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loday’s overview

Course description/logistic

Motivations for this course: a golden age for new Al, the key role of Machine
Learning, CBMM, the MIT Quest: Intelligence, the Grand Vision

A bit of history: Statistical Learning Theory, Neuroscience

A bit of ML history: applications

Deep Learning



9.520: Statistical Learning Theory and Applications

e Course focuses on algorithms and theory for supervised learning.

e Regularization technigues, Kernel machines, batch and online supervised learning,
sparsity.

e Deep learning and theory of It, based on first part of the class

The goal of this class is to provide theoretical knowledge and basic intuitions needed
to effectively use and develop machine learning solutions to a variety of problems.



http://www.mit.edu/~9.520/fall17/

9.520/6.860: Statistical Learning Theory and Applications

Class: Mon., Wed. 1:00 - 2:30 pm, 46-3310 (PILM Seminar Room)**

Office Hours: Friday 1:00 pm - 2:00 pm, 46-5156 (Poggio lab lounge) and/or
46-5165 (MIBR Reading Room)

Web: http://www.mit.edu/~9.520/

Contact: 9.520@mit.edu

Mailing list: 9.520students@mit.edu

o 9.520/6.860 will use Stellar
e Mailing list and web (announcements) for updates

**0On 10/22 and 10/24class will be in Building 34 Room 101.


http://www.mit.edu/~9.520/
mailto:9.520@mit.edu
mailto:9520students@mit.edu

Maternial

Slides— will be posted (for most lectures)

Videos— check CBMM

Notes—

L. Rosasco and 1. Poggio, Machine Learning: a Regularization Approach,
MIT-9.520 Lectures Notes, Manuscript, Dec. 2016 (will be provided)

For feedback on book (typos, errors, ...) https.//goo.qgl/forms/
pQcewnsAV3ICNoyr1



https://goo.gl/forms/pQcewnsAV3lCNoyr1
https://goo.gl/forms/pQcewnsAV3lCNoyr1

Syllabus at a glance

Class Date Title Instructor(s)
Class 01 ||Wed Sep 05 || The Course at a Glance TP
Class 02 | Mon Sep 10 || Statistical Learning Setting LR
Class 03 [[Wed Sep 12 || Regularized Least Squaresces LR
Class 04 | Mon Sep 17 || Feature Maps and Kernels LR
Class 05 [Wed Sep 19 | Logistic Regression and Support Vector Machines LR
Class 06 | Mon Sep 24 || Learning with Stochastic Gradients AR
Class 07 || Wed Sep 26 |[Implicit Regularization LR
Class 08 || Mon Oct 01 || Large Scale Learning by Sketching LR
Class 09 [Wed Oct 03 || Sparsity Based Regularization LR

Mon Oct 08 - Columbus Day
Class 10 [|Wed Oct 10 || Neural networks: Introduction, backpropagation LR or AB
Class 11 ||Mon Oct 15 |[Neural Networks: tips, tricks and SW QL AB
Class 12 ||Wed Oct 17 || Generative Adversarial Networks TBA
Class 13 ||Mon Oct 22 | Statistical Learning (from SGD/GD to Stat objective) AR
Class 14 |Wed Oct 24 || Uniform Convergence, ERM AR
Class 15 [[Mon Oct 29 || Sample Complexity via Rademacher Averages | AR
Class 16 [|[Wed Oct 31 || Sample Complexity via Rademacher Averages AR
Class 17 || Mon Nov 05 || Margin Analysis for Classification AR
Class 18 [|[Wed Nov 07 || Local Fitting: Interpolation, Generalization, Bias-Variance AR

Mon Nov 12 - Veterans Day
Class 19 |Wed Nov 14 || Algorithmic Stability and Generalization AR
Class 20 || Mon Nov 19 || Privacy and Information-Theoretic Stability AR
Class 21 [|Wed Nov 21 || Deep Learning Theory: Approximation TP
Class 22 || Mon Nov 26 || Sample complexity of Neural Networks | AR
Class 23 || Wed Nov 28 || Sample complexity of Neural Networks I AR
Class 24 [ Mon Dec 03 || Deep Learning Theory: Optimization TP
Class 25 |Wed Dec 05 || Deep Learning Theory: Generalization TP
Class 26 || Mon Dec 10 || Machine Learning, the Brain and the Next Breakthrough in Al | TP

