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Class 19: Data Representation by Design



What is data representation?

Let X be a data-space

F XX
M

�  

�(M)
 � �(M)

A data representation is a map

Φ : X → F ,

from the data space to a representation space F .

A data reconstruction is a map

Ψ : F → X .
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Name game

Φ : X → F , Ψ : F → X

Different names in different fields:

I learning: feature map/pre-image

I signal processing: analysis/synthesis

I information theory: encoder/decoder

I computational geometry: representation=embedding
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Learning and data representation

f (x) = 〈w ,Φ(x)〉F , ∀x ∈ X
Two-step learning scheme:

I Data representation: Φ:X → F , x 7→ Φ(x)

I Supervised learning of w in F

Representation examples:

I By design: Fourier, Frames, Random projections, Kernels

I Unsupervised: VQ, K-means/K-flats, Sparse Coding, Dictionary
Learning, PCA, Autoencoders, NMF, RBF networks

I Supervised: Neural Networks, ConvNets, Supervised DL
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Road map

I Prologue/summary: Learning theory and data representation

I Part I: Data representations by design

I Part II: Data representations by learning

I Part III: Deep data representations
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Data representation & learning theory

Supervised learning is the most mature and well understood form of
machine learning.

Foundational results in learning theory establish when learning is
possible & show the importance of data representation.

keywords: sample complexity, no free lunch theorem, reproducing kernel
Hilbert space
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Key theorem in supervised learning

I Supervised learning: find unknown function

f :X → Y

given examples Sn = {(xi , yi )}ni=1 ∈ (X ,Y).

I Key theorem: finite sample complexity1 only possible within a
suitable space of hypothesis space H ⊂ {f |f : X → Y}.

1Number of samples required to achieve an accuracy with a given confidence.9.520/6.860 Fall 2017



More formally...

I Data space X × Y with probability distribution ρ

I Loss function V : Y × Y → [0,∞),

Problem: Solve

inf
f∈F
E(f ), E(f ) =

∫
X×Y

V (f (x), y)dρ(x , y).

given a training set Sn = {(x1, y1), . . . , (xn, yn)} sampled identically and
independently with respect to ρ.

Note:
- ρ fixed but unknown
- F space of all (measurable) functions
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Learning algorithms & hypothesis space

inf
f∈F
E(f ),

I Learning algorithm: procedure providing an approximate solution f̂
given a training set Sn.

I Hypothesis space: space of all possible solutions H that can be
returned by a learning algorithm.

Examples: Regularization Nets, Kernel Machines/SVM, Neural
Networks, Nearest Neighbors . . .
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Sample complexity

The quality of a learning algorithm is captured by the sample complexity.

Definition (Sample Complexity)
For all ε ∈ [0,∞), δ ∈ [0, 1], an algorithm has sample complexity
nH(ε, δ,H) ∈ N if

∀n ≥ nH(ε, δ, ρ), P
(
E(f̂ )− inf

f∈H
E(f ) ≥ ε

)
≤ δ

Note:

I Space of all functions F is replaced by the hypothesis space H.

I Probably approximately correct (PAC) solution, with nH(ε, δ,H)
samples achieves accuracy ε with confidence 1− δ.
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Key theorem: No free lunch!

The sample complexity of an algorithm can be infinite if H is too big
(e.g. space of all possible function F)

sup
F

sup
ρ

nF (ε, δ, ρ) =∞

inf
f̂

sup
ρ

nF (ε, δ, ρ) =∞

Take home message (1):
Learning with finite samples is possible only if an algorithm operates in a
constrained hypothesis space.
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Hypothesis space & data representations

Under weak assumptions:

hypothesis space H ⇔ data representation Φ : X → F

f (x) = 〈w ,Φ(x)〉F
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Hypothesis space & data representation

Requirements on the hypothesis space H:

I statistical arguments (e.g., sample complexity)

I computational considerations

A function space suitable for

I efficient computations,

I defining empirical quantities (e.g. empirical data error)

⇒ reproducing kernel Hilbert spaces (RKHS).
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RKHS

Definition (RKHS)
Hilbert space of functions for which evaluation functionals are
continuous, i.e. for all x ∈ X

|f (x)| ≤ Cx ‖f ‖H .

