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Linear Algebra

Tutorial Outline

The goal is to review the parts of linear algebra necessary to
understand Principal Component Analysis (PCA)



Linear Algebra

1. Matrices, vectors and products



Linear Algebra
Vectors
X = (xlr X2, ---:xn) and y = 0’1:3’2: ---:J’m)

Example:
letn =2andm = 2

x = (xy,xy)andy = (¥, ¥2)




Linear Algebra

Matrices
Xz X4-
X1 X3
X
X11 X12 0 XqT
X = x?l xszz ngr =X Xo - X7)
XN1 XnN2 7 XNT

Each X; is N-dimensional data point (vector) from trial i



Linear Algebra

Transpose

Transpose of a matrix swaps rows with columns

4= ) 4=(; 3)

4=(5 ) =G 7)



Linear Algebra

Symmetric Matrices

A matrix is symmetric if it is equal to its transpose

A= G i) is symmetric because AT = G i)

7o 6o b



Linear Algebra

Machines

Matrix Multiplication

matrix*matrix W = AB
(Wll W12) _ (all a12) (b11 b12) . (a11b11 <+ a12b21 a11b12 + alzbzz)
Wa1 Wp2 az1 A2 b21 b22 a21b11 -+ a22b21 a21b12 -+ azzbzz

W has size (2,2)
A has size (2,2)
B has size (2,2)

In order to perform multiplication, the sizes need to match up accordingly
W has size (m, n)

A has size (m, p) _
B has size (p,n) (m,n) (miyﬁx(yn)

Does AB=BA?



Linear Algebra

Machines

Matrix Multiplication

matrix*vector y = Ax

V1 a1 Qi X a11X1 + A12X;
Y2 |=1Qz21 Qapp (x2)= Az1X1 + Az2X7

azq aszp az1X1 + azzX;

vy has size (3,1)
A has size (3,2)
x has size (2,1)

In order to perform multiplication, the sizes need to match up accordingly

vy has size (m, 1)
A has size (m, n) (m,1) = (m, )=<(/1)
x has size (n, 1) 7,) 7/



Linear Algebra
Matrix Multiplication

vector*vector

. X1 Y1
X = (xl xZ xn) X9 yz
T ) X=1 : y =1 :
— y y e e y .

Y O ? " Xn Yn

X-y=Xic xyi=x"y=y"x



Linear Algebra
Matrix Multiplication

vector*vector

A dot product gives the “overlap” of two vectors.
It is a number not a vector.

x -y = Xi=1 X%y; = |x||ylcos(6)

If x and y are perpendicular (orthogonal)
then & = 90° and cos(@) = 0.
Thenx -y =20

Xy
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Linear Algebra

Example: Linear Neuron Model

Inputs

. @
w @ _ =

n @

w;; = weight from x; to y;




Linear Algebra

Convolution as Toeplitz matrix

xl x2 x3
For experts: even a convolution ["4 x5 ""] [“ k2]
] ] x7 x8 x9/ » \k3 k4
operation can be recast as matrix
multiplication:

Here is a constructed matrix with a vector:

(x1)
x2
x3
x4

.| x5

x6

x7
x8

. x9 )

kl k2 0 k3 k4 0 0 0 O
0 k1 k2 0 k3 k4 0 0 O
0 0 0 k1l k2 0 k3 k4 0
0 0 0 0 kl k2 0 k3 k4

kl1x1+k2x2+ k3x4+ k4x5
k1x2+k2x3 + k3x5+ k4x6
kl1x4+k2x5+ k3x7+ k4x8
which is equal to k1x5+ k2x6 + k3x8 + k4x9

https://stackoverflow.com/questions/48768555/toeplitz-matrix-with-an-image



Linear Algebra

Norms

A function that measures the “size” of a vector is called a norm.
1

p
The LP norm us given by |Ix||,, = (lei|p>

More generally, the norm has to satisfy the following:
e fx)=0=>x=0

« f(x+y) < f(x)+ f(y) (triangle inequality
* Va eR f(ax) = |a|f(x)



Linear Algebra

Norms

The most commonly used norm for vectors is p = 2, which is
compatible with the inner product x|, = Vx - x

Another useful norm is the L., norm, also known as max norm:

Ix]leo = ml.aXIin

The most natural measure of matrix “size” is the Frobenius norm:

lally = | 42,
LJ



Linear Algebra

Trace

The trace of a matrix is the sum of its’ diagonal entries

Tr(4) = ZAii

Some useful properties:
« Tr(A) =Tr(AT)
« Tr(ABC) = Tr(CAB) = Tr(BCA) (if defined)



Linear Algebra

Determinant

The determinant is a value that can be computed for a square matrix.

a

For a 2x2 matrix it is given by |c

Z| = ad — bc.

