that the gradients with respect to w of
the empirical risk and the regularizer are, respectively

− 2

n
X>n (Yn −Xnw), and 2w.

Then, setting the gradient to zero, we have that the solution of regu-
larized least squares solves the linear system

(X>nXn + λnI)w = X>n Yn.

Several comments are in order. First, several methods can be used to
solve the above linear systems, Cholesky decomposition being the
method of choice, since the matrix X>nXn+λI is symmetric and pos-
itive definite. The complexity of the method is essentially O(nd2) for
training and O(d) for testing. The parameter λ controls the invertibil-
ity of the matrix (X>nXn + λnI).

4.3. Interlude: Linear Systems

Consider the problem
Ma = b,

where M is a D × D matrix and a, b vectors in RD. We are inter-
ested in determing a satisfying the above equation given M, b. If M
is invertible, the solution to the problem is

a = M−1b.

• If M is a diagonal M = diag(σ1, . . . , σD) where σi ∈ (0,∞)
for all i = 1, . . . , D, then

M−1 = diag(1/σ1, . . . , 1/σD), (M+λI)−1 = diag(1/(σ1+λ), . . . , 1/(σD+λ)

• IfM is symmetric and positive definite, then considering the
eigendecomposition

M = V ΣV >, Σ = diag(σ1, . . . , σD), V V > = I,

then

M−1 = V Σ−1V >, Σ−1 = diag(1/σ1, . . . , 1/σD),

4.4. DEALING WITH AN OFFSET 15

and

(M + λI)−1 = V ΣλV
>, Σλ = diag(1/(σ1 + λ), . . . , 1/(σD + λ)

The ratio σD/σ1 is called the condition number of M .

4.4. Dealing with an Offset

When considering linear models, especially in relatively low di-
mensional spaces, it is interesting to consider an offset b, that is f =
w>x+ b. We shall ask the question of how to estimate b from data. A
simple idea is to simply augment the dimension of the input space,
considering x̃ = (x, 1) and w̃ = (w, b). While this is fine if we do
not regularize, if we do then we still tend to prefer linear functions
passing through the origin, since the regularizer becomes

‖w̃‖2 = ‖w‖2 + b2.

Note that it penalizes the offset, which is not ok! In general we might
not have reasons to believe that the model should pass through the
origin, hence we would like to consider an offset and still regularize
considering only ‖w‖2, so that the offset is not penalized. Note that
the regularized problem becomes

min
(w,b)∈RD+1

1

n

n∑
i=1

(yi − w>xi − b)2 + λ‖w‖2.

The solution of the above problem is particularly simple when con-
sidering least squares. Indeed, in this case it can be easily proved
that a solution w∗, b∗ of the above problem is given by

b∗ = ȳ − x̄>w∗

where ȳ = 1
n

∑n
i=1 yi, x̄ = 1

n

∑n
i=1 xi and w∗ solves

min
w∈RD+1

1

n

n∑
i=1

(yci − w>xci)2 + λ‖w‖2.

where yci = y − ȳ and xci = x− x̄ for all i = 1, . . . , n.

CHAPTER 5

Regularized Least Squares Classification

In this class we introduce a class of learning algorithms based
Tikhonov regularization, a.k.a. penalized empirical risk minimiza-
tion and regularization. In particular, we focus on the algorithm de-
fined by the square loss.

While least squares are often associated to regression problem,
we next discuss their interpretation in the context of binary classifi-
cation and discuss an extension to multi-class classification.

5.1. Nearest Centroid Classifier

Let’s consider a classification problem and assume that there is
an equal number of points for class 1 and −1. Recall that the nearest
centroid rule is given by

signh(x), h(x) = ‖x−m−1‖2 − ‖x−m1‖2

where
m1 =

2

n

∑
i | yi=1

xi, m−1 =
2

n

∑
i | yi=−1

xi.

It is easy to see that we can write,

h(x) = x>w + b, w = m1 −m−1, b = −(m1 −m−1)>m,

where

m = m1 +m−1 =
1

n

n∑
i=1

xi.

In a compact notation we can write,

h(x) = (x−m)>(m1 −m−1).

The decision boundary is shown in Figure 1.
17

18 5. REGULARIZED LEAST SQUARES CLASSIFICATION

FIGURE 1. Nearest centroid classifier’s decision
boundary h(x) = 0.

5.2. RLS for Binary Classification

If we consider an offset, the classification rule given by RLS is

signf(x), f(x) = x>w + b,

where
b = −m>w,

since 1
n

∑n
i=1 yi = 0 by assumption, and

w = (X
>
nXn + λnI)−1X

>
nYn = (

1

n
X
>
nXn + λI)−1 1

n
X
>
nYn,

with Xn the centered data matrix having rows xi −m, i = 1, . . . ,m.
It is easy to show a connection between the RLS classification rule

and the nearest centroid rule. Note that,
1

n
X
>
NYn =

1

n
X>NYn = m1 −m−1,

so that, if we let Cλ = 1
n
X
>
nXn + λI

b = −m>C−1
λ (m1 −m−1) = −m>w

and

f(x) = (x−m)>C−1
λ (m1 −m−1) = x>w + b = (x−m)>w

If λ is large, then (1
n
X>nXn + λI) ∼ λI , and we see that

f(x) ∼ 1

λ
h(x)⇔ signf(x) = signh(x).

If λ is small Cλ ∼ C = 1
n
X
>
nXn, the inner product x>w is replaced

with a new inner product (x − m)>C−1(x − m). The latter is the so
called Mahalanobis distance. If we consider the eigendecomposition

5.3. RLS FOR MULTICLASS CLASSIFICATION 19

of C = V ΣV > we can better understand the effect of the new inner
product. We have

f(x) = (x−m)>V Σ−1λ−1V >(m1 −m−1) = (x̃− m̃)>(m̃1 − m̃−1),

where ũ = Σ1/2V >u. The data are rotated and then stretched in di-
rections along which the eigenvalues are small.

5.3. RLS for Multiclass Classification

RLS can be adapted to problems with T > 2 classes by consider-
ing

(5.1) (X>nXn + λnI)W = X>n Yn,

where W is a D × T matrix, and Yn is a n × T matrix where the i-
th column has entry 1 if the corresponding input belongs to the i-th
class and−1 otherwise. If we letWt, t = 1, . . . , T , denote the columns
of W , then the corresponding classification rule c : X → {1, . . . , T}
is

c(x) = arg max
t=1,...,T

x>W t

The above scheme can be seen as a reduction scheme from multi
class to a collection of binary classification problems. Indeed, the
solution of 5.1 can be shown to solve the minimization problem

min
W 1,...,WT

T∑
t=1

(
1

n

n∑
i=1

(yti − x>i W t)2 + λ‖W t‖2).

where yti = 1 if xi belongs to class t and yti = −1 otherwise. The
above minimization can be done separately for all Wi, i = 1, . . . , T .
Each minimization problem can be interpreted as performing a ”one
vs all” binary classification.

CHAPTER 6

Feature, Kernels and Representer Theorem

In this class we introduce the concepts of feature map and kernel,
that allow to generalize Regularization Networks, and not only, well
beyond linear models. Our starting point will be again Tikhonov
regularization,

(6.1) min
w∈RD

1

n

n∑
i=1

`(yi, fw(xi)) + λ‖w‖2.

6.1. Feature Maps

A feature map is a map

Φ : X → F

from the input space X into a new space F called feature space
where there is a scalar product Φ(x)>Φ(x′). The feature space can
be infinite dimensional and the following notation is used for the
scalar product 〈Φ(x),Φ(x′)〉F .