Wed Dec 12 - 2 poster sessions on Dec. 12




Grading policies

e Problem sets (0.6)
o © problem sets (0.10 each)
m 2 - 3 questions (exercises and/or MATLAB)
m 1 week due
o Late policy on next slide
o typeset in LaTeX (template will be provided)
o Online submission by due date; printed submission in next class
e Project (0.3)
o See later
e Participation (0.1)
o Aftending class lectures is required!
o Sign-in sheet will be circulated 5 (random) times



Problem sets

e Problem sets (0.6)
o © problem sets (0.10 each)
m 2 - 3 questions (demonstrations/exercises + short MATLAB)
m / days due!
o typesetin LaTeX (template provided)
o online submission by due date,; printed submission in next class

® |ate policy
o All students have 4 free late days (to be used on psets and project proposal)
o You may use up to 2 late days per assignment with no penalty

o Beyond this, we will deduct a late penalty of 50% of the grade per additional late day

Dates (due times are 11:59 pm). Submission online (dbox link).

pset 1] Wed. Sep. 19, due: Tue., Sep. 25
pset 2] Wed. Oct. 3, due: Tue., Oct. 09
pset 3] Wed. Oct. 17, due: Tue., Oct. 23
pset 4] Wed. Oct. 31, due: Tue., Nov. 06
pset 5] Wed. Nov. 19, due: Tue., Nov. 25
pset 6] Wed. Dec. 3, due: Tue., Dec. 11

Collaboration policy: You may discuss with others but need to work out your own solution.



Projects

A) Theory
B) Algorithms
C) Application
o This is not a data science course, so we will not consider data preparation as
contributing to the grade.
D) Coding
E) Wikipedia

e report (NIPS format): 4 pages ( + Appendix), 6 pages max
OR
e poster session (last week of classes)

Dates

Abstract and title: Oct. 31

Feedback and approval: Nov. 7

Poster and revised abstract submission: Dec. 10
Poster presentations: Dec. 12

Report submission: Dec. 12



loday’s overview

Course description/logistic

Motivations for this course: a golden age for new Al, the key role of Machine
Learning, CBMM, the MIT Quest: Intelligence, the Grand Vision

A bit of history: Statistical Learning Theory, Neuroscience

A bit of ML history: applications

Deep Learning



Grand Vision of CBMM, Quest, this course




The problem of intelligence:
how the brain creates intelligence
and how to replicate it in machines

The problem of (human) intelligence is one of the great problems in science,
probably the greatest.

Research on intelligence:

® 2 great intellectual mission: understand the brain, reproduce it iIn machines
e Wil help develop Intelligent machines



The Science and the Engineering of Intelligence

We aim to make progress in understanding intelligence, that is
INn understanding how the brain makes the mind, how the brain
works and how to build intelligent machines. We believe that
the science of intelligence will enable better engineering of
Intelligence.

b

=== ALLSYSTEMSGO SO Friday, March 24,2017
. : 4:30pm - 5:30pm
L 55 B s , MIT Building 10-250

[l LN

Key recent advances in the engineering of intelligence
have their roots in basic research on the brain




Why (Natural) Science and
Engineering?
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Just a definition: science Is natural science rancis crick, 1916-2004)

CENTER FOR
Brains
Mindsi
Machines




Two Main Recent Success Stories in Al




DL and RL come from neuroscience
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The Science of Intelligence

The science of intelligence was at the roots of today’s engineering success

We need to make another basic effort leveraging
the old and new
science of intelligence:
neuroscience, cognitive science
combining them with learning theory

(suggestion: attend 6.861/9.523)




INTERVIEW \ SCIENCE \ TECH \

DeepMind’s founder says to build better
computer brains, we need to look at our own

What Al can learn from neuroscience, and neuroscience from Al

by James Vincent | @jjvincent | Jul 19, 2017, 12:00pm EDT

lllustration by James Bareham / The Verge

They point out that contemporary Al programs are extremely narrow in their
abilities; that they're easily tricked, and simply don’t possess those hard-to-define —

but easy-to-spot skills we usually sum up as “common sense.” They are, in short,
not that intelligent.