Interpretation: volume of parallelepiped is the absolute value of the
determinant of a matrix formed of row vectors rl, r2, r3.

Fi+r3

F1+r2+r3

In general for an (n,n) matrix it is given by

det(4) = Z (sgn(a) ﬁAi,a(D)
i=1

OESH

Computed over all permutations o of the set {1,...,n}.



Linear Algebra

2. Matrices and data transformations



Linear Algebra

Linear equations

X = (X3 %5 s %) AN Y = (Y1, V2, o0, Yim)

Example:
letn =2andm = 2 n
X = (xl,xz) and Yy = (3’1, yZ) Vi = Z aijxj

j=1

We have 2 linear equations: gives m linear equations

Y1 = Qa1 ¥ X1+ aqp xX,
Yy = Ay ¥ X1+ Ay ¥ Xy



Linear AIgEbra

‘| Machines

Linear equations with Matrices

We have 2 linear equations: We write this as:
Y1 = Qg * X+ Agp * X Yi\ _ Q11 Q12 (%1
Y2 = Q1 % X1 F Qg * X, (J’z) B (a21 azz) (xz)
_ (a11x1 + a12x2)
Az1X1 T Az2X7

We can think of the matrix 4 as a function or transformation of x:
y = f(x) = Ax



Linear Algebra

| 1+6 0
Matrix Example: Stretch 51 = ( 0 1)
delta = 0.5
i ¢ |nitial: x
15 ¢ final: Ax
e S S U _(1+ 6 0\ /[*1
LA e S1X ( 0 1) (xz)

ﬁ---- —ote
2 1.1_5'—f.*rH', &5 %m{ﬁsﬁr—ﬁ—;s I2 (1 + 6))61
- H!ﬂ‘.s-"ﬂ._g,—. —

X2




Linear Algebra

Matrix Example: Stretch 52 = ((1) 1 _(l)_ 5)
delta=0.5
‘I‘ js ) I‘;ﬂ * initial: x
] 1- ] I l- final: Ax
S seG L 2()
ST r'.o-s°1@'a = PEREETI =( X1 )
; : IfII:I ﬁ}ﬁﬂﬁf (1+ 6)x,
v oLy




Linear Algebra

Matrix Example: Stretch

‘ ¢ initial: x

N g

51,2 — (

1+6
0

0
1+96

)



Linear Algebra

0 1/(1+ 95)

Matrix Example: Shrink A=(1/(1+5) 0 )

o A {1/ +6) 0 X4
2 Ax = ( 0 1/(1+ 5)) (xz)

RS _ (x/(1+8)
ek (xz/(1+5))




Linear Algebra

Matrix Example: Reflection

delta = 0.5
2

¢ jnitial: x
+ final: Ax

Rq




Linear Algebra

Matrix Example: Reflection

delta = 0.5
2

¢ jnitial: x
¢+ final: Ax




Linear Algebra

Matrix Example: Reflection Rz = (_1 | )

delta = 0.5
2

¢ jnitial; x
* final: Ax




Linear Algebra

| _(1 6
Matrix Example: Shear 17 = (0 1)
delta=0.5
: ¢ |nitial: x
———— | e A
s T ol 1 0
- (9"
£ 0 1/\x,
2 1.1.5 gl fi f E H% I1.5 I2 - X1 + (SXZ
:_1 R - xz

<= "= =n =m == < == o= == -

-15

I QR



Linear Algebra

Matrix Example: Shear Iy = ( ! O)

delta=0.5
2

¢ fhitial: x
¢ {nal: Ax




Linear Algebra

Matrix Example: Shear Iy = (_5 1)

delta = 0.5
2

¢ jnitial: x
+ final: Ax




Linear Algebra

Rotation Matrices

=3 )

is the small-angle approximation to the true rotation matrix.

_(cos(8) —sin(0)
R= (sin(@) cos(6) )

is a counter-clockwise rotation by angle 6. , (cos8, siné)




Linear Algebra

_ (cos(0) —sin(@))
_(sin(B) cos(6)




Linear Algebra

Matrix Example: Inverses

The inverse of a function f, denoted by f 71, satisfies:

fA ) =x
i.e. f~1(f(+)) is the identity function.

