
MIT 9.520/6.860, Fall 2018
Statistical Learning Theory and Applications

Class 02: Statistical Learning Setting

Lorenzo Rosasco

Learning from examples

I Machine Learning deals with systems that are trained from data
rather than being explicitly programmed.

I Here we describe the framework considered in statistical learning
theory.

L.Rosasco, 9.520/6.860 Fall 2018

All starts with DATA

I Supervised: {(x1, y1), . . . , (xn, yn)}.

I Unsupervised: {x1, . . . , xm}.

I Semi-supervised: {(x1, y1), . . . , (xn, yn)} ∪ {x1, . . . , xm}.

L.Rosasco, 9.520/6.860 Fall 2018

Supervised learning

? ?

? ?

Problem: given Sn = {(x1, y1), . . . , (xn, yn)} find f (xnew) ∼ ynew

L.Rosasco, 9.520/6.860 Fall 2018

The supervised learning problem

I X × Y probability space, with measure P.

I ` : Y × Y → [0,∞), measurable loss function.

Define expected risk:

L(f) =

∫
X×Y

`(y , f (x))dP(x , y).

Problem: Solve
min

f :X→Y
L(f),

given only
Sn = (x1, y1), . . . , (xn, yn) ∼ Pn,

sampled i.i.d. with P fixed, but unknown.

L.Rosasco, 9.520/6.860 Fall 2018

Data space

X︸︷︷︸
input space

Y︸︷︷︸
output space

L.Rosasco, 9.520/6.860 Fall 2018

Input space

X input space:

I Linear spaces, e. g.

– vectors,
– functions,
– matrices/operators.

I “Structured” spaces, e. g.

– strings,
– probability distributions,
– graphs.

L.Rosasco, 9.520/6.860 Fall 2018

Output space

Y output space:

I linear spaces, e. g.

– Y = R, regression,
– Y = RT , multitask regression,
– Y Hilbert space, functional regression.

I “Structured” spaces, e. g.

– Y = {−1, 1}, classification,
– Y = {1, . . . ,T}, multicategory classification,
– strings,
– probability distributions,
– graphs.

L.Rosasco, 9.520/6.860 Fall 2018

Probability distribution

Reflects uncertainty and stochasticity of the learning problem,

P(x , y) = PX (x)P(y |x),

I PX marginal distribution on X ,

I P(y |x) conditional distribution on Y given x ∈ X .

L.Rosasco, 9.520/6.860 Fall 2018

Conditional distribution and noise

f⇤

(x2, y2)

(x3, y3)

(x4, y4)
(x5, y5)(x1, y1)

Regression

yi = f∗(xi) + εi .

I Let f∗ : X → Y , fixed function,

I ε1, . . . , εn zero mean random variables, εi ∼ N(0, σ),

I x1, . . . , xn random,

P(y |x) = N(f ∗(x), σ).
L.Rosasco, 9.520/6.860 Fall 2018

Conditional distribution and misclassification

Classification
P(y |x) = {P(1|x),P(−1|x)}.

1

0.9

Noise in classification: overlap between the classes,

∆δ =
{
x ∈ X

∣∣∣ ∣∣P(1|x)− 1/2
∣∣ ≤ δ}.

L.Rosasco, 9.520/6.860 Fall 2018

Marginal distribution and sampling

PX takes into account uneven sampling of the input space.

L.Rosasco, 9.520/6.860 Fall 2018

Marginal distribution, densities and manifolds

p(x) =
dPX (x)

dx
⇒ p(x) =

dPX (x)

dvol(x)

- 1.0 - 0.5 0.0 0.5 1.0

- 1.0

- 0.5

0.0

0.5

1.0

- 1.0 - 0.5 0.0 0.5 1.0

- 1.0

- 0.5

0.0

0.5

1.0

L.Rosasco, 9.520/6.860 Fall 2018

Loss functions

` : Y × Y → [0,∞)

I Cost of predicting f (x) in place of y .

I Measures the pointwise error `(y , f (x)).

I Part of the problem definition since L(f) =
∫
X×Y `(y , f (x))dP(x , y).

Note: sometimes it is useful to consider loss of the form

` : Y × G → [0,∞)

for some space G, e.g. G = R.

L.Rosasco, 9.520/6.860 Fall 2018

Loss for regression

``(y , y ′) = V (y − y ′), V : R→ [0,∞).

I Square loss `(y , y ′) = (y − y ′)2.

I Absolute loss `(y , y ′) = |y − y ′|.
I ε-insensitive `(y , y ′) = max(|y − y ′| − ε, 0).

1.0 0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Square Loss

Absolute

insensitive-

L.Rosasco, 9.520/6.860 Fall 2018

Loss for classification

`(y , y ′) = V (−yy ′), V : R→ [0,∞).

I 0-1 loss `(y , y ′) = Θ(−yy ′), Θ(a) = 1, if a ≥ 0 and 0 otherwise.

I Square loss `(y , y ′) = (1− yy ′)2.

I Hinge-loss `(y , y ′) = max(1− yy ′, 0).

I Logistic loss `(y , y ′) = log(1 + exp(−yy ′)).

1 2

0.5

1.0

1.5

2.0

0 1 loss

square loss

Hinge loss

Logistic loss

0.5

L.Rosasco, 9.520/6.860 Fall 2018

Loss function for structured prediction

Loss specific for each learning task, e.g.

I Multiclass: square loss, weighted square loss, logistic loss, . . .

