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Artificial Intelligence versus Human 
Intelligence
• Understanding intelligence -how we may be able to replicate 

intelligence in machines, and how the brain produces 
intelligent behavior- is one of the greatest challenges in 
science and technology. 

• There are many aspects of human intelligence which have been 
impossible so far to replicate in artificial intelligent systems.   
• As a trivial example, humans need a remarkably small amount 

of training to learn to perform a new pattern recognition task 
compared to state-of-the-art artificial intelligence systems. 



Goal of my Research
• To develop computer vision systems with the same abilities as biological 

systems. 
• Humans can learn from a few examples, with very weak supervision, can 

adapt to unknown factors like occlusion, can generalize from objects we 
know to objects which we do not. 

• Deep Nets are very effective and there is a lot of low hanging fruit to be 
plucked by using them. 

• But is the primate Ventral Stream a Deep Net?  
• It is certainly deep, but much smarter than any existing Deep Net. 
• Deep Nets may be part of the solution but we need richer Deep Architectures. 



Plan of the talk
• (I) Project 0: Adversarial Noise. Attacking Deep Nets.  
• (II) Project I: Parts, Voting, and Occlusion. 
• (III) Project 2: Perceptual Similarity Learning, including Tufa’s.



Adversarial Noise (AN)
• Imperceptible amounts of noise can drastically alter 

performance of deep nets for object classification – (C. 
Szegedy et al. 2013). 
• Adversarial noise also applies to object detection and semantic 

segmentation. (C. Xie et al. Arxiv. 2017). Adversaries can be 
transferred across networks and even some tasks.



AN for Semantic Segmentation and 
Detection
• AN can turn: Dogs into Cows,  
   Train into an Airplane with shape ICCV 
   Blank Image into a Bus with shape 2017



Adversarial Context
• A motorbike turns a monkey into a human. 
• A bike turns a monkey into a human &  
   the jungle turns the bike handle into a bird. 
• A guitar turns the monkey into  a human & 
  the jungle turns the guitar into a bird.



Project I: Parts, Voting, and Occlusion
• Can we learn part models in a weakly supervised manner and 

use them to outperform supervised methods for part detection? 
• Not yet. But how far can we get? 
• Make this more interesting by adding occlusion. 
• Why do this?  
• (A) Supervised labeling of object parts is expensive and time-

consuming. 
• (B) Humans require little supervision. 
• (C) Gives insight into Deep Nets. Develop new deep 

architectures based on compositionality.



Deep Nets and Parts.
• Deep Nets seem to represent parts of objects.  
• This was first demonstrated by visualization studies of single 

filters/neurons (M. D. Zeiler and R. Fergus. ECCV. 2014).  
• It was shown quantitatively in (B. Zhou et al. ICLR. 2015). 

• We studied population encoding of parts in Deep Nets to obtain 
unsupervised part detectors.  
• We compared them  to single filter detectors and SVM 

supervised methods. (J. Wang et al. arxiv. 2015).



Methods

• Use Deep Nets trained for object classification on ImageNet. 
• Observe feature responses of the Deep Nets applied to objects 

of fixed size from PASCAL 3D+ (Cars, Planes, Bikes,…). 
• Cluster the features responses using k-means. Call the cluster 

centers “visual concepts”. 
• Visualize the cluster centers by seeing which image patches 

correspond to them (those image patches whose feature 
vectors are assigned to the cluster). See top right.



Findings: Visualize tightness
• The clusters – visual concepts  -- are extremely tight 

perceptually. 
• Show best 6, random 6 from best 500, mean edge, mean 

intensity.



Findings: Visualize coverage

• The visual concepts (VCs) cover most of the object. 
• Here are 44 (out of 170) VCs for cars.



Visual Concepts as Part Detectors. 
• Build a simple part detector – threshold the distance between Deep Net 

features vector and visual concept. 
• Detect part if the population activity of deep network features is close 

to a visual concept. 
• Compare to a detector based on single filters/neurons and with 

supervised methods (Support Vector Machine using  Deep Net features). 
• Correspondence problem – compare visual concepts with all parts on 

objects. 
• Evaluate using datasets with ground truth. 
. 



