
INSIGHTS   |   PERSPECTIVES

sciencemag.org  SCIENCE

By Shimon Ullman

W
hen the mathemati-
cian Alan Turing posed 
the question “Can ma-
chines think?” in the 
first line of his seminal 
1950 paper that ush-

ered in the quest for artificial intelligence 
(AI) (1), the only known systems carrying 
out complex computations were biological 
nervous systems. It is not surprising, there-
fore, that scientists in the nascent field of 
AI turned to brain circuits as a source for 
guidance. One path that was taken since 
the early attempts to perform intelligent 
computation by brain-like circuits (2), and 
which led recently to remarkable successes, 
can be described as a highly reductionist 
approach to model cortical circuitry. In its 
basic current form, known as a “deep net-
work” (or deep net) architecture, this brain-
inspired model is built from successive 
layers of neuron-like elements, connected 
by adjustable weights, called “synapses,” 
after their biological counterparts (3). The 
application of deep nets and related meth-
ods to AI systems has been transformative. 
They proved superior to previously known 
methods in central areas of AI research, 
including computer vision, speech recogni-
tion and production, and playing complex 
games. Practical applications are already 
in broad use, in areas such as computer vi-
sion and speech and text translation, and 
large-scale efforts are under way in many 
other areas. Here, I discuss how additional 
aspects of brain circuitry could supply cues 
for guiding network models toward broader 
aspects of cognition and general AI.

The key problem in deep nets is learning, 
which is the adjustment of the synapses to 
produce the desired outputs to their input 
patterns. The adjustment is performed au-
tomatically based on a set of training exam-
ples, which are provided by input patterns 
coupled with their desired outputs. The 
learning process then adjusts the weights 
to produce the desired outputs to the train-

ing input patterns. Successful learning will 
cause the network to go beyond memoriz-
ing the training examples, and be able to 
generalize, and provide correct outputs to 
new input patterns, which were not en-
countered during the learning process.

Comparisons of deep network models 
with empirical physiological, functional 
magnetic resonance imaging, and behav-
ioral data have shown some intriguing simi-
larities between brains and the new models 
(4), as well as dissimilarities (5) (see the 
figure). In comparisons with the primate 
visual system, similarities between physi-
ological and model responses were closer 
for the early compared with later parts of 
the neuronal responses, suggesting that the 
deep network models may capture better 
the early processing stages, compared with 
later, more cognitive stages.

In addition to deep nets, AI models re-
cently incorporated another major aspect 
of brain-like computations: the use of re-
inforcement learning (RL), where reward 
signals in the brain are used to modify 
behavior. Brain mechanisms involved in 
this form of learning have been studied 
extensively (6), and computational models 
(7) have been used in areas of AI, in par-
ticular in robotics applications. RL is used 
in the context of an agent (a person, ani-
mal, or robot) behaving in the world, and 
receiving reward signals in return. The 
goal is to learn an optimal “policy,” which 
is a mapping from states to actions, so as to 
maximize an overall measure of the reward 
obtained over time. RL methods have been 
combined in recent AI algorithms with deep 
network methods, applied in particular to 
game playing, ranging from popular video 
games to highly complex games such as 
chess, Go, and shogi. Combining deep nets 
with RL produced stunning results in game 
playing, including convincing defeats of the 
world’s top Go players, or reaching a world-
champion level in chess after ~4 hours of 
training, starting from just the rules of the 
game, and learning from games played in-
ternally against itself (8).

From the standpoint of using neurosci-
ence to guide AI, this success is surpris-
ing, given the highly reduced form of the 

network models compared with cortical 
circuitry. Some additional brain-inspired 
aspects, for example, normalization across 
neuronal groups, or the use of spatial at-
tention, have been incorporated into deep 
network models, but in general, almost 
everything that we know about neurons—
their structure, types, interconnectivity, and 
so on—was left out of deep-net models in 
their current form. It is currently unclear 
which aspects of the biological circuitry are 
computationally essential and could also be 
useful for network-based AI systems, but 
the differences in structure are prominent. 
For example, biological neurons are highly 
complex and diverse in terms of their mor-
phology, physiology, and neurochemistry. 
The inputs to a typical excitatory pyrami-
dal neuron are distributed over complex, 
highly branching basal and apical dendritic 
trees. Inhibitory cortical neurons come in 
a variety of different morphologies, which 
are likely to perform different functions. 
None of this heterogeneity and other com-
plexities are included in typical deep-net 
models, which use instead a limited set of 
highly simplified homogeneous artificial 
neurons. In terms of connectivity between 
units in the network, cortical circuits in the 
brain are more complex than current deep 
network models and include rich lateral 
connectivity between neurons in the same 
layer, by both local and long-range connec-
tions, as well as top-down connections go-
ing from high to low levels of the hierarchy 
of cortical regions, and possibly organized 
in typical local “canonical circuits.”

