
Visual	Object	Recognition	
Computational	Models	and	Neurophysiological	Mechanisms	
Neurobiology	130/230.	Harvard	College/GSAS	78454		

Web	site:	 	http://tinyurl.com/visionclass 		
	 	 	à	Class	notes,	Class	slides,	Readings	Assignments	

Location: 	Biolabs	2062	
Time:	 	 	Mondays	03:00	–	05:00	
	
Lectures:	
Faculty:		Gabriel	Kreiman	and	invited	guests	
TA:	 	Emma	Giles	
	
Contact	information:	
Gabriel	Kreiman 	 	 	 	Emma	Giles	
gabriel.kreiman@tch.harvard.edu	 		emmagiles@g.harvard.edu	 		
617-919-2530	 	 	 	 		
Office	Hours:	After	Class.	Mondays	5pm,	or	by	appointment	
	

Visual	Object	Recognition	
Computational	Models	and	Neurophysiological	Mechanisms	
Neurobiology	230.	Harvard	College/GSAS	78454			

Class	1	[09/10/2018].	Introduction	to	pattern	recognition	[Kreiman]	
Class	2	[09/17/2018].	Why	is	vision	difficult?	Natural	image	statistics.	The	retina.	[Kreiman]	
Class	3	[09/24/2018].	Lesions	and	neurological	studies	[Kreiman].		
Class	4	[10/01/2018].	Psychophysics	of	visual	object	recognition	[Sarit	Szpiro]	
October	8:	University	Holiday	
Class	5	[10/15/2018].	Primary	visual	cortex	[Hartmann]	
Class	6	[10/22/2018].	Adventures	into	terra	incognita	[Frederico	Azevedo]	
Class	7	[10/29/2018].	High-level	visual	cognition	[Diego	Mendoza-Haliday]	
Class	8	[11/05/2018].	Correlation	and	causality.	Electrical	stimulation	in	visual	cortex	[Kreiman]	
Class	9	[11/12/2018].	Visual	consciousness	[Kreiman]	
Class	10	[11/19/2018].	Computational	models	of	neurons	and	neural	networks.	[Kreiman]	
Class	11	[11/26/2018].	Computer	vision.	Artificial	Intelligence	in	Visual	Cognition	[Bill	Lotter]	
Class	12	[12/03/2018].	The	operating	system	for	vision.	[Xavier	Boix] 		
FINAL	EXAM,	PAPER	DUE	12/13/2018.	No	extensions.	
	
	

Visual Object Recognition
Computational Models and Neurophysiological Mechanisms
Neurobiology 230. Harvard College/GSAS 78454

Class 1. Introduction to pattern recognition [Kreiman]
Class 2. Visual input. Natural image statistics. The retina. [Kreiman]
Class 3. Lesion and neurological studies of visual deficits in animals and humans. [Kreiman]
Class 4. Psychophysics of visual object recognition [Jiye Kim]
October 9: University Holiday
Class 5. Introduction to the thalamus and primary visual cortex [Camille Gomez-Laberge]
Class 6. Adventures into terra incognita. Neurophysiology beyond V1 [Frederico Azevedo]
Class 7. First steps into inferior temporal cortex [Carlos Ponce]
Class 8. From the highest echelons of visual processing to cognition [Leyla Isik]
Class 9. Correlation and causality. Electrical stimulation in visual cortex [Kreiman].
Class 10. Theoretical neuroscience. Computational models of neurons and neural networks. [Kreiman]
Class 11. Computer vision. Towards artificial intelligence systems for cognition [Bill Lotter]
Class 12. Vision and Language. [Andrei Barbu]
Class 13. [Extra class] Towards understanding subjective visual perception. Visual consciousness. [Kreiman]
FINAL EXAM

OUTLINE	

1.   Why	build	computational	models?	
2.  Single	neuron	models	
3.  Network	models	
4.  Algorithms	and	methods	for	data	analysis	

Why bother with computational models?

- Quantitative models force us to think about and formalize hypotheses and
assumptions

- Models can integrate and summarize observations across experiments, resolutions
and laboratories

- A good model can lead to (non-intuitive) experimental predictions

- A quantitative model, implemented through simulations, can be useful from an
engineering viewpoint (e.g. face recognition)

- A model can point to important missing data, critical information and decisive
experiments

What is a model, anyway?

F = m a

Which hand was the person using?
What is the shape/color/material of the object?
What day of the week is it?
What type of surface is it?
What is the temperature/humidity?
What is the force exerted by the person?
What is the weight of the object?
What is the force of gravity on this object?
Where is the force exerted?
What is the person wearing?
How much contact is there between the object and the surface?