Similarly, the inverse of a matrix satisfies:
A Ax = AA 'x =«x

A71A =441 =



Linear Algebra

Matrix Example: Inverses A~1A4

51=(1J55 (1)

sisit= (7

1+46 0

) has inverse Sy 1

1/(1+6) 0

1)( 0 )=(

* jnitial: x
+ final: Ax

1/(1 + &)

0

(1+ 6)6(1 +6) (1)) _ (1

— AA_l —

)

0

* jnitial: x
+ final: Ax




Linear Algebra

Matrix Example: Inverses A714 = AA™1 =]

1 —6)

T, = (1 5) has inverse T; 1 = (0 )

0 1

nrt =5 D6 D=6 =6 )




Linear Algebra

Non-Invertible

A function is non-invertible if taking the inverse would be
ambiguous. Mathematically, if there are points x4, x, such

that f(x;) = f(x,). Because then f‘l(f(xl)) = X OF X>.

Example: f(x) = x? has an ambiguous
inverse because f~1(4) = 2 or —2.
Thus f(x) = x? is non-invertible




Linear Algebra

Matrix Example: Projection (no inverse)

Projection matrices project all the points to a smaller

number of dimensions (dimensionality reduction).

* jnitial: x
* final: Ax

=G o y

re=(5 () =)




Linear Algebra

When is a matrix invertible

In general, for an inverse matrix A~ to exist, A has to be square and
its’ columns have to form a linearly independent set of vectors — no
column can be a linear combination of the others.

A necessary and sufficient condition is that det(4) # 0.

Finding the inverse is usually quite arduous, even though an explicit
expression exists:

)kl+1

i det(A)z Z ﬂ(w rr(at)"

s=0 kqi,ks,.. kn =1




Linear Algebra

Orthogonal Matrices

The matrix Q is an orthogonal matrix if: QTQ —

The dot product across different column-vectors of Q are 0, ie. qqu = 0,1+

Or equivalently, the matrix Q is an orthogonal matrix if: QT — Q_l

To show this, recall that @ 'Q = I



Linear Algebra

Orthogonal Matrices

A square matrix U is orthogonal if U™ = UT

What matrices are orthogonal?

Rotation: Reflection:
_ (cos(8) —sin(0) /-1 0
k= (sin(@) cos(0) ) M= ( 0 1)
_1_ [ cos(8) sin(0)) M l=M'=M
R = (—sin(@) cos(@)) =R’



Linear Algebra

Orthogonal Matrices

Orthogonal matrix changes the coordinate system

—T
X V1
T -
U=y V=0 X+ v,y +v3Z="V2
—T V3/ g1
VA
—7 - !
x" v 21
UI->__,’-> _ / _r_,’_l_ r_,’_l_ Ay
! V= y UV —_— vz — le vzy U3Z
X —_ !/
x' z' v Y3/ g2

Projection of v onto new coordinate system



Linear Algebra

Orthogonal Matrices

The rows and columns of orthogonal matrices form an ortho-normal basis

1 0 0
=(a) 7(2) = (o)
0 0 1
. cos(6)\ —sin(6)\ _ 0
x' = (sin(@)) ' = ( cos(60) ) "= (0)
0 0 d

cos(8) sin(@) O

Define U’ = VT (—sin(@) cos(0) O)
0 0 1




Linear Algebra

3. Eigenvalues and Eigenvectors



Linear Algebra

Eigenvalues and Eigenvectors

n

Eigen is German for “proper”, “special”, “characteristic”

The eigenvector x of a matrix A is a vector that satisfies the equation:

Ax = Ax
where A, called the eigenvalue, is a number.

Graphically, this means that under the

AX = AX

operation A, the vector x doesn’t change
direction, just magnitude.




1+6

1+46

A:(l-(l)-c?
Av1=( 0
Av2=( 0

0

1

0

1

Linear Algebra

O has e t (1 (o
1 ds eigenvecLors vq{ = 0 , Uy = 1

I
I

1
0
0
1

AVZ = vz“'s * final: Ax

)
)

(
(

1+46
0

-

)=(1+5)v1 $2.1=1+6

1+*v, = A, =1

delta =05
2

* jnitial: x




Linear Algebra

_ (1 0 : _
P = (0 0) also has eigenvectors v, = (

et ()
Frz = ((1) 8)(1) =(0

* jnitial: x

)=1*v1 =>/11=1

)=O*v1=>/12=0

A matrix is non-
invertible if it has an
eigenvalue 4 =0



Linear Algebra

Property of Symmetric Matrices

The eigenvectors of any symmetric matrix A are orthogonal.

