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CBMM'’s main goal is
the Science and the Engineering of Intelligence

We aim to make progress in understanding intelligence — that Is
iIn understanding how the brain makes the mind, how the brain
works and how to build intelligent machines. We believe that
the science of intelligence
will enable better
engineering of intelligence.
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CBMM: the science of intelligence

Key recent advances
In the engineering of intelligence
have their roots
INn basic research on the brain
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U5y The same hierarchical architectures in the cortex, in
models of vision and in Deep Learning networks

MSRA (2015) - 4.94%

+ Spdatial pyramid pooling

= Opfimized PRelV

+ Improved (random) initialization

GoogleNet (2014) - 6.67%

* Inception module

* Multi-scale convolutions (incl
* Minlmal dense layers

+ Auxiliary classifiers
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Convolutional networks

f‘Hube\—Wiese\” models
iINcluge

Hubel & Wiesel, 1959:
Fukushima, 1980, Wallis &
Rolls, 1997: Mel, 1997 ;

c2b LeCun et al 1998:;
Riesenhuber & Poggio,
-— 1999; Thorpe, 2002; Ullman

et al., 2002; Wersing and
Koerner, 2003; Serre et al.,
2007 Freeman and
Simoncelli, 2011....
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Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu
Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007



Using goal-driven deep learning models to understand
sensory cortex

Daniel L K Yamins!2 & Tames I DiCarlal:2

a Encoding Decoding
Stimulus » Neurons » Behavior
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Spatial convolution

over image input :

Operations in linear-nonlinear layer
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Deep nets architecture

Rectified linear unit (RelLU)
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Deep nets training: stochastic gradient descent
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A theory of Deep Learning

* When and why are deep networks better than
shallow networks?

* What is the landscape of the empirical risk”?

* How can deep learning generalize so well?

Masker, Poggio et al, 2017
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DLNNSs: three main scientific questions

Approximation theory: when and why are deep networks
better than shallow networks?

Optimization: what is the landscape of the empirical risk”

Generalization by SGD: how can overparametrized networks
generalize?

Work with Hrushikeshl Mhaskar:
initial parts with L. Rosasco and F. Anselmi



Theory I:
Why and when are deep networks better than shallow networks?

f(xl ,X2 9°°°9x8) — g3(g21 (gll(xl 9-x2)9g12 (x3 ,X4 ))g22 (gll(x5 9x6)9g12 (X7 9x8 )))

r //f\ //. \\\
g(x)= ch. <w,,x>+b. ) //% \N\\ ,\ y \/.\
i=1 SN . |
/NN VNN
vy RN AA AN A
S R N NN /N / N / N\ / \

X{ X, X3 X5 Xc X¢g X7 Xg X1 X2 X3 X4 X5 Xe X7 Xg

Theorem (informal statement)

Suppose that a function of d variables is compositional . Both shallow and deep network can approximate f equally well.

The number of parameters of the shallow network depends exp_%nentially on d as O(S_d)vvith the dimension whereas
for the deep network dance is dimension independent, i.e. O(€ 7)
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Theory ll;

Theorem (informal statement)

The system of equations for zero empirical
error have a very large number of
degenerate solutions. Thus there are
many zero-minimizers which in the case of
classification have a flat non-zero region
In all dimensions, that iIs have a non-zero
margin and are degenerate.
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What is the Landscape of the empirical risk?

Layer 5, Numbers are training errars
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Theory lll;
How can the underconstrained solutions found by SGD generalize?

Theorem (informal statement)

SGD finds with very high probability degenerate zero-minimizers with large
margin. Bounds In terms of margin and Radamacher averages show that
generalization is better if the margin is larger.
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Classical learning theory and Kernel Machines
(Regularization in RKHS)

)

min 2 V() -y)+h 7]

implies

f0) =Y, 0K(xx,)

Equation includes splines, Radial Basis Functions and Support Vector

Machines (depending on choice of V).

RKHS were explicitly introduced in learning theory by Girosi (1997), Vapnik (1998).
Moody and Darken (1989), and Broomhead and Lowe (1988) introduced RBF to learning theory. Poggio and

Girosi (1989) introduced Tikhonov regularization in learning theory and worked (implicitly) with RKHS. RKHS
were used earlier in approximation theory (eg Parzen, 1952-1970, Wahba, 1990). Mhaskar, Poggio, Liao, 2016
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Classical kernel machines are equivalent to shallow networks

Kernel machines...

f(x) =S eK(xx,)+b

can be “written” as shallow networks: th
value of K corresponds to the “activity” of
the “unit” for the input and the
correspond to “weights”

@ Ec;ntcr for Brains,
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Deep and shallow networks: universality

Theorem Shallow, one-hidden layer networks with a nonlinear ¢(x) which

15 not a polynomaal are universal. Arbitrarily deep networks with a nonlinear
o(x) (mncluding polynomaials) are universal.
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Cybenko, Girosi, ....



Theory I:
Why and when are deep networks better than shallow networks?
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Definition Compositionality

Mhaskar, Poggio, Liao, 2016



Microstructure of compositionality
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Theorem 3. Let G be a DAG,n be the number of source nodes,
and for each v € V, let d,, be the number of in-edges of v. Let

f : R™ — R be a compositional G-function, where each of the con-

stitutent function is in WSy . Consider shallow and deep networks

with infinitely smooth activation function as in Theorem 1. Then
deep networks — with an associated graph that corresponds to the
graph of f — avoid the curse of dimensionality in approximating f
for increasing n, whereas shallow networks cannot directly avoid
the curse. In particular, the complexity of the best approximating

shallow network is exponential in n

N, = O(e ™), (9)
where m = minvcv mo, while the complexity of the deep network
IS

Ng = O(Z e—d”/m"). (10)
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The curse of dimensionality and
3 blessings of compositionality

' Center for Brains,
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3 blessings of compositionality

* low dim of constituent functions h
* high smoothness of some of the h

* sharing across tasks of K in F= H K for better generalization

£ Center for Brains,
Hip=va Minds & Machines



hii(zy,22) = (221 + 3:1:2)4

ha(hi1, hi2) = \/4hy1 + 5hys

X, X, X3 X,

X, X, X; X,
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CIFAR
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Panel topics

* mathematical foundations for Deep Learning
* neuroscience plausibility

» epistemology
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