A	model	for	orientation	tuning	in	simple	cells	

A	feed-forward	model	for	orientation	
selectivity	in	V1	

(by	no	means	the	only	model)	

Hubel and Wiesel. J. Physiology (1962)

OUTLINE	

1.  Why	build	computational	models?	
2.   Single	neuron	models	
3.  Network	models	
4.  Algorithms	and	methods	for	data	analysis	

A	nested	family	of	single	neuron	models	

Filter
operations

Integrate-
and-fire
circuit

Hodgkin-
Huxley units

Multi-
compartmental
models

Spines,
channels

Biological
accuracy

Lack of analytical
solutions

Computational
complexity

Geometrically	accurate	models	vs.	spherical	
cows	with	point	masses	

A central question in Theoretical Neuroscience:
What is the “right” level of abstraction?

The	leaky	integrate-and-fire	model	

•  Lapicque	1907	
•  Below	threshold,	the	voltage	

is	governed	by:		

•  A	spike	is	fired	when	V(t)>Vthr	
(and	V(t)	is	reset)	

•  A	refractory	period	tref	is	
imposed	after	a	spike.	

•  Simple	and	fast.	
•  Does	not	consider	spike-rate	

adaptation,	multiple	
compartments,	sub-ms	
biophysics,	neuronal	
geometry	

�

C dV(t)
dt

= − V(t)
R

+ I(t) Vrest=-65
mV
Vth =-50
mV
Τm = 10
ms
Rm = 10
MΩ

Line = I&F model
Circles = cortex

fir
st

 2
 s

pi
ke

s

adapted

The	leaky	integrate-and-fire	model	
•  Lapicque	1907	
•  Below	threshold,	the	voltage	is	governed	by:		
	

•  A	spike	is	fired	when	V(t)>Vthr	(and	V(t)	is	reset)	
•  A	refractory	period	tref	is	imposed	after	a	spike	
•  Simple	and	fast	
•  Does	not	consider:	

–  	spike-rate	adaptation	
–  multiple	compartments	
–  sub-ms	biophysics	
–  neuronal	geometry	

�

C dV(t)
dt

= − V(t)
R

+ I(t)

function
[V,spk]=simpleiandf(E_L,V_res,V_th,tau_m,R_m,I_e,dt
,n)

% ultra-simple implementation of integrate-and-fire
model
% inputs:
% E_L = leak potential [e.g. -65 mV]
% V_res = reset potential [e.g. E_L]
% V_th = threshold potential [e.g. -50 mV]
% tau_m = membrane time constant [e.g. 10 ms]
% R_m = membrane resistance [e.g. 10 MOhm]
% I_e = external input [e.g. white
noise]
% dt = time step [e.g. 0.1 ms]
% n = number of time points [e.g. 1000]
%
% returns
% V = intracellular voltage [n x 1]
% spk = 0 or 1 indicating spikes [n x 1]

V(1)=V_res; % initial voltage
spk=zeros(n,1);
for t=2:n
 V(t)=V(t-1)+(dt/tau_m) * (E_L - V(t-1) + R_m *
I_e(t)); % Key line computing the change in
voltage at time t
 if (V(t)>V_th)
% Emit a spike if V is above threshold
 V(t)=V_res;
% And reset the voltage
 spk(t)=1;
 end
end

Interlude:	MATLAB	is	easy	

function [V,spk]=simpleiandf(E_L,V_res,V_th,tau_m,R_m,I_e,dt,n)

% ultra-simple implementation of integrate-and-fire model
% inputs:
% E_L = leak potential [e.g. -65 mV]
% V_res = reset potential [e.g. E_L]
% V_th = threshold potential [e.g. -50 mV]
% tau_m = membrane time constant [e.g. 10 ms]
% R_m = membrane resistance [e.g. 10 MOhm]
% I_e = external input [e.g. white noise]
% dt = time step [e.g. 0.1 ms]
% n = number of time points [e.g. 1000]
%
% outputs:
% V = intracellular voltage [n x 1]
% spk = 0 or 1 indicating spikes [n x 1]

V(1)=V_res; % initial voltage
spk=zeros(n,1);
for t=2:n
 V(t)=V(t-1)+(dt/tau_m) * (E_L - V(t-1) + R_m * I_e(t)); % Change in voltage at time t
 if (V(t)>V_th) % Emit a spike if V is above threshold

 V(t)=V_res; % And reset the voltage
 spk(t)=1;
 end
end

All of these lines are comments

This is the key line integrating the
differential equation

�

C dV(t)
dt

= − V(t)
R

+ I(t)

