MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications

Class 02: Statistical Learning Setting

Lorenzo Rosasco

Learning from examples

- Machine Learning deals with systems that are trained from data rather than being explicitly programmed.
- Here we describe the framework considered in statistical learning theory.

All starts with DATA

• Supervised: $\{(x_1, y_1), \ldots, (x_n, y_n)\}.$

• Unsupervised: $\{x_1, \ldots, x_m\}$.

• Semi-supervised: $\{(x_1, y_1), \ldots, (x_n, y_n)\} \cup \{x_1, \ldots, x_m\}.$

The supervised learning problem

X × Y probability space, with measure P.
ℓ : Y × Y → [0,∞), measurable *loss function*.

Define expected risk:

$$L(f) = \int_{X \times Y} \ell(y, f(x)) dP(x, y).$$

Problem: Solve

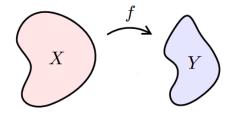
$$\min_{f:X\to Y} L(f),$$

given only

$$S_n = (x_1, y_1), \ldots, (x_n, y_n) \sim P^n$$

sampled i.i.d. with P fixed, but unknown.

Data space



Input space

X input space:

- ► Linear spaces, e. g.
 - vectors,
 - functions,
 - matrices/operators.

- "Structured" spaces, e. g.
 - strings,
 - probability distributions,
 - graphs.

Output space

Y output space:

- linear spaces, e. g.
 - $Y = \mathbb{R}$, regression,
 - $Y = \mathbb{R}^{T}$, multitask regression,
 - Y Hilbert space, functional regression.

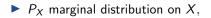
"Structured" spaces, e. g.

- $Y = \{-1, 1\}$, classification,
- $Y = \{1, \ldots, T\}$, multicategory classification,
- strings,
- probability distributions,
- graphs.

Probability distribution

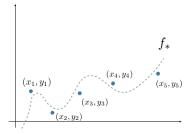
Reflects uncertainty and stochasticity of the learning problem,

 $P(x,y) = P_X(x)P(y|x),$



▶ P(y|x) conditional distribution on Y given $x \in X$.

Conditional distribution and noise



Regression

$$y_i = f_*(x_i) + \epsilon_i.$$

▶ Let $f_* : X \to Y$, fixed function,

• $\epsilon_1, \ldots, \epsilon_n$ zero mean random variables, $\epsilon_i \sim N(0, \sigma)$,

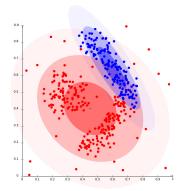
 \blacktriangleright x_1, \ldots, x_n random,

$$P(y|x) = N(f^*(x), \sigma)$$

Conditional distribution and misclassification

Classification

 $P(y|x) = \{P(1|x), P(-1|x)\}.$

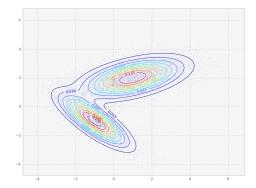


Noise in classification: overlap between the classes,

$$\Delta_{\delta} = \Big\{ x \in X \ \Big| \ \big| P(1|x) - 1/2 \big| \le \delta \Big\}.$$

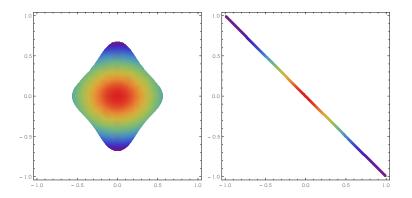
Marginal distribution and sampling

 P_X takes into account uneven sampling of the input space.



Marginal distribution, densities and manifolds

$$p(x) = \frac{dP_X(x)}{dx} \Rightarrow p(x) = \frac{dP_X(x)}{d\operatorname{vol}(x)}$$



Loss functions

 $\ell: Y \times Y \to [0,\infty)$

• Cost of predicting f(x) in place of y.