6.1.1. Beyond Linear Models. The simplest case is when F =
Rp, and we can view the entries Φ(x)j , j = 1, . . . , p as novel mea-
surements on the input points. For illustrative purposes, consider
X = R2. An example of feature map could be x = (x1, x2) 7→ Φ(x) =

(x2
1,
√

2x1x2, x
2
2). With this choice, if we now consider

fw(x) = w>Φ(x) =

p∑
j=1

wjΦ(x)j,

we effectively have that the function is no longer linear but it is a
polynomial of degree 2. Clearly the same reasoning holds for much
more general choices of measurements (features), in fact any finite
set of measurements. Although seemingly simple, the above obser-
vation allows to consider very general models. Figure 1 gives a geo-
metric interpretation of the potential effect of considering a feature
map. Points which are not easily classified by a linear model, can
be easily classified by a linear model in the feature space. Indeed, the
model is no longer linear in the original input space.

21

22 6. FEATURE, KERNELS AND REPRESENTER THEOREM

FIGURE 1. A pictorial representation of the potential
effect of considering a feature map in a simple two di-
mensional example.

6.1.2. Computations. While feature maps allow to consider non-
linear models, the computations are essentially the same as in the lin-
ear case. Indeed, it is easy to see that the computations considered
for linear models, under different loss functions, remain unchanged,
as long as we change x ∈ RD into Φ(x) ∈ Rp. For example, for least
squares we simply need to replace the n × D matrix Xn with a new
n×p matrix Φn, where each row is the image of an input point in the
feature space, as defined by the feature map.

6.2. Representer Theorem

In this section we discuss how the above reasoning can be fur-
ther generalized. The key result is that the solution of regularization
problems of the form (6.1) can always be written as

(6.2) ŵ> =
n∑
i=1

x>i ci,

where x1, . . . , xn are the inputs in the training set and c = (c1, . . . , cn)
a set of coefficients. The above result is an instance of the so called
representer theorem. We first discuss this result in the context of
RLS.

6.2.1. Representer Theorem for RLS. The result follows noting
that the following equality holds,

(6.3) (X>nXn + λnI)−1X>n = X>n (XnX
>
n + λnI)−1,

6.3. KERNELS 23

so that we have,

w = X>n (XnX
>
n + λnI)−1Yn︸ ︷︷ ︸

c

=
n∑
i=1

x>i ci.

Equation (6.3) follows from considering the SVD of Xn, that is Xn =
UΣV >. Indeed we have X>n = V ΣU> so that

(X>nXn + λnI)−1X>n = V (Σ2 + λ)−1ΣU>

and
X>n (XnX

>
n + λnI)−1 = V Σ(Σ2 + λ)−1U>.

6.2.2. Representer Theorem Implications. Using Equations 7.2
and 6.3, it is possible to show how the vector c of coefficients can
be computed considering different loss functions. In particular, for
the square loss the vector of coefficients satisfies the following linear
system

(Kn + λnI)c = Yn.

where Kn is the n× n matrix with entries (Kn)i,j = x>i xj . The matrix
Kn is called the kernel matrix and is symmetric and positive semi-
definite.

6.3. Kernels

One of the main advantages of using the representer theorem is
that the solution of the problem depends on the input points only
through inner products x>x′. Kernel methods can be seen as replac-
ing the inner product with a more general function K(x, x′). In this
case, the representer theorem 7.2, that is fw(x) = w>x =

∑n
i=1 x

>
i xci,

becomes

(6.4) f̂(x) =
n∑
i=1

K(xi, x)ci.

and we can promptly derive kernelized versions of Regularization
Networks induced by different loss functions.

The function K is often called a kernel and to be admissible it
should behave like an inner product. More precisely it should be:
1) symmetric, and 2) positive definite, that is the kernel matrix Kn

should be positive semi-definite for any set of n input points. While
the symmetry property is typically easy to check, positive semi def-
initeness is trickier. Popular examples of positive definite kernels
include:

• linear kernel K(x, x′) = x>x′,

24 6. FEATURE, KERNELS AND REPRESENTER THEOREM

• polynomial kernel K(x, x′) = (x>x′ + 1)d,

• Gaussian kernel K(x, x′) = e−
‖x−x′‖2

2σ2 ,
where the last two kernels have a tuning parameter, the degree d and
Gaussian width σ, respectively.

A positive definite kernel is often called a reproducing kernel and
it is a key concept in the theory of reproducing kernel Hilbert spaces.

We end noting that there are some basic operations that can be
used to build new kernels. In particular it is easy to see that, ifK1, K2

are reproducing kernels, then K1 +K2 is also a kernel.

CHAPTER 7

Regularization Networks

In this class we introduce a class of learning algorithms based on
Tikhonov regularization, a.k.a. penalized empirical risk minimiza-
tion and regularization. In particular, we study common computa-
tional aspects of these algorithms introducing the so called represen-
ter theorem.

7.1. Empirical Risk Minimization

Among different approaches to design learning algorithms, em-
pirical risk minimization (ERM) is probably the most popular one.
The general idea behind this class of methods is to consider the em-
pirical error

Ê(f) =
1

n

n∑
i=1

`(yi, f(xi)),

as a proxy for the expected error

E(f) = E[`(y, f(x))] =

∫
dxdyp(x, y)`(y, f(x)).

Recall that ` is a loss function and measures the price we pay pre-
dicting f(x) when in fact the right label is y. Also, recall that the
expected error cannot be directly computed, since the data distribu-
tion is fixed but unknown.

In practice, to turn the above idea into an actual algorithm we
need to fix a suitable hypotheses spaceH on which we will minimize
Ê .

7.2. Hypotheses Space

The hypotheses space should be such that computations are fea-
sible and, at the same time, it should be rich, since the complexity of
the problem is not known a priori. As we have seen, the simplest
example of hypotheses space is the space of linear functions, that is

H = {f : RD → R : ∃w ∈ RD such that f(x) = xTw, ∀x ∈ RD}.
25

26 7. REGULARIZATION NETWORKS

Each function f is defined by a vector w and we let fw(x) = xTw. We
have also seen how we can vastly extend the class of functions we
can consider by introducing a feature map

Φ : RD → Rp,

where typically p� D, and considering functions of the form fw(x) =
Φ(x)Tw. We have also seen how this model can be pushed further
considering so called reproducing kernels

K : RD × RD → R
that are symmetric and positive definite functions, implicitly defin-
ing a feature map via the equation

Φ(x)TΦ(x′) = K(x, x′).

If the hypotheses space is rich enough, solely minimizing the em-
pirical risk is not enough to ensure a generalizing solution. Indeed,
simply solving ERM would lead to estimators which are highly de-
pendent on the data and could overfit. Regularization is a general
class of techniques that allow to restore stability and ensure general-
ization.

7.3. Tikhonov Regularization and Representer Theorem

We consider the following Tikhonov regularization scheme,

(7.1) min
w∈RD

Ê(fw) + λ‖w‖2.

The above scheme describes a large class of methods sometimes called
Regularization Networks. The term ‖w‖2 is called regularizer and
controls the stability of the solution. The parameter λ balances the
error term and the regularizer.

Different classes of methods are induced by the choice of differ-
ent loss functions. In the following, we will see common aspects and
differences in considering different loss functions.

There is no general computational scheme to solve problems of
the form (7.1), and the actual solution for each algorithm depends on
the considered loss function. However, we show next that for linear
functions the solution of problem (7.1) can always be written as

(7.2) w = XT
n c, f(x) =

n∑
i=1

xTxici

where Xn is the n × D data matrix and c = (c1, . . . , cn). This allows
on the one hand to reduce computational complexity when n � D,
or n� p in the case of a feature map.

7.4. LOSS FUNCTIONS AND TARGET FUNCTIONS 27

7.3.1. Representer Theorem for General Loss Functions. Here
we discuss the general proof of the representer theorem for loss func-
tions other than the square loss.