The	Hodgkin-Huxley	Model	

)()()()(34
NaNaKKLL EVhmgEVngEVg

dt
dVCtI −+−+−+=

where:
im = membrane current
V = voltage

L = leak channel
K = potassium channel
Na = sodium channel

g = conductances (e.g. gNa=120 mS/cm2; gK=36 mS/cm2; gL=0.3 mS/cm2)
E = reversal potentials (e.g. ENa=115mV, EK=-12 mV, EL = 10.6 mV)
n, m, h = “gating variables”, n=n(t), m=m(t), h=h(t)

Hodgkin, A. L., and Huxley, A. F. (1952).
A quantitative description of membrane current and its application to conduction and excitation in nerve.

Journal of Physiology 117, 500-544.

The	Hodgkin-Huxley	Model	
% Gabbiani & Cox, Mathematics for Neuroscientists
% clamp.m
% Simulate a voltage clamp experiment
% usage: clamp(dt,Tfin)
% e.g. clamp(.01,15)

function clamp(dt,Tfin)
vK = -6; % mV
GK = 36; % mS/(cm)^2
vNa = 127; % mV
GNa = 120; % mS/(cm)^2
for vc = 8:10:90,
 j = 2;t(1) = 0;v(1) = 0;
 n(1) = an(0)/(an(0)+bn(0)); % 0.3177;
 m(1) = am(0)/(am(0)+bm(0)); % 0.0529;
 h(1) = ah(0)/(ah(0)+bh(0)); % 0.5961;
 gK(1) = GK*n(1)^4;
 gNa(1) = GNa*m(1)^3*h(1);
 while j*dt < Tfin,
 t(j) = j*dt;
 v(j) = vc*(t(j)>2)*(t(j)<Tfin);
 n(j) = (n(j-1) + dt*an(v(j)))/(1 + dt*(an(v(j))
+bn(v(j))));
 m(j) = (m(j-1) + dt*am(v(j)))/(1 + dt*(am(v(j))
+bm(v(j))));
 h(j) = (h(j-1) + dt*ah(v(j)))/(1 + dt*(ah(v(j))
+bh(v(j))));
 gK(j) = GK*n(j)^4;
 gNa(j) = GNa*m(j)^3*h(j);
 j = j + 1;
 end
 subplot(3,1,1); plot(t,v); hold on
 subplot(3,1,2); plot(t,gK); hold on
 subplot(3,1,3); plot(t,gNa); hold on
end
 subplot(3,1,1);ylabel('v','fontsize',16);hold off
subplot(3,1,2);ylabel('g_K','fontsize',16);hold off
subplot(3,1,3);xlabel('t (ms)','fontsize',
16);ylabel('g_{Na}','fontsize',16);hold off

function val = an(v)
val = .01*(10-v)./(exp(1-v/10)-1);
function val = bn(v)
val = .125*exp(-v/80);
function val = am(v)
val = .1*(25-v)./(exp(2.5-v/10)-1);
function val = bm(v)
val = 4*exp(-v/18);
function val = ah(v)
val = 0.07*exp(-v/20);
function val = bh(v)
val = 1./(exp(3-v/10)+1);

Simulated voltage-clamp experiments of Hodgkin and
Huxley (1952). From Gabbiani and Cox 2010.

OUTLINE	

1.  Why	build	computational	models?	
2.  Single	neuron	models	
3.   Network	models	
4.  Algorithms	and	methods	for	data	analysis	

From	neurons	to	circuits	

• Single	 neurons	 can	 perform	 many	 interesting	 and	 important	
computations	 (e.g.	 Gabbiani	 et	 al	 (2002).	 Multiplicative	 computation	 in	 a	 visual	 neuron	
sensitive	to	looming.	Nature	420,	320-324)	

• Neurons	 are	 not	 isolated.	 They	 are	 part	 of	 circuits.	 A	 typical	
cortical	neuron	receives	input	from	~104	other	neurons.	

• It	is	not	always	trivial	to	predict	circuit-level	properties	from	single	
neuron	properties.	There	could	be	interesting	properties	emerging	
at	the	network	level.	

