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Convolution as Toeplitz matrix

For experts: even a convolution 
operation can be recast as matrix 
multiplication: 

https://stackoverflow.com/questions/48768555/toeplitz-matrix-with-an-image
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Norms

A function that measures the “size” of a vector is called a norm. 

The 𝐿𝑝 norm us given by

More generally, the norm has to satisfy the following:
• 𝑓 𝑥 = 0 ⇒ 𝑥 = 0
• 𝑓 𝑥 + 𝑦 ≤ 𝑓 𝑥 + 𝑓(𝑦) (triangle inequality
• ∀𝛼 ∈ ℝ, 𝑓 𝛼𝑥 = 𝛼 𝑓 𝑥

𝑥 𝑝 = ෍
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Linear Algebra

Norms

The most commonly used norm for vectors is 𝑝 = 2, which is 
compatible with the inner product

Another useful norm is the 𝐿∞ norm, also known as max norm:

The most natural measure of matrix “size” is the Frobenius norm:

𝑥 2 = 𝑥 ⋅ 𝑥

𝑥 ∞ = max
𝑖

𝑥𝑖

𝐴 𝐹 = ෍

𝑖,𝑗

𝐴𝑖𝑗
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Trace

The trace of a matrix is the sum of its’ diagonal entries

Some useful properties:

• 𝑇𝑟 𝐴 = 𝑇𝑟 𝐴𝑇

• 𝑇𝑟 𝐴𝐵𝐶 = 𝑇𝑟 𝐶𝐴𝐵 = 𝑇𝑟(𝐵𝐶𝐴) (if defined)

𝑇𝑟 𝐴 = ෍

𝑖

𝐴𝑖𝑖
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Determinant

The determinant is a value that can be computed for a square matrix.

For a 2x2 matrix it is given by 
𝑎 𝑏
𝑐 𝑑

= 𝑎𝑑 − 𝑏𝑐.

Interpretation: volume of parallelepiped is the absolute value of the 
determinant of a matrix formed of row vectors r1, r2, r3.

In general for an (n,n) matrix it is given by

Computed over all permutations 𝜎 of the set {1,…,n}. 

det 𝐴 = ෍

𝜎∈𝑆𝑛

sgn(𝜎)ෑ

𝑖=1

𝑛

𝐴𝑖,𝜎(𝑖)
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When is a matrix invertible

In general, for an inverse matrix 𝐴−1 to exist, 𝐴 has to be square and 
its’ columns have to form a linearly independent set of vectors – no 
column can be a linear combination of the others.

A necessary and sufficient condition is that det 𝐴 ≠ 0.

Finding the inverse is usually quite arduous, even though an explicit 
expression exists:

𝐴−1 =
1

det(𝐴)
෍

𝑠=0

𝑛−1

𝐴𝑠 ෍

𝑘1,𝑘2,…,𝑘𝑛

ෑ

𝑙=1

𝑛−1
(−1)𝑘𝑙+1

𝑘𝑙! 𝑙
𝑘𝑙

𝑇𝑟 𝐴𝑙
𝑘𝑙
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Eigendecomposition and SVD 

In fact, if a square matrix has n linearly independent eigenvectors, it can 
always be diagonalized 𝐴 = 𝑈 𝑑𝑖𝑎𝑔 𝜆 𝑈𝑇.

In this case we also immediately get the inverse matrix

For a non-square 𝑚 × 𝑛 matrix we can at best perform the Singular Value 
Decomposition:  𝐴 = 𝑈 𝐷 𝑉𝑇, where 𝑈 is an 𝑚 ×𝑚 orthogonal matrix, 𝐷 is 
diagonal 𝑚 × 𝑛 and 𝑉 another n× 𝑛 orthogonal matrix. Elements of 𝐷 are 
known as singular values  

𝐴−1 = 𝑈 𝑑𝑖𝑎𝑔
1

𝜆
𝑈𝑇
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Moore-Penrose Pseudoinverse

Matrix inversion is not defined for non-square matrices. Suppose we have a 
linear equation 𝐴𝑥 = 𝑦 and we want to solve for 𝑥. 
• If 𝐴 is taller than wider, there might be no solutions
• If it is wider than taller, there might be many solutions.

The pseudoinverse is defined as

In practice we calculate it as 𝐴+ = 𝑉𝐷+𝑈𝑇, where 𝑈,𝐷, 𝑉 are the SVD of 𝐴
and 𝐷+ is calculated by taking the reciprocal of non-zero singular values and 
taking the transpose of the result. (Note this is clearly discontinuous)

𝐴+ = lim
𝛼→0+

𝐴𝑇𝐴 + 𝛼𝐼
−1
𝐴𝑇
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Thanks!