• The vectors of the form (7.2) form a linear subspace Ŵ of
RD. Hence, for every w ∈ RD we have the decomposition
w = ŵ + ŵ⊥, where ŵ ∈ Ŵ and ŵ⊥ belongs to the space Ŵ⊥

of vectors orthogonal to those in Ŵ , i.e.

(7.3) ŵT ŵ⊥ = 0.

• The following is the key observation: for all i = 1, . . . , n xi ∈
Ŵ , so that

fw(xi) = xTi w = xTi (ŵ + ŵ⊥) = xTi ŵ.

It follows that the empirical error depends only on ŵ!
• For the regularizer we have

‖w‖2 = ‖ŵ + ŵ⊥‖2 = ‖ŵ‖2 + ‖ŵ⊥‖2,

because of (7.3). Clearly the above expression is minimized
if we take ŵ⊥ = 0.

The theorem is hence proved, the first term in (7.1) depends only on
vector of the form (7.2) and the same form is the best to minimize the
second term

7.4. Loss Functions and Target Functions

It is useful to recall that different loss functions might define dif-
ferent goals via the corresponding target functions.

A simple calculation shows what is the target function corre-
sponding to the square loss. Recall that the target function minimize
the expected squared loss error

E(f) =

∫
p(x, y)dxdy(y − f(x))2 =

∫
p(x)dx

∫
p(y|x)dy(y − f(x))2.

To simplify the computation we let

f ∗(x) = arg min
a∈R

∫
p(y|x)dy(y − a)2,

for all x ∈ X . It is easy to see that the solution is given by

f ∗(x) =

∫
dyp(y|x)y

In classification

f ∗(x) = (+1)(p) + (−1)(1− p) = 2p− 1, p = p(1|x), 1− p = p(−1|x)

28 7. REGULARIZATION NETWORKS

which justifies taking the sign of f .
Similarly, we can derive the target function of the logistic loss

function,

f ∗(x) = arg min
a∈R

∫
p(y|x)dy log(1+e−ya) = arg min

a∈R
p log(1+e−a)+(1−p) log(1+ea).

We can simply take the derivative and set it equal to zero,

p
−e−a

(1 + e−a)
+ (1− p) ea

(1 + ea)
= −p 1

(1 + e−a)
+ (1− p) ea

(1 + ea)
= 0,

so that
p =

ea

(1 + ea)
=⇒ a = log

p

1− p

CHAPTER 8

Logistic Regression

We consider logistic regression, that is Tikhonov regularization

(8.1) min
w∈RD

Ê(fw) + λ‖w‖2, Ê(fw) =
1

n

n∑
i=1

`(yi, fw(xi))

where the loss function is `(y, fw(x)) = log(1 + e−yfw(x)), namely the
logistic loss function (see Figure 1).

1 2

0.5

1.0

1.5

2.0

0 1 loss

square loss

Hinge loss

Logistic loss

0.5

FIGURE 1. Logistic loss (green) and other loss functions.

Since the logistic loss function is differentiable, the natural can-
didate to compute a minimizer is a the gradient descent algorithm
which we describe next.

8.1. Interlude: Gradient Descent and Stochastic Gradient

Before starting, let’s recall the following basic definition
29

30 8. LOGISTIC REGRESSION

• Gradient of G : RD → R,

∇G = (
∂G

∂w1
, . . . ,

∂G

∂wD
)

• Hessian of G : RD → R,

H(G)i,j =
∂2G

∂wi∂wj

• Jacobian of F : RD → RD

J(F)i,j =
∂F i

∂wj

Note that H(G) = J(∇G).

Consider the minimization problem

min
w∈RD

G(w) G : RD → R

when G is a differentiable (strictly convex) function. A general ap-
proach to find an approximate solution of the problem is the gradient
descent (GD) algorithm, based on the following iteration

(8.2) wt+1 = wt − γ∇G(wt)

for a suitable initialization w0. Above, ∇G(w) is the gradient of G
at w and γ is a positive constant (or a sequence) called the step-size.
Choosing the step-size appropriately ensures the iteration to con-
verge to a minimizing solution. In particular, a suitable choice can
be shown to be

γ = 1/L,

where L is the Lipschitz constant of the gradient, that is L such that

‖∇G(w)−∇G(w′)‖ ≤ L‖w − w′‖∀w,w′.

It can be shown that L is less or equal than the biggest eigenvalue of
the Hessian matrix H(G)(w) for all w. The term descent comes from
the fact that it can be shown that

G(wt) ≥ G(wt+1)∀wt.

A related technique is called stochastic gradient or also incremental
gradient. To describe this method, we consider an objective function
of the form

G(w) =
n∑
i=1

gi(w), gi : RD → R, i = 1, . . . , n,

8.2. REGULARIZED LOGISTIC REGRESSION 31

so that ∇G(w) =
∑n

i=1∇gi(w). The stochastic gradient algorithm
corresponds to replacing (8.2) with

wt+1 = wt − γ∇git(wt)

where it denotes a deterministic or stochastic sequence of indices. In
this case, the step size needs to be chosen as sequence γt going to
zero but not too fast. For example the choice γt = 1/t can be shown
to suffice.

8.2. Regularized Logistic Regression

The corresponding regularized empirical risk minimization prob-
lem is called regularized logistic regression. Its solution can be com-
puted via gradient descent or stochastic gradient. Note that

∇Ê(fw) =
1

n

n∑
i=1

xi
−yie−yix

T
i wt−1

1 + e−yix
T
i wt−1

=
1

n

n∑
i=1

xi
−yi

1 + eyix
T
i wt−1

so that, for w0 = 0, the gradient descent algorithm applied to (8.1) is

wt = wt−1 − γ

(
1

n

n∑
i=1

xi
−yi

1 + eyix
T
i wt−1

+ 2λwt−1

)

for t = 1, . . . T , where

1

n

n∑
i=1

−yixie−yix
T
i w

1 + e−yix
T
i w

+ 2λw = ∇(Ê(fw) + λ‖w‖2)

A direct computation shows that

J(∇Ê(fw)) =
1

n

n∑
i=1

xix
T
i `
′′
(yiw

Txi) + 2λI

where `′′(a) = e−a

(1+e−a)2 ≤ 1 is the second derivative of the function
`(a) = log(1 + e−a). In particular it can be shown that

L ≤ σmax(
1

n
XT
nXn + 2λI)

where σmax(A) is the largest eigenvalue of a (symmetric positive semi-
definite) matrix A.

32 8. LOGISTIC REGRESSION

8.3. Kernel Regularized Logistic Regression

The vector of coefficients can be computed by the following iter-
ation

ct = ct−1 − γB(ct−1), t = 1, . . . , T

for c0 = 0, and where B(ct−1) ∈ Rn with

B(ct−1)i = − 1

n

yi

1 + eyi
∑n
k=1 x

T
k xic

k
t−1

+ 2λcit−1.

Here again we choose a constant step-size. Note that

σmax(
1

n
XT
nXn + λI) = σmax(

1

n
XnX

T
n + λI) = σmax(

1

n
Kn + λI).

8.4. Logistic Regression and Confidence Estimation

We end recalling that a main feature of logistic regression is that,
as discussed, the solution can be shown to have a probabilistic inter-
pretation, in fact it can be derived from the following model

p(1|x) =
ex

Tw

1 + exTw
,

where the right hand side is called logistic function. This latter ob-
servation can be used to compute a confidence on each prediction of
the logistic regression estimator.

CHAPTER 9

From Perceptron to SVM

We next introduce the support vector machine discussing one of
the most classical learning algorithms, namely the perceptron algo-
rithm.