Dataset 1: Keypoints in PASCAL3D+
• Keypoints (10-15) in PASCAL3D+.  
• Keypoints are colored circles (below). 
• But keypoints are sparse and VC’s give 
   dense coverage (right).



Dataset 2:  Semantic Part Annotations.
• We labelled PASCAL 3D+ with semantic parts.



Findings: Visual Concepts as Detectors. 
• Results for Keypoints and Semantic Parts in PASCAL3D+. 
• (I) The visual concepts are better than single neurons.  
• (II) the visual concepts do worse, but not too much worse, than 

supervised methods – Support Vector Machines (SVMs) using 
features from Deep Nets. 
• Why?  
• (I) The SVMs have more information (i.e. supervision). 
• (II) Some visual concepts respond well to several (1,2, or 3) 

semantic parts. The evaluation penalizes these as false positives. 
• (II) Several visual concepts respond well to the same semantic part.



Summary of Visual Concepts as Detectors
• The visual concepts perform well as unsupervised part 

detectors. 
• They are beaten by supervised methods, but not badly. 

• They give some insight into part representations in Deep Nets. 
• They are visually very tight. 

• But can we do better by combining them? Intuitively, visual 
concepts capture subparts of the parts.



Project 2. Combining visual concepts by 
voting
• VC-Voting: use a composition of visual concepts to vote for 

detecting parts. 
• Each VC votes is based on: (i) the confidence that the VC has been 

detected (project 1), (ii) the relative spatial positions of the VC. 
• VC-voting is not fully unsupervised because we specify which 

visual concepts can be used for each part (we are relaxing this 
cheat). 
• But we now compare to the toughest opponent: Deep Nets trained 

directly for part detection. 
• J. Wang et al. Arxiv. 2016. 



VC-Voting: Visual Concepts for Wheel 
Detection
• Green circles denote visual concepts which are detected. 
• Each visual concept has a vote (log-likelihood ratio), the 

spatial heatmap give the relative spatial locations.



Occlusion  makes the tasks more 
challenging
• Most real world objects are partly occluded.  
• It can be shown – e.g., monkey with guitar -- that Deep Nets  

for object detection are sensitive to occlusion.  
• Voting methods are less sensitive to occlusion because they are 

robust if some visual concepts are missing. 
• Compare Deep Nets with VC-Voting. 
• We do not use occlusion when training the Deep Nets or VC-

Voting. We want to see how the methods adapt to stimuli that 
they have not  been exposed to. 
• Goal: Train on a few images, test on an infinite set.



The Occlusion Dataset
• Create dataset by introducing occlusions at random. 
• Red, blue, and yellow boxes are fully-occluded, partially-occluded, 

and non-occluded respectively. 
• Green and red circles indicate 
  which visual concepts are detected 
  or missing. 
• Note: voting can detect a part from 
   context even if the part itself is 
   occluded. 
  



Findings: detecting parts without occlusion.

• VC-Voting is slightly worse than Deep Nets trained for this task. 
Better on Bikes and Motor-Bikes., worse on Planes and Trains. 
• VC-Voting is much better than SVM on deep features (project 

1). 
• Our method uses far less information – only uses a small part of 

the feature space.



Findings: detecting parts with occlusion
• Our voting method outperforms Deep Nets as the amount of occlusion 

increases. 

• VC-Voting works very well for most parts, but fails badly on a few. 
• Other technical issues, e.g., part proposals.



Project 1: Conclusion
• Claim: Simple intuitive methods  based on composition can 

perform as well as Deep Nets for some tasks and be more 
adaptive to unforeseen factors like occlusion. 
• Belief: this can help design much more effective Deep 

Architectures with Human-like capabilities. 

• Human performance – preliminary psychophysical studies show 
that human performance on object/part detection is superior 
to Deep Nets and also to VC-Voting – so there is more to do.



Project 2: Similarity Perception of Novel 
Objects.
• Humans can perform similarity judgments on novel objects. E.g, Tufa’s. 
• Humans learn from image sequences -- i.e., observe an object from 

several viewpoints and know that it is the same, even if we do not 
know what its name is. Object Persistence (OP). 
• Our goal: use a Deep Net – specifically a Siamese-Triplet Net – to learn 

similarity judgments. Train on different views of the same object, test 
on novel objects. 
• Note – it is very hard to find objects that adults, or even young 

children, have never seen before. Presumably a lot of learning can 
bootstrap from known objects. Why researchers in the 90’s had to test 
on paperclips. 
• X. Lin et al. ICLR 2017.