The notable successes of deep network–
based learning methods, primarily in prob-
lems related to real-world perceptual data 
such as vision and speech, have recently been 
followed by increasing efforts to confront 
problems that are more cognitive in nature. 
For example, in the domain of vision, net-
work models were developed initially to deal 
with perceptual problems such as object clas-
sification and segmentation. Similar meth-
ods, with some extensions, are now being 
applied to higher-level problems such as im-
age captioning, where the task is to produce a 
short verbal description of an image, or to the 
domain of visual question answering, where 
the task is to produce adequate answers to 
queries posed in natural language (that is, 
human communication) about the content 
of an image. Other, nonvisual tasks include 
judging humor, detecting sarcasm, or captur-
ing aspects of intuitive physics or social un-
derstanding. Similar methods are also being 
developed for challenging real-world applica-
tions such as online translation, flexible per-
sonal assistants, medical diagnosis, advanced 
robotics, or automatic driving.

With these large research efforts, and the 
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huge funds invested in future AI applica-
tions, a major open question is the degree 
to which current approaches will be able to 
produce “real” and human-like understand-
ing, or whether additional, perhaps radi-
cally different, directions will be needed to 
deal with broad aspects of cognition, and 
artificial general intelligence (AGI) (9, 10). 
The answers to this question are unknown, 
and the stakes are high, both scientifically 
and commercially.

If the success of current deep network 
models in producing human-like cognitive 
abilities proves to be limited, a natural place 
to look for guidance is again neuroscience. 
Can aspects of brain circuitry, overlooked 
in AI models so far, provide a key to AGI? 
Which aspects of the brain are likely to be 

particularly important? There are at pres-
ent no obvious answers, because our under-
standing of cortical circuitry is still limited, 
but I will briefly discuss a general aspect by 
which brains and deep network models ap-
pear to be fundamentally different and that 
is likely to have an important functional role 
in the quest for human-like AGI. The differ-
ence centers on the age-old question about 
the balance between empiricism and nativ-
ism in cognition, namely, the relative roles 
of innate cognitive structures and general 
learning mechanisms. Current AI modeling 
leans heavily toward the empiricist side, us-
ing relatively simple and uniform network 
structures, and relying primarily on ex-
tended learning, using large sets of train-
ing data. By contrast, biological systems 
often accomplish complex behavioral tasks 

with limited training, building upon spe-
cific preexisting network structures already 
encoded in the circuitry prior to learning. 
For example, different animal species, in-
cluding insects, fish, and birds, can perform 
complex navigation tasks relying in part on 
an elaborate set of innate domain-specific 
mechanisms with sophisticated computa-
tional capabilities. In humans, infants start 
to develop complex perceptual and cognitive 
skills in the first months of life, with little 
or no explicit training. For example, they 
spontaneously recognize complex objects 
such as human hands, follow other peoples’ 
direction of gaze, and distinguish visually 
whether animated characters are helping 
or hindering others, and a variety of other 
tasks, which exhibit an incipient under-

standing of physical and social interactions. 
A large body of developmental studies have 
suggested that this fast, unsupervised learn-
ing is possible because the human cognitive 
system is equipped, through evolution, with 
basic innate structures that facilitate the ac-
quisition of meaningful concepts and cogni-
tive skills (11, 12).

The superiority of human cognitive 
learning and understanding compared with 
existing deep network models may largely 
result from the much richer and complex 
innate structures incorporated in the hu-
man cognitive system. Recent modeling of 
visual learning in infancy (13) has shown a 
useful combination of learning and innate 
mechanisms, where meaningful complex 
concepts are neither innate nor learned on 
their own. The innate components in this 

intermediate view are not developed con-
cepts, but simpler “proto concepts,” which 
provide internal teaching signals and guide 
the learning system along a path that leads 
to the progressive acquisition and organiza-
tion of complex concepts, with little or no 
explicit training. For example, it was shown 
how a particular pattern of image motion 
can provide a reliable internal teaching 
signal for hand recognition. The detection 
of hands, and their engagement in object 
manipulation, can in turn guide the learn-
ing system toward detecting direction of 
gaze, and detecting gaze targets is known 
to play a role in learning to infer people’s 
goals (14). Such innate structures could be 
implemented by an arrangement of local 
cortical regions with specified initial con-
nectivity, supplying inputs and error signals 
to specific targets.

Useful preexisting structures could also be 
adopted in artificial network models to make 
their learning and understanding more hu-
man-like. The challenge of discovering use-
ful preexisting structures can be approached 
by either understanding and mimicking re-
lated brain mechanisms, or by developing 
computational learning methods that start 
“from scratch” and discover structures that 
support an agent, human or artificial, that 
learns to understand its environment in an 
efficient and flexible manner. Some attempts 
have been made in this direction (15), but 
in general, the computational problem of 
“learning innate structures” is different from 
current learning procedures, and it is poorly 
understood. Combining the empirical and 
computational approaches to the problem is 
likely to benefit in the long run both neuro-
science and AGI, and could eventually be a 
component of a theory of intelligent process-
ing that will be applicable to both. j
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Brain circuitry and learning 
A major open question is whether the highly simpli�ed structures of current network models compared with 
cortical circuits are su�cient to capture the full range of human-like learning and cognition.

Input
layer

Adjustable synapse Output
layer1 2 3

Complex neural network
Connectivity in cortical networks includes rich sets 
of connections, including local and long-range 
lateral connectivity, and top-down connections 
from high to low levels of the hierarchy.

Informed AI network
Biological innate connectivity patterns provide 
mechanisms that guide human cognitive learning. 
Discovering similar mechanisms, by machine learning or 
by mimicking the human brain, may prove crucial for 
future arti�cial systems with human-like cognitive abilities.
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