9.1. Perceptron

The perceptron algorithm finds a linear classification rule accord-
ing to the following iterative procedure. Set w0 = 0 and update

wi = wi−1 + γyixi, if yiwTxi ≤ 0

and let wi = wi−1 otherwise. In words, if an example is correctly clas-
sified, then the perceptron does not do anything. If the perceptron
incorrectly classifies a training example, each of the input weights is
moved a little bit in the correct direction for that training example.
The above procedure can be seen as the stochastic (sub) gradient as-
sociated to the objective function

n∑
i=1

| − yiwTxi|+

where the |a|+ = max{0, a}. Indeed if yiwTxi < 0, then |−yiwTxi|+ =
−yiwTxi and∇|−yiwTxi|+ = −yixi, if yiwTxi > 0, then |−yiwTxi|+ =
0 hence∇|− yiwTxi|+ = 0. Clearly, an off-set can also be considered,
replacing wTx by wTx+ b and an analogous iteration can be derived.

The above method can be shown to converge for γ = const if
the data are linearly separable. If the data are not separable, with a
constant step size the perception will typically cycle. Moreover, the
perceptron does not implement any specific form of regularization
so in general it is prone to overfitting the data.

9.2. Margin

The quantity α = ywTx defining the objective function of the
perceptron is a natural error measure and is sometimes called the
functional margin. Next we look at a geometric interpretation of the
functional margin that will lead to a different derivation of Tikhonov

33

34 9. FROM PERCEPTRON TO SVM

regularization for the so called hinge loss function. We begin by con-
sidering a binary classification problem where the classes are linearly
separable.

Consider the decision surface S = {x : wTx = 0} defined by
a vector w and x such that wTx > 0. It is easy to check that the
projection of x on S is a point xw satisfying

xw = x− β w

‖w‖

where β is the distance between x and S. Clearly, xw ∈ S so that

wT (x− β w

‖w‖
) = 0⇔ β =

wT

‖w‖
x.

If x is x such that wTx < 0, then β = − wT

‖w‖x so, in general we have

β = y
wT

‖w‖
x

The above quantity is often called the geometric margin and clearly
if ‖w‖ = 1 it coincides with the geometric margin. Note that the
margin is scale invariant, in the sense that β = y w

T

‖w‖x = y 2wT

‖2w‖x, as is
the decision rule sign(wTx).

FIGURE 1. Plot of the margin β between the decision
function and the nearest samples.

9.3. MAXIMIZING THE MARGIN 35

9.3. Maximizing the Margin

Maximizing the margin is a natural approach to select a linear
separating rule in the separable case (see Figure 1).

More precisely, consider

βw = min
i=1,...,n

βi, βi = yi
wT

‖w‖
xi, i = 1, . . . , n,

max
w∈RD

βw, subj. to, βw ≥ 0, ‖w‖ = 1.(9.1)

Note that the last constraint is needed to avoid the solution w = ∞
(check what happens if you consider a solution w and then scale it
by a constant k).

In the following, we manipulate the above expression to obtain a
problem of the form

min
w∈RD

F (w), Aw + c ≥ 0,

where F is convex, A is a matrix and c a vector. These are convex
programming problems which can be efficiently solved.

We begin by rewriting problem (9.1) by introducing a dummy
variable β = βw to obtain

max
(w,β)∈RD+1

β, subj. to, yi
wT

‖w‖
xi ≥ β; β ≥ 0, ‖w‖ = 1

(we are basically using the definition of minimum as the maximum
of the infimal points). We next would like to avoid the constraint
‖w‖ = 1. It can be shown that the above problem is equivalent to
considering

max
(w,α)∈RD+1

α

‖w‖
, subj. to, yiw

Txi ≥ α;α ≥ 0.

with β = α
‖w‖ , where the key idea is that the latter problem is scale

invariant. More precisely that we can always restrict ourselves to
‖w‖ = 1 by appropriately rescaling the solutions. Using again scale
invariance (check what happens if you consider a solution w and
then scale it by a constant (kw, kα)), without loss of generality we
can fix α = 1 to obtain

max
w∈RD

1

‖w‖
, subj. to, yiw

Txi ≥ 1 , i = 1, . . . , n,

or equivalently

(9.2) min
w∈RD

1

2
‖w‖2, subj. to, yiw

Txi ≥ 1 , i = 1, . . . , n,

36 9. FROM PERCEPTRON TO SVM

In the above reasoning we assumed data to be separable; if this
is not the case, one could consider slack variables ξ = (ξ1, . . . , ξn) to
relax the constraints in the above problem, considering
(9.3)

min
w∈RD,ξ∈Rn

1

2
‖w‖2+C

n∑
i=1

, subj. to, yiwTxi ≥ 1−ξi, ξi ≥ 0 , i = 1, . . . , n.

9.4. From Max Margin to Tikhonov Regularization

Note that ξi = max{0, 1 − yiw
Txi} = |1 − yiw

Txi|+, for all i =
1, . . . , n. Then if we set λ = 1

2Cn
, we have that problem (9.3) is equiv-

alent to

min
w∈RD,ξ∈Rn

1

n

n∑
i=1

|1− yiwTxi|+ + λ‖w‖2.

9.5. Computations

The derivation of a solution to the SVM problem requires no-
tions of convex optimization, specifically considering so called La-
grangian duality. Indeed, it can be shown that the solution of prob-
lem (9.3) is of the form

w =
n∑
i=1

yiαixi

where the coefficients αi for i = 1, . . . , n are given by the solution of
the so called dual problem,
(9.4)

min
α∈Rn

n∑
i=1

αi−
1

2

n∑
i,j=1

αiαjyiyjx
T
i xj, subject to 0 ≤ αi ≤ C, i = 1, . . . , n.

where in particular it can be shown that

αi = 0 =⇒ yiw
Txi ≥ 1.

9.6. Dealing with an off-set

Finally, it can be shown that the above reasoning can be general-
ized to consider an offset, that is wTx + b, in which case we simply
have to add the constraint

n∑
i=1

yiαixi = 0

to the dual problem (9.4).

CHAPTER 10

Dimensionality Reduction

In many practical applications it is of interest to reduce the di-
mensionality of the data. In particular, this is useful for data visu-
alization, or for investigating the ”effective” dimensionality of the
data. This problem is often referred to as dimensionality reduction
and can be seen as the problem of defining a map

M : X = RD → Rk, k � D,

according to some suitable criterion.

FIGURE 1. Principal components of a 2D dataset.

37

38 10. DIMENSIONALITY REDUCTION

10.1. PCA & Reconstruction

PCA is arguably the most popular dimensionality reduction pro-
cedure. It is a data driven procedure that given an (unsupervised)
sample S = (x1, . . . , xn) derives a dimensionality reduction defined
by a linear map M . PCA can be derived from several perspectives.
Here we provide a geometric/analytical derivation.

We begin by considering the case where k = 1. We are interested
in finding the single most relevant dimension according to some
suitable criterion. Recall that, if w ∈ RD with ‖w‖ = 1, then the (or-
thogonal) projection of a point x on w is given by (wTx)w. Consider
the problem of finding the direction p which allows the best possible
average reconstruction of the training set, that is the solution of the
problem

(10.1) min
w∈SD−1

1

n

n∑
i=1

‖xi − (wTxi)w‖2,

where SD−1 = {w ∈ RD | ‖w‖ = 1} is the sphere in D dimensions.
The norm ‖xi − (wTxi)w‖2 measures how much we lose by project-
ing x along the direction w, and the solution p to problem (10.1) is
called the first principal component of the data. A direct compu-
tation shows that ‖xi − (wTxi)w‖2 = ‖xi‖ − (wTxi)

2, so that prob-
lem (10.1) is equivalent to

(10.2) max
w∈SD−1

1

n

n∑
i=1

(wTxi)
2.

This latter observation is useful for two different reasons that the we
discuss in the following.