Recall that aside from other technical aspects a Hilbert space is:

I a (possibly) infinite dimensional linear space2

I endowed with an inner product (hence, norm, distance, notion of
orthogonality etc)

2closed with respect to sum and multiplication by scalars 9.520/6.860 Fall 2017



RKHS and data representation

Theorem
If H is a RKHS there exists a representation (feature) space F and a
data representation Φ : X → F , such that for all f ∈ H there exists w
satisfying

f (x) = 〈w ,Φ(x)〉F , ∀x ∈ X .

I H is equivalent to feature map Φ:X → F

H = {f : X → Y : ∃w ∈ F , f (x) = 〈w ,Φ(x)〉F ,∀x ∈ X}

I Feature space F (Hilbert space isometric to H):

‖f ‖H = inf{‖w‖F ,w ∈ F}

Take home message 2:
Under (relatively) mild assumptions the choice of a hypothesis space and
a data representation are equivalent.
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End of prologue

f (x) = 〈w ,Φ(x)〉F

Currently: theory and algorithms to provably learn w from data with Φ
assumed to be given...

although in practice the data representation Φ is known to often make
the biggest difference.
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Road map

I Prologue: Learning theory and data representation

I Part I: Data representations by design

I Part II: Data representations by learning

I Part III: Deep data representations

I Epilogue: What’s next?
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Plan

Data representations that are designed:

1. Classic representations in Signal Processing

– unitary, basis, Fourier
– frames
– dictionaries
– randomized

2. Representations for Machine Learning

– feature maps to kernels
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Notation

X : data space

I X = Rd or X = Cd (also more general later).

I x ∈ X

Data representation: Φ : X → F .

∀x ∈ X ,∃z ∈ F : Φ(x) = z ∈ F

F : representation space

I F = Rp or F = Cp

I z ∈ F

Data reconstruction: Ψ : F → X .

∀z ∈ F ,∃x ∈ X : Ψ(z) = x ∈ X
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Unitary data representations

Let X = F = Cd and {a1, . . . , ad} an orthonormal basis in Cd .

Consider Φ : X → F such that for all x ∈ X

Φ(x) = (〈x , a1〉 , . . . , 〈x , ad〉)

Remarks on Φ

I can be identified with d × d matrix U with rows given by the atoms
a1, . . . , ad ,

I is a linear map, Φ(x) = Ux ,

I is a unitary transformation: U∗U = I .
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Unitary transformations

U∗U = UU∗ = I

Isomorphism between two Hilbert spaces

Φ : X → F

Bijective function that preserves the inner product

〈Φ(x),Φ(x ′)〉F = 〈x ,U∗Ux ′〉X = 〈x , x ′〉X , ∀x , x ′ ∈ X
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Reconstruction for unitary data representation

Consider Ψ : F → X such that,

Ψ(z) =
d∑

k=1

akz
k , ∀z ∈ F

Reconstruction:

x =
d∑

k=1

ak(〈ak , x〉) =
d∑

k=1

akz
k , ∀x ∈ X

Remarks on Ψ

I can be identified with the d × d matrix U∗ with columns given by
the atoms,

I is a linear map Ψ(z) = U∗z ,

I is exact, in the sense Ψ ◦ Φ = U∗U = I .
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Metric properties of unitary representations

Satisfy Parseval’s identity (norm preservation)

‖Φ(x)‖2 =
d∑

k=1

| 〈x , ak〉 |2 = ‖x‖2
, ∀x ∈ X .