Siamese-Triplet Nets
• These were developed to perform similarity judgments – 

originally for signature verification (Bromley et al. 1993). 
• Researchers have used them, on image sequences, to learn Deep 

Net features without class label supervision (e.g., Wang & Gupta 
2015). 
• Siamese-Triplet Nets consist of three Deep Nets which combine 

to give a binary result – similar or non-similar. 
• We train ours using object persistence – an image sequence gives 

us different views of the same object – so we call it OPnet. 
• We train on known objects and test on unknown objects.



Siamese-Triplet Network

• Training (upper panel) and testing (lower panel). 
• The lower panel shows similarity scores given by our OPnet. 
• Different views of the same object are  the most similar, followed by 

different objects in the same category, and finally objects belonging to 
different categories.



Training Data
• Train on a subset of ShapeNet (Chang et al. 2015).  These are 

3D object models, e.g., cars and chairs, which are rendered 
from different viewpoints. 
• Select 7,000 3D object models belonging to 55 categories. For 

each model, render 12 different views by rotating the cameras 
along the equator from a 30◦ elevation angle and taking photos 
of the object at 12 equally separated azimuthal angles.  
• For training, sample 200 object models from 29 categories of 

ShapeNet. 



Testing Data
• We test on novel objects from ShapeNet, Pokemon, Synthetic, & Tufa’s. 

This tests transfer to objects which have not been seen before. 
• Novel instance: Created by rendering additional 20 novel objects from 

each of the 29 categories used in training the OPnet.  
• Novel category: Created by rendering objects from 26 untrained 

categories. This is a more challenging test of the transfer of view-
manifold learning to novel categories.  
• Pokemon. 438 CAD models of Pokemon from an online database. 
• Synthetic. Textureless objects with completely novel shapes. The dataset 

consists of 5 categories, with 10 instances for each category. 
• Tufa’s. Objects from Tenenbaum et al. (2011), where ground truth is 

based on human similarity judgments.



Findings: Object Retrieval
• Similarity Learning transfers across datasets. 
• In the object instance retrieval task, for each image P 

containing object O of category C in the test set, the network 
is asked to rank all other images in C, such that images for O 
should have higher similarity score than images for other 
objects in C. 



Findings:
• Comparisons.



Findings: Novel Categories.
• Deep Net has the advantage of category knowledge. 
• But OPnet does almost as well despite not using category 

knowledge. 



Comparison to Human Similarity Judgments

• Using the novel objects from Tenenbaum et al. (2011), we are 
able to compare our networks with human similarity perception. 
We collect 41 images from the paper, one image per object. 
• A pairwise similarity matrix is calculated based on the cosine 

distance of their feature representations. We then perform 
hierarchical agglomerative clustering to obtain a tree structure, 
merging the two clusters with shortest distance successively to 
construct the tree.  
• Compare the results with human perception. And with 

hierarchical clustering using AlexNet features.



Findings: Comparison with Humans.

• Hierarchical clustering of the alien objects, based on (a) 
human perception, (b) AlexNet features and (c) OPnet 
features.  
• Spearman Correlation: 0.460 with AlexNet, 0.659 with OPnet.



Project 2: Conclusion
• Our Siamese-Triplet network – OPnet –exploits the object 

persistence constraint and shows transference of similarity 
judgments to novel objects.  
• OPnets performs well, significantly outperforming AlexNet, and 

also performs well when compared to human perception 
judgments. 

• It seems plausible that object persistence – learning an object 
using different viewpoints – is an effective way of learning that 
has some biologically plausibility.



Conclusion
• Although Deep Nets are very good they are not yet able to 

capture human performance.  
• Humans can learn from sequences, from small numbers of 

examples, by transferring knowledge from other objects, and 
can adapt to occlusion. 
• Studying human/primate behaviorally gives benchmarks against 

which to test computer vision systems. Neuroscience can yield 
insight and suggest architectures. 
• Deep Nets are great, but we really need Deep Architectures 

based on compositional models. 
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