Idea of proof:

Let x and y be eigenvectors of A with eigenvalues A, u respectively. Assume A # L.
(Ax) -y = (Ax)Ty = 2xTy

(Ax) -y =y"Ax = yTATx = (Ay)"x = uy"x = ux"y

= AxTy = uxTy

Since A # u then xTy = 0. Thus x and y are orthogonal.



Linear Algebra

Property of Symmetric Matrices

Any symmetric matrix A is diagonalizable.

Proof:
X1i
Let A be size(n,n). Let U; =| : |be an eigenvector of A so that AU; = A;U;.
Xni
Assume the set of U; form an orthonormal basis. LetU = (U; ... Up).
url ul Ay 0
urau = : |AWU; .. U)=|: |(LU;, .. AU)=|}+ :

Ul Ur 0 - Ay
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Linear Algebra

Eigendecomposition and SVD

In fact, if a square matrix has n linearly independent eigenvectors, it can
always be diagonalized A = U diag(A)U".

1
In this case we also immediately get the inverse matrix A™' = U diag <I) Ut

For a non-square m X n matrix we can at best perform the Singular Value
Decomposition: A = U D VT, where U is an m X m orthogonal matrix, D is
diagonal m X n and V another nX n orthogonal matrix. Elements of D are
known as singular values



Linear Algebra

Moore-Penrose Pseudoinverse

Matrix inversion is not defined for non-square matrices. Suppose we have a
linear equation Ax = y and we want to solve for x.

e If Ais taller than wider, there might be no solutions

* Ifitis wider than taller, there might be many solutions.

~1
The pseudoinverse is defined as AT = lir(r)1+(ATA + al) AT
a—
In practice we calculate itas At = VD UT, where U, D,V are the SVD of 4
and D7 is calculated by taking the reciprocal of non-zero singular values and
taking the transpose of the result. (Note this is clearly discontinuous)



Linear Algebra

4. Principal Component Analysis (PCA)



Linear Algebra

We are now ready for PCA

The goal of PCA is to visualize and find structure in the data. This is
challenging for)tligh dimensional data.

Assumption: The relevant dimensions are a linear combination of
the variables we measured.

Assumption: The relevant variables are orthogonal



Linear Algebra

PCA

We measure n variables m times.
Example: n = # of neurons, m= # of measurements/trials.

Xl-T = (Xi1 - Xim) is the measures of neuron i over all trials.
Assume X; has zero mean.

. 1 1
var(i) = — XL Xjj =

—X; X;

m-—1

. 1 1 T
cov(i,j) = — Dk=1 XieXjk = —— X; X;



Linear Algebra

o Xym
letX = : ( P )
XTI Xn1 " Xnm
X1
Cy = L oxxT=_1| : (Xy .. X,) isthe Covariance Matrix.
m-—1 m-—1 XT
n

It is symmetric.

T _ 1 T™NT — _ 1 (yT\TyT _ _1 yyT _
Cy _m—1(XX ) _m—l(X )X XX Cy

m-—1



PCA

1 :
Cy = —XXT has orthonormal eigenvectors

m-—1

letU = (U; ... Up) be an orthogonal matrix

whose columns are eigenvectors of Cy with
eigenvalues A;. We can chose U such that A; > 1, > --- > A,..

U, points in the directions of
the greatest variance.

U, points in the orthogonal
direction of next greatest
variance. Etc.




Linear Algebra

PCA

Let Y = UT X be a transformation of the data.

The new variables Y; are uncorrelated
Cy = ——YYT = —UTXX"U = UTCxU = diag(ly - An)

m—1
The eigenvectors are the principal components:

U; = 1% principal component
U, = 2" principal component
Etc.



Linear Algebra

PCA Iin MATLAB

Cx = (1/m).*X*X";
[U,D]=eig(Cx);

% reorder things

[D,ord]=sort(diag(D));

D = flip(D); ord=flip(ord);

U=U(:,ord); % U(:,i) is the it" principal component
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Linear Algebra

When PCA fails

FIG. 6 Example of when PCA fails (red lines). (a) Tracking a per-
son on a ferris wheel (black dots). All dynamics can be described
by the phase of the wheel 6, a non-linear combination of the naive
basis. (b) In this example data set, non-Gaussian distributed data and . o

) ] A Tutorial on Principal Component
non-orthogonal axes causes PCA to fail. The axes with the largest 4,/ cic by Jonathon Shiens. Google
variance do not correspond to the appropriate answer. Research 2014



PCA

Dimensionality reduction: We can use PCA to reduce the
dimensions of our data to include only those dimensions which
have high variance and regard the other dimensions as noise.

We assume the direction in the data which contains the most
variance contains the interesting dynamics
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