Representation is an isometry (distance preservation)

‖Φ(x)− Φ(x ′)‖ = ‖x − x ′‖ , ∀x , x ′ ∈ X ,
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Example: Fourier representation (DFT)

Fourier basis: orthonormal basis of Cd formed by the atoms:

{ak}dk=1 =

{
1√
d
,

1√
d
e−2πik 1

d ,
1√
d
e−2πik 2

d , . . . ,
1√
d
e−2πik (d−1)

d

}

Representation (discrete Fourier transform (DFT)):

Φ(x) = Ux = z , zk =
1√
d

d−1∑
j=0

x je−2πik j
d , k = 0, . . . , d − 1,

Reconstruction (inverse DFT):

Ψ(z) = U∗z = x , x j =
1√
d

d−1∑
k=0

zke2πij kd , j = 0, . . . , d − 1.
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The pursuit of the right basis

Choice of the basis U or dictionary of atoms {ak}dk=1 reflects prior
information about the data or the problem, e.g.

I physical system (frequencies)

I intepretability (spectral content)

I . . .

Can this be extended to more general dictionaries than orthonormal
bases? 3

3Image credit: C. Hale, ”What is a Frame?”, 2003 9.520/6.860 Fall 2017



Frames

Generalization of a basis: a weaker form of Parseval’s identity.

Definition (Frame)
A finite set of atoms {a1, . . . , ap}, ak ∈ Rd for which there exists
0 < A ≤ B <∞ such that for all x ∈ X

A ‖x‖2 ≤
p∑

k=1

| 〈x , ak〉 |2 ≤ B ‖x‖2
.

Remarks:

I Tight frame: A = B.

I Parseval frame: A = B = 1.

I Union of orthonormal bases (renormalized) is a tight frame.
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Frame examples

1. {ak} = {e1, e1, e2, e2, . . . }, {ei}di=1 ∈ Rd

p∑
k=1

| 〈x , ak〉 |2 =
d∑

k=1

| 〈x , ek〉 |2 +
d∑

k=1

| 〈x , ek〉 |2 = 2||x ||2

tight frame for Rd with A = B = 2

2. {ak} = {e1,
1√
2
e2,

1√
2
e2,

1√
3
e3,

1√
3
e3,

1√
3
e3 . . . }, {ei}di=1 ∈ Rd

p∑
k=1

| 〈x , ak〉 |2 =
d∑

k=1

k

∣∣∣∣〈x , 1√
k
ek

〉∣∣∣∣2 =
d∑

k=1

| 〈x , ek〉 |2 = ||x ||2

Parseval frame for Rd with A = B = 1
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Frame examples (cont.)

*Many* other useful examples of frames:

I wavelets: dyadic scaling and translations 4

I Gabor frames

I curvelets: scale, rotation, translation (tight frame)

I shearlets

I . . .
4Image credit: L. Jacques, et. al., 2013 9.520/6.860 Fall 2017



Frame data representation

Let X = Rd ,F = Rp and consider the representation

Φ : X → F , Φ(x) = (〈x , a1〉 , . . . , 〈x , ap〉), ∀x ∈ X .

Remarks:

I linear map,

I can be identified with a p × d rectangular matrix F ,

Φ(x) = Fx , ∀x ∈ X
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Metric properties of frame representations

Relaxed Parseval’s identity

A ‖x‖2 ≤ ‖Φ(x)‖2 ≤ B ‖x‖2
, ∀x ∈ X .

Stable representation/embedding

A ‖x − x ′‖2 ≤ ‖Φ(x)− Φ(x ′)‖2 ≤ B ‖x − x ′‖2
, ∀x , x ′ ∈ X .

Stable isometries: preserve distances (up to distortions), not isometries
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Non-unitary frame operator

Remarks (cont.):

I linear map Φ(x) = Fx , ∀x ∈ X
I F is not unitary F ∗F 6= I

Note that

〈Fx , z〉F =

p∑
k=1

〈ak , x〉 zk =

〈
p∑

k=1

akz
k , x

〉
,

then

F ∗z =

p∑
k=1

akz
k , ∀z ∈ F

Frame operator

T = F ∗F : X → X , Tx =

p∑
k=1

ak 〈ak , x〉 , ∀x ∈ X .
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Frame operator invertibility

Remarks (cont.):

I F is not unitary T = F ∗F 6= I . . .