10.2. PCA and Maximum Variance

If the data are centered, that is x̄ = 1
n
xi = 0, problem (10.2) has

the following interpretation: we look for the direction along which
the data have (on average) maximum variance. Indeed, we can in-
terpret the term (wTx)2 as the variance of x in the direction w. If the
data are not centered, to keep this interpretation we should replace
problem (10.2) with

(10.3) max
w∈SD−1

1

n

n∑
i=1

(wT (xi − x̄))2,

10.4. BEYOND THE FIRST PRINCIPAL COMPONENT 39

which corresponds to the original problem on the centered data xc =
x − x̄. In the terms of problem (10.1), it is easy to see that this corre-
sponds to considering

(10.4) min
w,b∈SD−1

1

n

n∑
i=1

‖xi − ((wT (xi − b))w + b)‖2.

where ((wT (xi − b))w + b is an affine transformation (rather than an
orthogonal projection).

10.3. PCA and Associated Eigenproblem

A simple further manipulation allows to write problem (10.2) as
an eigenvalue problem. Indeed, using the symmetry of the inner
product we have

1

n

n∑
i=1

(wTxi)
2 =

1

n

n∑
i=1

wTxiw
Txi =

1

n

n∑
i=1

wTxix
T
i w = wT (

1

n

n∑
i=1

xix
T
i)w

so that problem (10.2) can be written as

(10.5) max
w∈SD−1

wTCnw, Cn =
1

n

n∑
i=1

xix
T
i .

We need two observations. First, in matrix notation Cn = XT
nXn and

it is easy to see that Cn is symmetric and positive semi-definite. If the
data are centered, the matrix Cn is the so called covariance matrix.
Clearly, the objective function in (10.5) can be written as

wTCnw

wTw
where the latter quantity is the so called Rayleigh quotient. Note
that, if Cnu = λu then uTCnu

uTu
= λ, since the eigenvector u is nor-

malized. In fact, it is possible to show that the Rayleigh quotient
achieves its maximum at a vector which corresponds to the maxi-
mum eigenvalue of Cn (the proof of this latter fact uses basic results
in linear programming). Then, computing the first principal compo-
nent of the data is reduced to computing the biggest eigenvalue of
the covariance and the corresponding eigenvector.

10.4. Beyond the First Principal Component

Next, we discuss how the above reasoning can be generalized to
k > 1, that is more than one principle component. The idea is simply
to iterate the above reasoning to describe the input data beyond what
is allowed by the first principal component. Towards this end, we

40 10. DIMENSIONALITY REDUCTION

consider the one-dimensional projection which can best reconstruct
the residuals

ri = xi − (pTxi)pi,

that is we replace problem (10.1) by

(10.6) min
w∈SD−1,w⊥p

1

n

n∑
i=1

‖ri − (wT ri)w‖2.

Note that for all i = 1, . . . , n,

‖ri − (wT ri)w‖2 = ‖ri‖2 − (wT ri)
2 = ‖ri‖2 − (wTxi)

2

since w ⊥ p. Then, following the reasoning from (10.1) to (10.2),
problem (10.6) can equivalently be written as

(10.7) max
w∈SD−1,w⊥p

1

n

n∑
i=1

(wTxi)
2 = wTCnw.

Again, we have to minimize the Rayleigh quotient of the covariance
matrix. However, when compared to (10.2), we see that there is the
new constraint w ⊥ p. Indeed, it can be proven that the solution
of problem (10.7) is given by the second eigenvector of Cn, and the
corresponding eigenvalue. The proof of this latter fact follows the
same line of the one for the first principal component. Clearly, the
above reasoning can be generalized to consider more than two com-
ponents. The computation of the principal components reduces to
the problem of finding the eigenvalues and eigenvectors of Cn. The
complexity of this problem is roughly O(kD2), being k the number
of components (note that the complexity of forming Cn is O(nD2)).

The principal components can be stacked as rows of a k ×D ma-
trix M , and in fact, because of the orthogonality constraint, the ma-
trix M is orthogonal, MMT = I . The dimensionality reduction in-
duced by PCA is hence linear.

10.5. Singular Value Decomposition

We recall the notion of singular value decomposition of a matrix
which allows in some situations to improve the computations of the
principal components, while suggesting a possible way to generalize
the algorithm to consider non linear dimensionality reduction.

Considering the data matrixXn, its singular value decomposition
is given by

Xn = UΣP T .

where U is a n × d orthogonal matrix, P is a D × d orthogonal ma-
trix, Σ is a diagonal matrix such that Σi,i =

√
λi, i = 1, . . . , d and

10.6. KERNEL PCA 41

d ≤ min{n,D}. The columns of U and the columns of V are called re-
spectively the left and right singular vectors and the diagonal entries
of Σ the singular values. The singular value decomposition can be
equivalently described by the following equations, for j = 1, . . . , d,

Cnpj = λjpj,
1

n
Knuj = λjuj,

Xnpj =
√
λjuj,

1

n
XT
n uj =

√
λjpj,(10.8)

where Cn = 1
n
XT
nXn and 1

n
Kn = 1

n
XnX

T
n .

If n � p the above equations can be used to speed up the com-
putation of the principal components. Indeed, we can consider the
following procedure:

(1) form the matrix Kn, which is O(Dn2),
(2) find the first k eigenvectors of Kn, which is O(kn2),
(3) find the principal components using (10.8), i.e.

(10.9) pj =
1√
λj
XT
n uj =

1√
λj

n∑
i=1

xiu
i
j, j = 1, . . . , d

where u = (u1, . . . , un), which is again O(knd) if we consider
k principal components.

10.6. Kernel PCA

The latter reasoning suggests how to generalize the intuition be-
hind PCA beyond linear dimensionality reduction by using kernels
(or feature maps). Indeed, from equation (10.9) we can see that the
projection of a point x on a principal component p can be written as

(10.10) (M(x))j = xTpj =
1√
λj
xTXT

n uj =
1√
λj

n∑
i=1

xTxiu
i
j,

for j = 1, . . . , d.
What if we were to map the data using a possibly non linear fea-

ture map Φ : X → F , before performing PCA? If the feature map is
finite dimensional, e.g. F = Rp we could simply replace x 7→ Φ(x)
and follow exactly the same reasoning as in the previous sections.
Note in particular that equation (10.10) becomes

(10.11) (M(x))j = Φ(x)Tpj =
1√
λj

n∑
i=1

Φ(x)TΦ(xi)u
i
j,

42 10. DIMENSIONALITY REDUCTION

for j = 1, . . . , d. More generally, one could consider a positive defi-
nite kernel K : X ×X → R, in which case (10.10) becomes

(10.12) (M(x))j =
1√
λj

n∑
i=1

K(x, xi)u
i
j,

for j = 1, . . . , d. Note that in this latter case, while it is not clear how
to form Cn, we can still form and diagonalize Kn, which is in fact the
kernel matrix.

CHAPTER 11

Variable Selection

In many practical situations, beyond predictions it is important
to obtain interpretable results. Interpretability is often related to de-
tecting which factors have determined our prediction. We look at
this question from the perspective of variable selection.

Consider a linear model

(11.1) fw(x) = wTx =
v∑
i=1

wjxj.

Here we can think of the components xjof an input as of specific
measurements: pixel values in the case of images, dictionary word
counting in the case of texts, etc. Given a training set, the goal of
variable selection is to detect which variables are important for pre-
diction. The key assumption is that the best possible prediction rule
is sparse, that is only few of the coefficients in (11.1) are different
from zero.

11.1. Subset Selection

A brute force approach would be to consider all the training sets
obtained considering all the possible subsets of variables. More pre-
cisely we could begin by considering only the training set where we
retain the first variable of each input points. Then the one where we
retain only the second, and so on and so forth. Next, we could pass
to consider a training set with pairs of variables, then triplets etc. For
each training set one would solve the learning problem and eventu-
ally end selecting the variables for which the corresponding training
set achieves the best performance.