• Measures the *pointwise error* $\ell(y, f(x))$.

▶ Part of the problem definition since $L(f) = \int_{X \times Y} \ell(y, f(x)) dP(x, y)$.

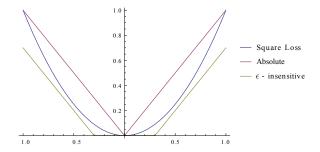
Note: sometimes it is useful to consider loss of the form

$$\ell: Y imes \mathcal{G} o [0,\infty)$$

for some space \mathcal{G} , e.g. $\mathcal{G} = \mathbb{R}$.

Loss for regression

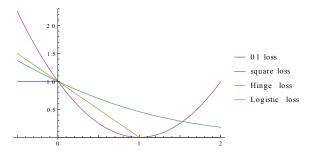
$$\ell\ell(y,y') = V(y-y'), \quad V: \mathbb{R} \to [0,\infty).$$



Loss for classification

$$\ell(y,y')=V(-yy'), \quad V:\mathbb{R} o [0,\infty).$$

0-1 loss ℓ(y, y') = Θ(-yy'), Θ(a) = 1, if a ≥ 0 and 0 otherwise.
 Square loss ℓ(y, y') = (1 - yy')².
 Hinge-loss ℓ(y, y') = max(1 - yy', 0).
 Logistic loss ℓ(y, y') = log(1 + exp(-yy')).



Loss function for structured prediction

Loss specific for each learning task, e.g.

- Multiclass: square loss, weighted square loss, logistic loss, ...
- Multitask: weighted square loss, absolute,

▶ ...

Expected risk

$$L(f) = \int_{X \times Y} \ell(y, f(x)) dP(x, y),$$

with

$$f \in \mathcal{F}, \quad \mathcal{F} = \{f : X \to Y \mid f \text{ measurable}\}.$$

Example

$$Y = \{-1, +1\}, \quad \ell(y, f(x)) = \Theta(-yf(x))^{-1}$$
$$L(f) = \mathbb{P}(\{(x, y) \in X \times Y \mid f(x) \neq y\}).$$

 $^{1}\Theta(a) = 1$, if $a \ge 0$ and 0 otherwise.

Target function

$$f_P = \arg \min_{f \in \mathcal{F}} L(f),$$

can be derived for many loss functions.

$$L(f) = \int dP(x,y)\ell(y,f(x)) = \int dPX(x) \underbrace{\int \ell(y,f(x))dP(y|x)}_{L_x(f(x))},$$

It is possible to show that:

• $\inf_{f \in \mathcal{F}} L(f) = \int dP_X(x) \inf_{a \in \mathbb{R}} L_x(a).$

• Minimizers of L(f) can be derived "pointwise" from the inner risk $L_x(f(x))$.

Target functions in regression

square loss

$$f_P(x) = \int_Y y dP(y|x).$$

absolute loss

$$f_{P}(x) = \text{median}(P(y|x)),$$

median $(p(\cdot)) = y$ s.t. $\int_{-\infty}^{y} tdp(t) = \int_{y}^{+\infty} tdp(t).$

Target functions in classification

misclassification loss

$$f_P(x) = \operatorname{sign}(P(1|x) - P(-1|x)).$$

square loss

$$f_P(x) = P(1|x) - P(-1|x).$$

logistic loss

$$f_P(x) = \log \frac{P(1|x)}{P(-1|x)}.$$

hinge-loss

$$f_P(x) = \operatorname{sign}(P(1|x) - P(-1|x)).$$

Learning algorithms

Solve

 $\min_{f\in\mathcal{F}}L(f),$

given only

$$S_n = (x_1, y_1), \ldots, (x_n, y_n) \sim P^n$$
.

$$S_n \to \widehat{f}_n = \widehat{f}_{S_n}.$$

 f_n estimates f_P given the observed examples S_n .

How to measure the error of an estimate?