I . . . however T = F ∗F is invertible.

T = F ∗F : X → X , Tx =

p∑
k=1

ak 〈ak , x〉 , ∀x ∈ X .

Proof.

1. F ∗z =
∑d

k=1 akz
k , ∀z ∈ F

2. using linearity
∑p

k=1 | 〈x , ak〉 |
2 = ‖Fx‖2

F = 〈Fx ,Fx〉 = 〈Tx , x〉 , ∀x ∈ X .
3. rewrite frame bound

A ≤ 〈Tx , x〉
‖x‖2 ≤ B, ∀x ∈ X .

4. 〈Tx,x〉‖x‖2 is the Rayleigh quotient of T : minimized by its smallest eigenvalue.
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Frame data reconstruction

Consider Ψ : F → X , F = Rp, X = Rd

Ψ(z) =

p∑
k=1

ãkz
k , ∀w ∈ F ,

where
ãk = T−1ak , k = 1, . . . , p, T = F ∗F

Remarks on Ψ

I linear,

I also as rectangular matrix F̃ (with suitable atoms as columns)

Ψ(z) = F̃ z = (〈z , ã1〉 , . . . , 〈z , ãp〉) , ∀z ∈ F .
I well defined and exact, Ψ ◦ Φ = I .

9.520/6.860 Fall 2017



Exact reconstruction

Remarks (cont.)

I Ψ is well defined and

I reconstruction is exact, Ψ ◦ Φ = I .

Proof.
For all x ∈ X with z = Fx ∈ F , then

Ψ(z) =

p∑
k=1

ãkz
k = T−1

p∑
k=1

ak 〈x , ak〉 = T−1Tx = x .

Note:
It is also easy to check this by writing

Ψ(z) = F̃ z = (〈z , ã1〉 , . . . , 〈z , ãp〉) , ∀z ∈ F .

Ψ(z) = Ψ(Φ(x) = Ψ(Fx) = F̃Fx = T−1F∗F = T−1Tx = x
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Linear representation given a dictionary

Consider a general (redundant) dictionary

{a1, . . . , ap}, ak ∈ Rd , p > d ,

spanning a space of dimension smaller than d .

Linear representation letting F = Rp

Φ : X → F , Φ(x) = (〈x , a1〉 , . . . , 〈x , ap〉) = w , ∀x ∈ X .

I Φ(x) identified by p × d matrix Cx = w
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Linear reconstruction given a dictionary

Reconstruction problem is ill-posed:

find x ∈ X by solving Φ(x) = Cx = w .

Define reconstruction by the minimization problem

Ψ(w) = arg min
x∈X

‖x‖2 , subject to Φ(x) = w ,

or using the linear maps

Dw = arg min
x∈X

‖x‖2 , subject to Cx = w ,

Given the pseudoinverse of the representation,

D = C † = (C∗C )−1C∗

.
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Representation and reconstruction given a dictionary II

Complementary point of view

Consider the reconstruction (de-coding)

Ψ : F → X , x = Dw =
d∑

k=1

akw
k , ∀w ∈ F ,

. . . and then an associate representation (coding)

Φ(x) = arg min
w∈F

‖w‖2 , subject to Dw ′ = x ,

so that
C = D†

.
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Non-linear reconstruction given a dictionary

Representation and reconstruction from regularizers other than the
square norm.

Φ(x) = arg min
w∈F

R(w), subject to Dw = x .

e.g., sparsity:

Φ(x) = arg min
w∈F

‖w‖1 , subject to Dw = x .

Remarks:

I sparsity: characterize data by few atoms.