The question is: how do we get to the next level? For Demis Hassabis, founder of

Google’s Al powerhouse DeepMind, the answer lies within us. Literally. In a review
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CBMM and the MIT Quest
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Funding 2013-2023
Research Institutions
Educational Institutions
Faculty (CS+BCS+...)
Researchers

Publications

CBMM Overview

The Center for Brains, Minds and Machines (CBMM) is a multi-institutional
NSF Science and Technology Center dedicated to the study of intelligence -
how the brain produces intelligent behavior and how we may be able to
replicate intelligence in machines. We believe in the synergy between the
science and the engineering of intelligence.

Cosnitive Science Machine Learning, Neuroscience,
~$50M S Computer Science ~ Computational
~4
12
~23
223
397 Science + Engineering

of Intelligence



Research, Education & Diversity Partners

MIT Harvard

Boyden, Desimone, DiCarlo, Kanwisher, Katz, Blum, Gershman, Kreiman, Livingstone,
McDermott, Poggio, Rosasco, Sassanfar, Saxe, Schulz, Nakayama, Sompolinsky, Spelke

Tegmark, Tenenbaum, Ullman, Wilson, Winston

Boston Children’s {45 International U. Harvard Howard U. Hunter College

Hospital Medical School Chouika, Manaye,

. . _ > Chodorow, Epstein,
Kreiman Diaz, Finlayson Kreiman, Livingstone Rwebangira, Salmani Sakas, Zeigler

Johns Hopkins U. Queens College Rockefeller U. Stanford U. Uglevleésa'ggg ((Le&t;r)al
Yuille Brumberg

Freiwald Goodman Jorguera

University of VMass Boston UPR - Mayagiiez UPR - Rio Piedras Wellesley College

Central Florida : : .
. Blaser, Ciaramitaro, : : Garcia-Arraras, Maldonado-Vlaar, . . .
McNair Program Pomplun, Shukla Santiago, Vega-Riveros Megret, Ordofiez, Ortiz-Zuazaga Hildreth, Wiest, Wilmer
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Academic and Corporate Partners

T A*star Hebrew U. MPI
Cingolani Chuan Poh Lim Weiss Bulthoft

Genoa U. Weizmann City U. HK

Verri, Rosasco Ullman Smale
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Summer Course at Woods Hole: Our flagship initiative

Brains, Minds & Machines Summer Course
Gabriel Kreiman + Boris Katz

y =
Sy

A community of scholars is being formed
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The MIT Intelligence Quest

PROJECTSABOUTCONTACTFAQ

Intelligence, the MIT Quest

The MIT Intelligence Quest will advance the science and engineering of both human
and machine intelligence. Launched on February 1, 2018, this effort seeks to
discover the foundations of human intelligence and drive the development of
technological tools that can positively influence virtually every aspect of society.

The Institute’s culture of collaboration will encourage life scientists, computer
scientists, social scientists, and engineers to join forces to investigate the societal
implications of their work as they pursue hard problems lying beyond the current
horizon of intelligence research. By uniting diverse fields and capitalizing on what

they can teach each other, we seek to answer the deepest questions about
intelligence.
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https://intelligencequest.mit.edu/
http://news.mit.edu/2018/mit-launches-intelligence-quest-0201

Historical timeline...

Noam Norbert

. Claude
Wiener

Shannon

CENTER FOR _
Brains Intelligence:
vinast The MIT Quest

2008 2012 - 2013 2018



Intelligence: The MIT Quest

BRIDGE

CORE: Cutting-Edge Research on the Science + Engineering of Intelligence

Natural Science of Intelligence Engineering of Intelligence

The Intersection

Nobel prize Turing Award, Fields Medal
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Summary

® |otivations for this course: a golden age for new Al, the key role
of Machine Learning, CBMM

Summary: | told you about the present great success of ML, its connections
with neuroscience, its limitations for full Al. | then told you that we need to
connect to neuroscience If we want to realize real Al, In addition to

understanding our brain. BTW, even without this extension, the next few years
will be a golden age for ML applications.




loday’s overview

Course description/logistic

Motivations for this course: a golden age for new Al, the key role of Machine
Learning, CBMM, the MIT Quest: Intelligence, the Grand Vision

A bit of history: Statistical Learning Theory and Applications

Deep Learning



Why theory of Learning

® | carning is now the lingua franca of Computer Science

® [ earning is at the center of recent successes in Al over the last 15
years

e Now and the next 10 year will be a golden age for technology
based on learning: Google, Siri, Mobileye, Deep Mind etc.