Circuits	–	some	basic	definitions	

Notes:	
1.  Connectivity	does	not	need	to	be	all-to-all	
2.  There	are	excitatory	neurons	and	inhibitory	neurons	(and	many	types	of	inhibitory	neurons)	
3.  Most	models	assume	balance	between	excitation	and	inhibition	
4.  Most	models	do	not	include	layers	and	the	anatomical	separation	of	forward	and	back	pathways	
5.  There	are	many	more	recurrent+feedback	connections	than	feed-forward	connections	(the	

opposite	is	true	about	models…)	

Firing	rate	network	models	–	A	simple	feedforward	circuit	

•  Time	scales	>	~	1	ms	
•  Analytic	calculations	in	

some	cases	
•  Fewer	free	parameters	

than	spiking	models	
•  Easier/faster	to	

simulate	

Is = wb dτKs(t − τ)ub (τ)−∞

t∫
b=1

N

∑

τ s
dIs
dt

= −Is + wbub
b=1

N

∑

Ks(t) = (1/τ s)exp(−t /τ s)

Is = total synaptic current
N = total number of inputs
wb = synaptic weights
Ks(t) = synaptic kernel
ub = input firing rates

if

)(sIFv =

+−=][)(γss IIF

F can be a sigmoid function
Or a threshold linear function:

Learning	from	examples	–	The	perceptron	

Imagine that we want to
classify the inputs u into two
groups “+1” and “-1”

w→ w +


2
vm − v(um)()um Perceptron learning rule

Training examples: {um,vm}

Linear separability: can attain zero error
Cross-validation: use separate training and test data
There are several more sophisticated learning algorithms

Learning	from	examples	–	Gradient	descent	

Now imagine that v is a real
value (as opposed to binary)

u = f (s)

v(s) = w.u

We want to choose the weights
so that the output approximates
some function h(s)

w→ w + ε∇wE ∇wE =
∂E
∂wb

⎡

⎣
⎢

⎤

⎦
⎥

E =
1
2

h(sm) − v(sm)()2
m=1

NS

∑

Example:	digit	recognition	in	a	feed-forward	network	
trained	by	gradient	descent	

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to document
recognition. Proc of the IEEE 86:2278-2324.

Example of hand-
written digits
(MINT database)

Classification error rates Misclassified examples

The	“blue	brain”	modeling	project	

- http://bluebrain.epfl.ch

-  IBM’s Blue gene supercomputer

-  “Reverse engineer” the brain in a “biologically accurate” way

-  November 2007 milestone: 30 million synapses in “precise” locations to model
a neocortical column

-  Compartmental simulations for neurons

-  Needs another supercomputer for visualization (10,000 neurons, high quality
mesh, 1 billion triangles, 100 Gb)

QUESTION: What is the “right” level of abstraction needed to understand
the function of cortical circuitry?

A	case	study	in	collective	computation	

Hopfield, J. J. 1982. Neural networks and physical systems with emergent
collective computational abilities. PNAS 79:2554-2558.
Tank, D., and J. Hopfield. 1987. Collective computation in neuron-like circuits.
Scientific American 257:104-114

Primer	on	Hopfield	networks	

Hopfield. Hopfield Networks. Scholarpedia

OUTLINE	

1.  Why	theoretical	neuroscience?	
2.  Single	neuron	models	
3.  Network	models	
4.   Algorithms	and	methods	for	data	analysis	

Some	examples	of	computational	algorithms	and	methods	

•  Different	techniques	for	time-frequency	analysis	of	neural	signals	(e.g.	Pesaran	
et	al	2002,	Fries	et	al	2001)	

•  Spike	sorting	(e.g.	Lewicki	1998)	

•  Machine	learning	approaches	to	decoding	neuronal	responses	(e.g.	Hung	et	al	
2005,	Wilson	et	al	1993,	Musallam	et	al	2004)	

•  Information	theory	(e.g.	Abbott	et	al	1996,	Bialek	et	al	1991,)	

•  Neural	coding	(e.g.	Gabbiani	et	al	1998,	Bialek	et	al	1991)	

•  Definition	of	spatio-temporal	receptive	fields,	phenomenological	models,	
measures	of	neuronal	synchrony,	spike	train	statistics	

Further	reading	

	
• Abbott	 and	 Dayan.	 Theoretical	 Neuroscience	 -	 Computational	 and	
Mathematical	 Modeling	 of	 Neural	 Systems	 [2001]	 (ISBN	
0-262-04199-5).	MIT	Press.	
• Koch.	 Biophysics	 of	 computation	 [1999]	 (ISBN	 0-19-510491-9).	
Oxford	University	Press.		
• Hertz,	 Krogh,	 and	 Palmer,	 Introduction	 to	 the	 theory	 of	 neural	
computation.	[1991]	(ISBN	0-20151560-1).	Santa	Fe	Institute	Studies	
in	the	Sciences	of	Complexity.		
• Gabbiani	 and	 Cox.	 [2010].	 Mathematics	 for	 Neuroscientists	
(London:	Academic	Press).	