I redundant (overcomplete) dictionaries.

I solution cannot be computed in closed form:

– involves solving a convex, non-smooth problem,
– e.g. splitting methods.
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Noisy data

Φ(x) = arg min
w∈F

R(w), subject to ‖Dw − x‖2 ≤ δ, δ > 0

where δ is a precision related to the noise level.

Alternative formulations:

I Constrained:

Φ(x) = arg min
w∈F

‖Dw − x‖2
, subject to R(w) ≤ r , r > 0

I Penalized:

Φ(x) = arg min
w∈F

‖Dw − x‖2 + λR(w), λ > 0
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Remarks

I Suitable choice of a dictionary allows to define a representation and
robust reconstruction.

I Reconstruction/representation can become harder as more general
dictionaries are considered.

I Redundancy allows for flexibility possibly at the expense of
representation dimensionality.

Q:Is it is possible to work with more compact representations?
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Randomized linear representation

Consider a set of random atoms of size smaller then data dimension:

{a1, . . . , ak}, k < d .

where the atoms are, for example, vectors with i.i.d. normal entries.

Randomized representation (of reduced dimensionality):

Φ : X → F = Rk , w = Φ(x) = (〈x , a1〉 , . . . , 〈x , ak〉), ∀x ∈ X .
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Johnson-Lindenstrauss Lemma

Randomized representation defines a stable embedding (ε-isometry), i.e.

(1− ε) ‖x − x ′‖2
2 ≤ ‖Φ(x)− Φ(x ′)‖2

2 ≤ (1 + ε) ‖x − x ′‖2
2

for given ε ∈ (0, 1), with probability 1− δ and for all x , x ′ ∈ Q ⊂ X , if
the number of random projections is

k = O

(
log(|Q|/δ)

ε2

)
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Random matrix design

Restricted Isometry Property (RIP)

(1− δs) ‖x‖2
2 ≤ ‖CX‖

2
2 ≤ (1 + δs) ‖x‖2

2

for matrix C , x being s−sparse with 0 < δs < 1.

Random matrices have shown to have bounded δs .

I Gaussian, Bernoulli, and partial Fourier satisfy RIP with k ≈ s.
9.520/6.860 Fall 2017



Compressed Sensing

Exact reconstruction is possible provided:

I class of data Q is sufficiently “nice” (e.g., sparse vectors)

I number of projections is sufficiently large,

I projection matrix is nearly orthonormal (RIP).

Example:
If C is the of s−sparse vectors and k ∼ s log d

s , then exact reconstruction
is possible with high probability, considering

Ψ(w) = arg min
x∈X

‖x‖1 , subject to Φ(x) = Cx = w ,
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Randomized representation beyond linearity

CS extensions consider non-linear randomized representations

Φ : X → F , w = Φ(x) = (σ(〈x , a1〉), . . . , σ(〈x , ak〉)), ∀x ∈ X

for some non-linear function σ : R→ R.
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From signal processing to kernel machines

So far:

I unitary, frames & dictionary representations

I randomized representations & compressed sensing

Note: interplay between distance preservation and reconstruction.

Such methods:

I lead to parametric supervised learning models

f (x) = 〈w ,Φ(x)〉F , Φ : X → Rp, p <∞,

I mostly restricted to vector data.

Recall: Kernel methods provide a way to tackle both issues.
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Few remarks on kernels

I Computational complexity is independent of feature space
dimension. . . but becomes prohibitive for large scale learning

⇒ subsampling/randomized approximations.

I While flexible, kernel methods rely on the choice of the kernel. . .

can it be learned?
⇒ supervised multiple kernel learning.
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Wrap-up

This class: Data representations by design

I orthonormal basis,

I frames,

I dictionaries,

I random projections,

I kernels.

...based on prior assumptions about the problem or data.

Next class: Can they be learned from data?

I Part II: Data representations by learning

I Part III: Deep data representations
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