® [he next 50 years will be a golden age for the science anad
engineering of intelligence. Theories of learning and their tools will

be a key part of this.
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Statistical Learning Theory




Statistical Learning Theory:
supervised learning (~1980-today)

ﬁ

INPUT = —— QUTPUT
ﬁ
— —

Given a set of | examples (data)

{(xlayl)a(xza)b)a---a(xwyz)}

Question: find function f such that
S(x)=y

is a good predictor of y for a future input x (fitting the data is not enough!)



Statistical Learning Theory:
prediction, not description

= function f -

@ -datafromf .' ‘." \ /
| B e

= approximation of f

Intuition: Learning from data to predict well the value of the function
where there are no data



Statistical Learning Theory:
supervised learning

gression

Classification




Statistical Learning Theory:
supervised learning

There is an unknown probability distribution on the product
space Z = X x Y, written u(z) = u(x, y). We assume that X is
a compact domain in Euclidean space and Y a bounded subset
of R. The training set S = {(X1,¥1),.... Xn, ¥n)} =421, ...2n}

consists of n samples drawn 1.i.d. from .
H I1s the hypothesis space, a space of functions f : X — Y.

A learning algorithmisa map L : Z" — 'H that looks at S and
selects from H a function fs : X — y such that f5(X) ~ y in a
predictive way.



Statistical Learning Theory

Given a function 7. a loss function V. and a probability distribution ;:
over Z, the expected or true error of f is:

A — 1, VI[f. 2] — / V(f. 2)dj(2) (1)
J L

which is the expected loss on a nhew example drawn at random from

/!.
The empirical error of f is:

Is[f] %Z V(f.z) (2)

A very natural requirement for fg Is distribution independent
generalization

e, lim |ls[fs] — I[fs] = O in probability (3)

In other words, the training error for the solution must converge to the
expected error and thus be a “proxy” for It.



Statistical Learning Theory:
foundational theorems

Conditions for generalization and well-posedness in learning theory
have deep, almost philosophical, implications:

they can be regarded as equivalent conditions that guarantee a
theory to be predictive and scientific

» theory must be chosen from a small hypothesis set (~ Occam razor, VC dimension,...)

» theory should not change much with new data...most of the time (stability)



Classical algorithm:
Regularization in RKHS (eg. kernel machines)

1 n

\®)

Implies

f(x) = E?OLZ.K(X, Xi)

Classical kernel machines — such as SVMs — correspond to
shallow networks




Summary

® A bit of history: Statistical Learning Theory

Summary: | told you about learning theory and predictivity. | told you
apbout kernel machines and shallow networks.



Historical perspective:
Examples of old Applications
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Engineering of Learning

.......
S,

Face detection has been

----------------- RS available in digital cameras for

_______ 4 \ /’ a few years now

ML ] & R
L4+ Di | | w v




Engineering of Learning

Pedestrian detection

Papageorgiou&Poggio, 1997, 2000
also Kanade&Scheiderman




Some other examples of
past ML applications
from my lab

Computer Vision

-ace detection
Pedestrian detection

Scene understanding
Video categorization
Video compression
Pose estimation

Graphics

Artificial Ma

Speech recognition
Speech synthesis
Decoding the Neural Code
Sloinformatics

Text Classifi

cation
kets

Stock optio

N pricing

46



Learning: bioinformatics

New feature selection SVM:

Only 38 training examples, 7100 features

AML vs ALL: 40 genes 34/34 correct, O rejects.

5 genes 31/31 correct, 3 rejects of which 1is an error.