Excess risk

Excess risk:

$$L(\widehat{f}) - \min_{f\in\mathcal{F}} L(f).$$

Consistency: For any $\epsilon > 0$,

$$\lim_{n\to\infty}\mathbb{P}\left(L(\widehat{f})-\min_{f\in\mathcal{F}}L(f)>\epsilon\right)=0.$$

Other forms of consistency

Consistency in Expectation: For any $\epsilon > 0$,

$$\lim_{n\to\infty}\mathbb{E}[L(\widehat{f})-\min_{f\in\mathcal{F}}L(f)]=0.$$

Consistency almost surely: For any $\epsilon > 0$,

$$\mathbb{P}\left(\lim_{n\to\infty} L(\widehat{f}) - \min_{f\in\mathcal{F}} L(f) = 0\right) = 1.$$

Note: different notions of consistency correspond to different notions of convergence for random variables: weak, in expectation and almost sure.

Sample complexity, tail bounds and error bounds

Sample complexity: For any $\epsilon > 0, \delta \in (0, 1]$, when $n \ge n_{P, \mathcal{F}}(\epsilon, \delta)$,

$$\mathbb{P}\left(L(\widehat{f})-\min_{f\in\mathcal{F}}L(f)\geq\epsilon\right)\leq\delta.$$

▶ *Tail bounds*: For any $\epsilon > 0, n \in \mathbb{N}$,

$$\mathbb{P}\left(L(\widehat{f})-\min_{f\in\mathcal{F}}L(f)\geq\epsilon\right)\leq\delta_{\mathcal{P},\mathcal{F}}(n,\epsilon).$$

• Error bounds: For any $\delta \in (0, 1]$, $n \in \mathbb{N}$,

$$\mathbb{P}\left(L(\widehat{f}) - \min_{f \in \mathcal{F}} L(f) \leq \epsilon_{\mathcal{P},\mathcal{F}}(n,\delta)\right) \geq 1 - \delta.$$

No free-lunch theorem

A good algorithm should have small sample complexity for many distributions P.

No free-lunch

Is it possible to have an algorithm with small (finite) sample complexity for **all** problems?

The no free lunch theorem provides a negative answer.

In other words given an algorithm there exists a problem for which the learning performance are arbitrarily bad.

Algorithm design: complexity and regularization

The design of most algorithms proceed as follows:

▶ Pick a (possibly large) class of function *H*, ideally

$$\min_{f\in\mathcal{H}}L(f)=\min_{f\in\mathcal{F}}L(f)$$

▶ Define a procedure $A_{\gamma}(S_n) = \hat{f}_{\gamma} \in \mathcal{H}$ to *explore* the space \mathcal{H}

Bias and variance

Let f_{γ} be the solution obtained with an infinite number of examples.

Key error decomposition

$$L(\hat{f}_{\gamma}) - \min_{f \in \mathcal{H}} L(f) = \underbrace{L(\hat{f}_{\gamma}) - L(f_{\gamma})}_{Variance/Estimation} + \underbrace{L(f_{\gamma}) - \min_{f \in \mathcal{H}} L(f)}_{Bias/Approximation}$$

Small Bias lead to good data fit, high variance to possible instability.

ERM and structural risk minimization

A classical example.

Consider $(\mathcal{H}_{\gamma})_{\gamma}$ such that

$$\mathcal{H}_1 \subset \mathcal{H}_2, \ldots \mathcal{H}_\gamma \subset \ldots \mathcal{H}$$

Then, let

$$\hat{f}_{\gamma} = \min_{f \in \mathcal{H}_{\gamma}} \hat{L}(f), \qquad \qquad \hat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i))$$

Example \mathcal{H}_{γ} are functions $f(x) = w^{\top}x$ (or $f(x) = w^{\top}\Phi(x)$), s.t. $||w|| \leq \gamma$

Beyond constrained ERM

In this course we will see other algorithm design principles:

- Penalization
- Stochastic gradient descent
- Implicit regularization
- Regularization by projection