The described approach has an exponential complexity and be-
comes unfeasible already for relatively small D. If we consider the
square loss, it can be shown that the corresponding problem could
be written as

(11.2) min
w∈RD

1

n

n∑
i=1

(yi − fw(xi))
2 + λ‖w‖0,

43

44 11. VARIABLE SELECTION

where
‖w‖0 = |{j | wj 6= 0}|

is called the `0 norm and counts the number of non zero components
in w. In the following we focus on the least squares loss and con-
sider different approaches to find approximate solution to the above
problem, namely greedy methods and convex relaxation.

11.2. Greedy Methods: (Orthogonal) Matching Pursuit

Greedy approaches are often considered to find approximate so-
lutions to problem (11.2). This class of approaches to variable selec-
tion generally encompasses the following steps:

(1) initialize the residual, the coefficient vector, and the index
set,

(2) find the variable most correlated with the residual,
(3) update the index set to include the index of such variable,
(4) update/compute coefficient vector,
(5) update residual.

The simplest such procedure is called forward stage-wise regression
in statistics and matching pursuit (MP) in signal processing. To de-
scribe the procedure we need some notation. Let Xn be the n × D
data matrix and Xj ∈ Rn, j = 1, . . . , D be the columns of Xn. Let
Yn ∈ Rn be the output vector. Let r, w, I denote the residual, the
coefficient vector, an index set, respectively.

The MP algorithm starts by initializing the residual r ∈ Rn, the
coefficient vector w ∈ RD, and the index set I ⊆ {1, . . . , D},

r0 = Yn, , w0 = 0, I0 = ∅.
The following procedure is then iterated for i = 1, . . . , T − 1. The
variable most correlated with the residual is given by

k = arg max
j=1,...,D

aj, aj =
(rTi−1X

j)2

‖Xj‖2
,

where we note that

vj =
rTi−1X

j

‖Xj‖2
= arg min

v∈R
‖ri−1−Xjv‖2, ‖ri−1−Xjvj‖2 = ‖ri−1‖2− aj

The selection rule has then two interpretations. We select the vari-
able such that the projection of the output on the corresponding col-
umn is larger, or, equivalently, we select the variable such that the
corresponding column best explains the the output vector in a least
squares sense.

11.3. CONVEX RELAXATION: LASSO & ELASTIC NET 45

Then, the index set is updated as Ii = Ii−1 ∪ {k}, and the coeffi-
cients vector is given by

(11.3) wi = wi−1 + wk, wkk = vkek

where ek is the element of the canonical basis in RD, with k-th com-
ponent different from zero. Finally, the residual is updated

ri = ri−1 −Xwk.
A variant of the above procedure, called Orthogonal Matching Pur-
suit, is also often considered. The corresponding iteration is analo-
gous to that of MP, but the coefficient computation (11.3) is replaced
by

wi = arg min
w∈RD

‖Yn −XnMIiw‖2,

where the D × D matrix MI is such that (MIw)j = wj if j ∈ I and
(MIw)j = 0 otherwise. Moreover, the residual update is replaced by

ri = Yn −Xnwi.

11.3. Convex Relaxation: LASSO & Elastic Net

Another popular approach to find an approximate solution to
problem (11.2) is based on a convex relaxation. Namely, the `0 norm
is replaced by the `1 norm,

‖w‖1 =
D∑
j=1

|wj|,

so that, in the case of least squares, problem (11.2) is replaced by

(11.4) min
w∈RD

1

n

n∑
i=1

(yi − fw(xi))
2 + λ‖w‖1.

The above problem is called LASSO in statistics and Basis Pursuit in
signal processing. The objective function defining the corresponding
minimization problem is convex but not differentiable. Tools from
non-smooth convex optimization are needed to find a solution. A
simple yet powerful procedure to compute a solution is based on
the so called Iterative Soft Thresholding Algorithm (ISTA). The latter
is an iterative procedure where, at each iteration, a non linear soft
thresholding operator is applied to a gradient step. More precisely,
ISTA is defined by the following iteration

w0 = 0, wi = Sλγ(wi−1 −
2γ

n
XT
n (Yn −Xnwi−1)), i = 1, . . . , Tmax

46 11. VARIABLE SELECTION

which should be run until a convergence criterion is met, e.g. ‖wi −
wi−1‖ ≤ ε, for some precision ε, or a prescribed maximum number of
iterations Tmax is reached. To ensure convergence we should choose
the step-size γ = n

2‖XT
nXn‖

.
Note that the argument of the soft thresholding operator corre-

sponds to a step of gradient descent. Indeed,

2

n
XT
n (Yn −Xnwi−1)

The soft thresholding operator acts component-wise on a vector w,
so that

Sα(u) = ||u| − α|+
u

|u|
.

A depiction of the sof thresholding is shown in Figure 1.
The above expression shows that the coefficients of the solution

of problem (11.2) as computed by ISTA can be exactly zero: this can
be contrasted with Tikhonov regularization where this is hardly the
case.

Indeed, it is possible to see that, on the one hand, while Tikhonov
allows to compute a stable solution, in general its solution is not
sparse. On the other hand, the solution of LASSO might not be sta-
ble. The elastic net algorithm, defined as

(11.5) min
w∈RD

1

n

n∑
i=1

(yi−fw(xi))
2+λ(α‖w‖1+(1−α)‖w‖2

2), α ∈ [0, 1],

can be seen as hybrid algorithm which is interpolated between Tikhonov
and LASSO. The ISTA procedure can be adapted to solve the elastic

FIGURE 1. The 1-dimensional soft thresholding opera-
tor Sλ with threshold λ.

11.3. CONVEX RELAXATION: LASSO & ELASTIC NET 47

net problem, where the gradient descent step incorporates also the
derivative of the `2 penalty term. The resulting algorithm is

w0 = 0, wi = Sλαγ((1−λγ(1−α))wi−1−
2γ

n
XT
n (Yn−Xnwi−1)), i = 1, . . . , Tmax

To ensure convergence, we should choose the step-size γ = n
2(‖XT

nXn‖+λ(1−α))
.

CHAPTER 12

A Glimpse Beyond The Fence

We next try to give a brief overview of 1) topics in machine learn-
ing that we have not touched upon, 2) some of the current and future
challenges in machine learning.

12.1. Different Kinds of Data

Different machine learning approaches arise to deal with differ-
ent kinds of input and output. Recall that the input/output pairs are
assumed to belong to an input space X and an output space Y , re-
spectively. We call Z = X×Y the data space. We list a few examples
of input and output spaces.

• Euclidean/Vector Spaces. Perhaps the simples example, cov-
ering many practical situations, is X = Rd, d ∈ N.
• Probability distributions. We could setX = {x ∈ Rd

+ :
∑d

j=1 x
j =

1, d ∈ N, and view elements of the space as probability dis-
tributions on a finite set Ω of dimension d. More generally
given any probability space Ω we can view X as the space of
probability distribution on Ω.
• Strings/Words. Given an alphabet Σ of symbols (letters),

one could consider X = Σp, p ∈ N, the (finite) space of
strings (words) of p letters.
• Graphs. We can view X as collection of graphs, i.e. X = {}.

Clearly more exotic examples can be constructed considering com-
positions of the above examples, for example X = Rd × Σp, d, p ∈ N
etc.

Next, we discuss different choices of the output space and see
how they often correspond to problems with different names.

• Regression, Y = R.
• Binary classification, Y = {−1, 1}. Where we note that here

we could have taken Y = {0, 1}– as well as any other pair of
distinct numeric values.
• Multivariate regression, Y = RT , T ∈ N, each output is a

vector.
49

50 12. A GLIMPSE BEYOND THE FENCE

• Functional regression, Y is a Hilbert space, for example each
output is a function.
• Multi-category classification, Y = {1, 2, . . . , T}, T ∈ N, the

output is one of T categories.
• Multilabel, Y = 2{1,2,...,T}, T ∈ N, each output is any subset

of T categories.