I Multitask: weighted square loss, absolute, . . .

I . . .

L.Rosasco, 9.520/6.860 Fall 2018

Expected risk

L(f) =

∫
X×Y

`(y , f (x))dP(x , y),

with
f ∈ F , F = {f : X → Y | f measurable}.

Example

Y = {−1,+1}, `(y , f (x)) = Θ(−yf (x)) 1

L(f) = P({(x , y) ∈ X × Y | f (x) 6= y}).

1Θ(a) = 1, if a ≥ 0 and 0 otherwise. L.Rosasco, 9.520/6.860 Fall 2018

Target function

fP = arg min
f∈F

L(f),

can be derived for many loss functions.

L(f) =

∫
dP(x , y)`(y , f (x)) =

∫
dPX (x)

∫
`(y , f (x))dP(y |x)︸ ︷︷ ︸

Lx (f (x))

,

It is possible to show that:

I inf f∈F L(f) =
∫
dPX (x) infa∈R Lx(a).

I Minimizers of L(f) can be derived “pointwise” from the inner risk
Lx(f (x)).

L.Rosasco, 9.520/6.860 Fall 2018

Target functions in regression

square loss

fP(x) =

∫
Y

ydP(y |x).

absolute loss
fP(x) = median(P(y |x)),

median(p(·)) = y s.t.

∫ y

−∞
tdp(t) =

∫ +∞

y

tdp(t).

L.Rosasco, 9.520/6.860 Fall 2018

Target functions in classification

misclassification loss

fP(x) = sign(P(1|x)− P(−1|x)).

square loss
fP(x) = P(1|x)− P(−1|x).

logistic loss

fP(x) = log
P(1|x)

P(−1|x)
.

hinge-loss
fP(x) = sign(P(1|x)− P(−1|x)).

L.Rosasco, 9.520/6.860 Fall 2018

Learning algorithms

Solve
min
f∈F

L(f),

given only
Sn = (x1, y1), . . . , (xn, yn) ∼ Pn.

Learning algorithm
Sn → f̂n = f̂Sn .

fn estimates fP given the observed examples Sn.

How to measure the error of an estimate?

L.Rosasco, 9.520/6.860 Fall 2018

Excess risk

Excess risk:
L(f̂)−min

f∈F
L(f).

Consistency: For any ε > 0,

lim
n→∞

P
(
L(f̂)−min

f∈F
L(f) > ε

)
= 0.

L.Rosasco, 9.520/6.860 Fall 2018

Other forms of consistency

Consistency in Expectation: For any ε > 0,

lim
n→∞

E[L(f̂)−min
f∈F

L(f)] = 0.

Consistency almost surely: For any ε > 0,

P
(

lim
n→∞

L(f̂)−min
f∈F

L(f) = 0

)
= 1.

Note: different notions of consistency correspond to different notions of
convergence for random variables: weak, in expectation and almost sure.

L.Rosasco, 9.520/6.860 Fall 2018

Sample complexity, tail bounds and error bounds

I Sample complexity: For any ε > 0, δ ∈ (0, 1], when n ≥ nP,F (ε, δ),

P
(
L(f̂)−min

f∈F
L(f) ≥ ε

)
≤ δ.

I Tail bounds: For any ε > 0, n ∈ N,

P
(
L(f̂)−min

f∈F
L(f) ≥ ε

)
≤ δP,F (n, ε).

I Error bounds: For any δ ∈ (0, 1], n ∈ N,

P
(
L(f̂)−min

f∈F
L(f) ≤ εP,F (n, δ)

)
≥ 1− δ.

L.Rosasco, 9.520/6.860 Fall 2018

No free-lunch theorem

A good algorithm should have small sample complexity for many
distributions P.

No free-lunch
Is it possible to have an algorithm with small (finite) sample complexity
for all problems?

The no free lunch theorem provides a negative answer.

In other words given an algorithm there exists a problem for which the
learning performance are arbitrarily bad.

L.Rosasco, 9.520/6.860 Fall 2018

Algorithm design: complexity and regularization

The design of most algorithms proceed as follows:

I Pick a (possibly large) class of function H, ideally

min
f∈H

L(f) = min
f∈F

L(f)

I Define a procedure Aγ(Sn) = f̂γ ∈ H to explore the space H

L.Rosasco, 9.520/6.860 Fall 2018

Bias and variance

Let fγ be the solution obtained with an infinite number of examples.

Key error decomposition

L(f̂γ)− min
f∈H

L(f) = L(f̂γ)− L(fγ)︸ ︷︷ ︸
Variance/Estimation

+ L(fγ)− min
f∈H

L(f)︸ ︷︷ ︸
Bias/Approximation

Small Bias lead to good data fit, high variance to possible instability.

L.Rosasco, 9.520/6.860 Fall 2018

ERM and structural risk minimization

A classical example.

Consider (Hγ)γ such that

H1 ⊂ H2, . . .Hγ ⊂ . . .H

Then, let

f̂γ = min
f∈Hγ

L̂(f), L̂(f) =
1

n

n∑
i=1

`(yi , f (xi))

Example
Hγ are functions f (x) = w>x (or f (x) = w>Φ(x)), s.t.‖w‖ ≤ γ

L.Rosasco, 9.520/6.860 Fall 2018

Beyond constrained ERM

In this course we will see other algorithm design principles:

I Penalization

I Stochastic gradient descent

I Implicit regularization

I Regularization by projection

L.Rosasco, 9.520/6.860 Fall 2018