A.l. Memo No. 1677
C.B.C.L Paper No.182

Support Vector Machine Classification of Microarray
Data

S. Mukherjce, P. Tamayo, D. Slonim, A. Verri, T. Golub,
J.P. Mesirov, and T. Poggio

Pomeroy, S.L., P. Tamayo, M. Gaasenbeek, L.M. Sturia, M. Angelo, M.E.
McLaughlin, J.Y.H. Kim, L.C. Goumnerova, P.M. Black, C. Lau, J.C. Allen, D.
Zagzag, M.M. Olson, T. Curran, C. Wetmore, J.A. Biegel, T. Poggio, S.
Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D.N. Louis, J.P. Mesirov, E.S.
Lander and T.R. Golub. Prediction of Central Nervous System Embryonal
Tumour Outcome Based on Gene Expression, Nature, 2002.
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Decoding the neural code: Matrix-like read-out from the brain

Perceived / reported object

| mep-Neuronal pattern
» ‘l' Real-time

accuracy

Amplify / filter r?

= Predicted ek
object percept FFE=TE

Categorical

juagments,

decision max

100-130 M8 pees '

e ——

10 finger muscle

A d. - 4 ale’ 2. " ™
xuv,)l"). comma J

140-190 ms - ¥

NG
e
120-160 ms PME |
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» 30-50 ms
\./ -~
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80-100 Ms
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60-80 ms Vo
. V4 47 50-70ms
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Groups, elc
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Learning: image analysis

— Bear (0° view)

= Bear (45° view)




Learning: image synthesis

UNCONVENTIONAL GRAPHICS

O =0°view =

O =45° view =




Extending the same basic learning techniques (in 2D): Trainable Videorealistic Face Animation

A- more in 2 moment

Tony Ezzat,Geiger, Poggio, SigGraph 2002



1. Learning 2. Run Time

For any speech input the system
provides as output a synthetic video

. Stream
System learns from 4 mins
. Phone Stream
of video face appearance
(Morphable Model) and |
per.SO n —S)mih& Phonetic Models
MMM Image Prototypes

v
I, QI ™ |
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G-Katie



H-Rehema



|-Rehemax



A Turing test: what is real and what is synthetic?

L-real-synth



A Turing test: what is real and what is synthetic?

G oomd [ 1[92
Swglepres. [0 [ M %% [ 1B [ 03

Tastsinglepres. [ 21 [ 50.1% [ 0.619 | 05
Dowble pres__ [ 22 [ 46.6% [ 005 | 05

Table 1: Levels of correct identification of real and synthetic se-
quences. trepresents the value from a standard t-test with signifi-

cance level of p<.

Tony Ezzat,Geiger, Poggio, SigGraph 2002



Learning: image synthesis

3D Reconstruction from a Single Image

Blanz and Vetter,
MPI
SigGraph 99



Learning: image synthesis

Neue Ansichten aus einem eizelnen Bild

| Rekonstruktion Mit Texturextraktion
Verlage ohne Texturextraktion ung Mimik
‘_ ,. l & ".‘\.
| W
» \li._v L
- ¢
Tl /'

Schlagschaften Neue Beleuchtung Rotation

» A - ..'

Blanz and Vetter,
MPI
SigGraph 99



Similar to today’s GANs

Labels to Street Scene Labels to Facade BW to Color

iInput | | output
Day to Night Edges to Photo

output iInpult output
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©®=0°view =

© =45° view =




Very Low-Band Video

E-Mail Demonstration







Summary

® A bit of history: old applications

Summary: | told you about old applications of ML, mainly kernel machines
to give a feeling for how broadly powerful Is the supervised learning

approach: you can apply It to visual recognition, to decode neural data, to
medical diagnosis, to finance, even to graphics. | also wanted to make you

aware that ML does not start with deep learning and certainly does not
finish with it.
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Deep Learning




9.520/6.860

eCourse focuses on algorithms and theory for supervised learning.

eReqularization technigues, Kernel machines, batch and online supervised learning,
sparsity.

eDeep learning and theory of it, based on first part of the class



Computation in a neural net

( N

'
.

-

-

\A“ . ))
— "clown fish

f(x)=fo(... f2(f1(x)))



vertible

grille mushroom grape| | spider monkey

pickup jelly fungus elderberry| titi
beach wagon gill fungus |ffordshire bullterrier | indri
fire engine || dead-man's-fingers currant | howler monkey

motor scooter
motor scooter

moped |
bumper car
golfcart

go-kart|

snow leopard
Egyptian cat

T B

Krizhevsky et al. NIPS 2012



Is the lack of a theory a
problem for DCLNs?