An interesting case is that of so called multitask learning. Here
Z = (X1, Y1) × (X2, Y2) × · · · × (XT , YT)) and the training set is is
S = (S1, S2, . . . , ST). We can view each data space/training set as
corresponding to different, yet related, tasks. In full generality, in-
put/output spaces and data cardinality can be different.

12.2. Data and Sampling Models

The standard data model we consider is a training set as an i.i.d.
sample from a distribution p on the data space Z.

• Semisupervised, the more general situation where unlabelled
data Su are available together with the labelled data S.
• Transductive, related to the above setting, unlabelled data
Su are available together with the labelled data and the goal
is to predict the label of the unlabeled data set Su.
• Online/Dynamic Learning, the data are not i.i.d. The sam-

ples can be dependent, can come from varying distribution,
or both.

12.3. Learning Approaches

• Online/Incremental
• Randomized
• Distributed
• Online/Dynamic Learning, the data are not i.i.d. The sam-

ples can be dependent, the samples can come from varying
distribution or both.

• Active
• Reinforcement Learning

12.4. Some Current and Future Challenges in Machine Learning

Challenges

1← Data Size→∞

12.4. SOME CURRENT AND FUTURE CHALLENGES IN MACHINE LEARNING 51

12.4.1. Big Data? Recent times have seen the development of
technologies for gathering data-set of unprecedented size and com-
plexity both in natural science and technology. On the one hand
this has opened novel opportunities (e.g. online teaching), on the
other had it has posed new challenges. In particular, the necessity
has emerged to develop learning techniques capable to leverage pre-
defined budgets and requisites in terms of

• Computations,
• Communications,
• Privacy.

12.4.2. Or Small Data? One of the most evident differences be-
tween biological and artificial intelligence is the astounding ability of
humans to generalize from limited supervised data. Indeed, while
impressive, current artificial intelligent systems based on supervised
learning require huge amounts of humanly annotated data.

• Unsupervised learning of data representation
• Learning under weak supervision.
• Learning and exploiting structure among learning tasks.

APPENDIX A

Mathematical Tools

These notes present a brief summary of some of the basic defini-
tions from calculus that we will need in this class. Throughout these
notes, we assume that we are working with the base field R.

A.1. Structures on Vector Spaces

A vector space V is a set with a linear structure. This means we
can add elements of the vector space or multiply elements by scalars
(real numbers) to obtain another element. A familiar example of a
vector space is Rn. Given x = (x1, . . . , xn) and y = (y1, . . . , yn) in
Rn, we can form a new vector x + y = (x1 + y1, . . . , xn + yn) ∈ Rn.
Similarly, given r ∈ R, we can form rx = (rx1, . . . , rxn) ∈ Rn.

Every vector space has a basis. A subset B = {v1, . . . , vn} of V
is called a basis if every vector v ∈ V can be expressed uniquely
as a linear combination v = c1v1 + · · · + cmvm for some constants
c1, . . . , cm ∈ R. The cardinality (number of elements) of V is called
the dimension of V . This notion of dimension is well defined be-
cause while there is no canonical way to choose a basis, all bases of
V have the same cardinality. For example, the standard basis on Rn

is e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1). This
shows that Rn is an n-dimensional vector space, in accordance with
the notation. In this section we will be working with finite dimen-
sional vector spaces only.

We note that any two finite dimensional vector spaces over R are
isomorphic, since a bijection between the bases can be extended lin-
early to be an isomorphism between the two vector spaces. Hence,
up to isomorphism, for every n ∈ N there is only one n-dimensional
vector space, which is Rn. However, vector spaces can also have
extra structures that distinguish them from each other, as we shall
explore now.

A distance (metric) on V is a function d : V × V → R satisfying:
• (positivity) d(v, w) ≥ 0 for all v, w ∈ V , and d(v, w) = 0 if

and only if v = w.
• (symmetry) d(v, w) = d(w, v) for all v, w ∈ V .

53

54 A. MATHEMATICAL TOOLS

• (triangle inequality) d(v, w) ≤ d(v, x)+d(x,w) for all v, w, x ∈
V .

The standard distance function on Rn is given by d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.
Note that the notion of metric does not require a linear structure, or
any other structure, on V ; a metric can be defined on any set.

A similar concept that requires a linear structure on V is norm,
which measures the “length” of vectors in V . Formally, a norm is a
function ‖ · ‖ : V → R that satisfies the following three properties:

• (positivity) ‖v‖ ≥ 0 for all v ∈ V , and ‖v‖ = 0 if and only if
v = 0.
• (homogeneity) ‖rv‖ = |r|‖v‖ for all r ∈ R and v ∈ V .
• (subadditivity) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

For example, the standard norm on Rn is ‖x‖2 =
√
x2

1 + · · ·+ x2
n,

which is also called the `2-norm. Also of interest is the `1-norm
‖x‖1 = |x1| + · · · + |xn|, which we will study later in this class in
relation to sparsity-based algorithms. We can also generalize these
examples to any p ≥ 1 to obtain the `p-norm, but we will not do that
here.

Given a normed vector space (V, ‖ ·‖), we can define the distance
(metric) function on V to be d(v, w) = ‖v − w‖. For example, the
`2-norm on Rn gives the standard distance function

d(x, y) = ‖x− y‖2 =
√

(x1 − y1)2 + · · ·+ (xn − yn)2,

while the `1-norm on Rn gives the Manhattan/taxicab distance,

d(x, y) = ‖x− y‖1 = |x1 − y1|+ · · ·+ |xn − yn|.
As a side remark, we note that all norms on a finite dimensional

vector space V are equivalent. This means that for any two norms µ
and ν on V , there exist positive constants C1 and C2 such that for all
v ∈ V , C1µ(v) ≤ ν(v) ≤ C2µ(v). In particular, continuity or conver-
gence with respect to one norm implies continuity or convergence
with respect to any other norms in a finite dimensional vector space.
For example, on Rn we have the inequality ‖x‖1/

√
n ≤ ‖x‖2 ≤ ‖x‖1.

Another structure that we can introduce to a vector space is the
inner product. An inner product on V is a function 〈·, ·〉 : V ×V → R
that satisfies the following properties:

• (symmetry) 〈v, w〉 = 〈w, v〉 for all v, w ∈ V .
• (linearity) 〈r1v1+r2v2, w〉 = r1〈v1, w〉+r2〈v2, w〉 for all r1, r2 ∈
R and v1, v2, w ∈ V .
• (positive-definiteness) 〈v, v〉 ≥ 0 for all v ∈ V , and 〈v, v〉 = 0

if and only if v = 0.

A.1. STRUCTURES ON VECTOR SPACES 55

For example, the standard inner product on Rn is 〈x, y〉 = x1y1 + · · ·+
xnyn, which is also known as the dot product, written x · y.

Given an inner product space (V, 〈·, ·〉), we can define the norm
of v ∈ V to be ‖v‖ =

√
〈v, v〉. It is easy to check that this definition

satisfies the axioms for a norm listed above. On the other hand, not
every norm arises from an inner product. The necessary and suffi-
cient condition that has to be satisfied for a norm to be induced by
an inner product is the paralellogram law:

‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2.

If the parallelogram law is satisfied, then the inner product can be
defined by polarization identity:

〈v, w〉 =
1

4

(
‖v + w‖2 − ‖v − w‖2

)
.

For example, you can check that the `2-norm on Rn is induced by
the standard inner product, while the `1-norm is not induced by an
inner product since it does not satisfy the parallelogram law.