In Poggio and Smale (2003) we wrote “A comparison with real
brains offers another, and probably related, challenge to learning
theory. The ‘learning algorithms' we have described in this paper
correspond to one-layer architectures. Are hierarchical
architectures with more layers justifiable in terms of learning
theory? Fifteen years later, a most interesting theoretical question,

both for machine learning and neuroscience, Is indeed why
hierarchies.




Deep nets : a theory Is needed
(after alchemy, chemistry)
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Computation in a neural net

Rectified linear unit (RelLU)
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Deep nets architecture and SGD training

Rectified linear unit (RelLU)
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Gradient descent

argmin 3y ((zi, f (xi; ) = L(w)

One Iteration of gradient descent:

t1 t 8L(Wt)

YT Ty

learning rate



DLNNSs: three main scientific questions

Approximation theory: when and why are deep networks better - no curse of
dimensionality — than shallow networks®?

Optimization: what is the landscape of the empirical risk?

Generalization on SGD: how can overparametrized networks generalize?

Work with Hrushikeshl Mhaskar+Lorenzo Rosasco+Fabio Anselmi+Chiyuan
Zhang+Qianli Liao +Sasha Rakhlin + Noah G + Xavier B



Theory I:
Why and when are deep networks better than shallow networks?

f(xl s X 9°°°9-x8) — g3(gz1(g11(x1 9-x2)9g12 (X3 s Xy ))gzz (811(x5 9~x6)9g12 (X7 > Xg )

r //f\ //. \\\
()= cl<w, x>+b) /% \\\\\ ,\/ N
i=1 S . /
i /,/"' \\\ / ! \ 7\
A2y IR NN AAAA
S RN /N / N/ N / \

X{ X, X3 X4 Xc Xg X7 Xg X1 X2 X3 X4 X5 Xe X7 Ag

Theorem (informal statement)

Suppose that a function of d variables is compositional . Both shallow and deep network can approximate f equally well.

The number of parameters of the shallow network depends exp_%nentially on d as 0(8_d )vvith the dimension whereas
for the deep network dance is dimension independent, i.e. O(E )

PR VO Bra | ns
aer: | Minds+ ; :
0 | Machines Mhaskar, Poggio, Liao, 2016




Theory lI:
What is the Landscape of the empirical risk?

Layer 5, Numbers are training errars

Theorem (informal statement) 352107
ol
25
Replacing the RELUs with univariate polynomial | 0%
approximation, Bezout theorem implies that the 1.9
system of polynomial equations corresponding to all 35522
zero empirical error has a very large number of Lr 43&%9%4

degenerate solutions. The global zero-minimizers
correspond to flat minima in many dimensions
(generically unlike local minima). Thus SGD is
biased towards finding global minima of the
empirical risk.

CENTEI?FOR
Brains
Minds+

Machines Liao, Poggio, 2017




Theory lll: How can underconstrained solutions generalize?

Model #params: 9370

0.8 T T L 4 ?(U ™ TrT | 14 Y L 4 L] T =R Y Y T T Y ™ T l
007 B \\\\~ —dq
“~al

0.6

O
o
T

Error on CIFAR-10
(- o

w >

1 1

0.2 =

0.1 | | —®— Training Error
—3¥¢— Test Error
Test-Training Error Difference
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Summary: Deep Learning, theory questions

- why depth works
- why optimization works so nicely
- why deep networks do not overfit and do generalize



Musings on Near Future Breakthroughs

* new architectures/class of applications from basic DCN block
(example GAN + RL/DL + ...)

* Nnew semisupervised training framework, avoiding labels: implicit
labeling...predicting next “frame”...

* new basic supervised block/circuit

* new learning algorithm (Shim) instead of SGD ...



Today’s science, tomorrow’s engineering:
learn like children learn

The first phase (and successes) of ML:

from programmers...
...to labelers...
...to computers that learn like chilaren...

The next phase of ML: implicitly supervised learning,
learning like children do, small data: n — 1



General musings

The evolution of computer science

» there were programmers
 there are now labelers

» there may be schools for bots...