A very important result involving inner product is the following
Cauchy-Schwarz inequality:

〈v, w〉 ≤ ‖v‖‖w‖ for all v, w ∈ V.
Inner product also allows us to talk about orthogonality. Two

vectors v and w in V are said to be orthogonal if 〈v, w〉 = 0. In par-
ticular, an orthonormal basis is a basis v1, . . . , vn that is orthogonal
(〈vi, vj〉 = 0 for i 6= j) and normalized (〈vi, vi〉 = 1). Given an or-
thonormal basis v1, . . . , vn, the decomposition of v ∈ V in terms of
this basis has the special form

v =
n∑
i=1

〈v, vn〉vn.

For example, the standard basis vectors e1, . . . , en form an orthonor-
mal basis of Rn. In general, a basis v1, . . . , vn can be orthonormalized
using the Gram-Schmidt process.

Given a subspace W of an inner product space V , we can define
the orthogonal complement ofW to be the set of all vectors in V that
are orthogonal to W ,

W⊥ = {v ∈ V | 〈v, w〉 = 0 for all w ∈ W}.
If V is finite dimensional, then we have the orthogonal decompo-
sition V = W ⊕ W⊥. This means every vector v ∈ V can be de-
composed uniquely into v = w + w′, where w ∈ W and w′ ∈ W⊥.

56 A. MATHEMATICAL TOOLS

The vector w is called the projection of v on W , and represents the
unique vector in W that is closest to v.

A.2. Matrices

In addition to talking about vector spaces, we can also talk about
operators on those spaces. A linear operator is a function L : V → W
between two vector spaces that preserves the linear structure. In fi-
nite dimension, every linear operator can be represented by a matrix
by choosing a basis in both the domain and the range, i.e. by working
in coordinates. For this reason we focus the first part of our discus-
sion on matrices.

If V is n-dimensional and W is m-dimensional, then a linear map
L : V → W is represented by an m × n matrix A whose columns
are the values of L applied to the basis of V . The rank of A is the
dimension of the image of A, and the nullity of A is the dimension
of the kernel of A. The rank-nullity theorem states that rank(A) +
nullity(A) = m, the dimension of the domain of A. Also note that
the transpose of A is an n×m matrix A> satisfying

〈Av,w〉Rm = (Av)>w = v>A>w = 〈v, A>w〉Rn

for all v ∈ Rn and w ∈ Rm.
Let A be an n × n matrix with real entries. Recall that an eigen-

value λ ∈ R of A is a solution to the equation Av = λv for some
nonzero vector v ∈ Rn, and v is the eigenvector of A corresponding
to λ. If A is symmetric, i.e. A> = A, then the eigenvalues of A are
real. Moreover, in this case the spectral theorem tells us that there is
an orthonormal basis of Rn consisting of the eigenvectors of A. Let
v1, . . . , vn be this orthonormal basis of eigenvectors, and let λ1, . . . , λn
be the corresponding eigenvalues. Then we can write

A =
n∑
i=1

λiviv
>
i ,

which is called the eigendecomposition of A. We can also write this
as

A = V ΛV >,

where V is the n×n matrix with columns vi, and Λ is the n×n diag-
onal matrix with entries λi. The orthonormality of v1, . . . , vn makes
V an orthogonal matrix, i.e. V −1 = V >.

A symmetric n×nmatrixA is positive definite if v>Av > 0 for all
nonzero vectors v ∈ Rn. A is positive semidefinite if the inequality

A.2. MATRICES 57

is not strict (i.e.≥ 0). A positive definite (resp. positive semidefinite)
matrix A has positive (resp. nonnegative) eigenvalues.

Another method for decomposing a matrix is the singular value
decomposition (SVD). Given an m × n real matrix A, the SVD of A
is the factorization

A = UΣV >,

where U is an m × m orthogonal matrix (U>U = I), Σ is an m × n
diagonal matrix, and V is an n × n orthogonal matrix (V >V = I).
The columns u1, . . . , um of U form an orthonormal basis of Rm, and
the columns v1, . . . , vn of V form an orthonormal basis of Rn. The
diagonal elements σ1, . . . , σmin{m,n} in Σ are nonnegative and called
the singular values of A. This factorization corresponds to the de-
composition

A =

min{m,n}∑
i=1

σiuiv
>
i .

This decomposition shows the relations between σi, ui, and vi more
clearly: for 1 ≤ i ≤ min{m,n},

Avi = σiui AA>ui = σ2
i ui

A>ui = σivi A>Avi = σ2
i vi

This means the ui’s are eigenvectors ofAA>with corresponding eigen-
values σ2

i , and the vi’s are eigenvectors ofA>A, also with correspond-
ing eigenvalues σ2

i .
Given an m × n matrix A, we can define the spectral norm of A

to be largest singular value of A,

‖A‖spec = σmax(A) =
√
λmax(AA>) =

√
λmax(A>A).

Another common norm on A is the Frobenius norm,

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2
ij =

√
trace(AA>) =

√
trace(A>A) =

√√√√min{m,n}∑
i=1

σ2
i .

However, since the space of all matrices can be identified with Rm×n,
the discussion in Section A.1 still holds and all norms onA are equiv-
alent.

	Chapter 1. Statistical Learning Theory
	1.1. Data
	1.2. Probabilistic Data Model
	1.3. Loss Function and and Expected Risk
	1.4. Stability, Overfitting and Regularization

	Chapter 2. Local Methods
	2.1. Nearest Neighbor
	2.2. K-Nearest Neighbor
	2.3. Parzen Windows
	2.4. High Dimensions

	Chapter 3. Bias Variance and Cross-Validation
	3.1. Tuning and Bias Variance Decomposition
	3.2. The Bias Variance Trade-Off
	3.3. Cross Validation

	Chapter 4. Regularized Least Squares
	4.1. Regularized Least Squares
	4.2. Computations
	4.3. Interlude: Linear Systems
	4.4. Dealing with an Offset

	Chapter 5. Regularized Least Squares Classification
	5.1. Nearest Centroid Classifier
	5.2. RLS for Binary Classification
	5.3. RLS for Multiclass Classification

	Chapter 6. Feature, Kernels and Representer Theorem
	6.1. Feature Maps
	6.2. Representer Theorem
	6.3. Kernels

	Chapter 7. Regularization Networks
	7.1. Empirical Risk Minimization
	7.2. Hypotheses Space
	7.3. Tikhonov Regularization and Representer Theorem
	7.4. Loss Functions and Target Functions

	Chapter 8. Logistic Regression
	8.1. Interlude: Gradient Descent and Stochastic Gradient
	8.2. Regularized Logistic Regression
	8.3. Kernel Regularized Logistic Regression
	8.4. Logistic Regression and Confidence Estimation

	Chapter 9. From Perceptron to SVM
	9.1. Perceptron
	9.2. Margin
	9.3. Maximizing the Margin
	9.4. From Max Margin to Tikhonov Regularization
	9.5. Computations
	9.6. Dealing with an off-set

	Chapter 10. Dimensionality Reduction
	10.1. PCA & Reconstruction
	10.2. PCA and Maximum Variance
	10.3. PCA and Associated Eigenproblem
	10.4. Beyond the First Principal Component
	10.5. Singular Value Decomposition
	10.6. Kernel PCA

	Chapter 11. Variable Selection
	11.1. Subset Selection
	11.2. Greedy Methods: (Orthogonal) Matching Pursuit
	11.3. Convex Relaxation: LASSO & Elastic Net

	Chapter 12. A Glimpse Beyond The Fence
	12.1. Different Kinds of Data
	12.2. Data and Sampling Models
	12.3. Learning Approaches
	12.4. Some Current and Future Challenges in Machine Learning

	Appendix A. Mathematical Tools
	A.1. Structures on Vector Spaces
	A.2. Matrices

