MIT 9.520/6.860, Fall 2017
Statistical Learning Theory and Applications

Class 19: Data Representation by Design



What is data representation?

Let X be a data-space

> v
— T\ wea(Mm)
F

A data representation is a map

X

¢ X - F,

from the data space to a representation space F.

A data reconstruction is a map

V:F—=X.
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Name game

¢ X - F, V. F—-X

Different names in different fields:
» learning: feature map/pre-image
» signal processing: analysis/synthesis
» information theory: encoder/decoder
» computational geometry: representation=embedding
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Learning and data representation

Fx) = (W, 0(x)) 7, ¥x € X
Two-step learning scheme:
> Data representation: : X — F, x— ®(x)

> Supervised learning of w in F

Representation examples:
» By design: Fourier, Frames, Random projections, Kernels

» Unsupervised: VQ, K-means/K-flats, Sparse Coding, Dictionary
Learning, PCA, Autoencoders, NMF, RBF networks

» Supervised: Neural Networks, ConvNets, Supervised DL
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Road map

Prologue/summary: Learning theory and data representation
Part |: Data representations by design
Part Il: Data representations by learning

Part Ill: Deep data representations
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Data representation & learning theory

Supervised learning is the most mature and well understood form of
machine learning.

Foundational results in learning theory establish when learning is
possible & show the importance of data representation.

keywords: sample complexity, no free lunch theorem, reproducing kernel
Hilbert space
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Key theorem in supervised learning

» Supervised learning: find unknown function
f:X—=Y
given examples S, = {(x;, yi)}1; € (X, D).

» Key theorem: finite sample complexity* only possible within a
suitable space of hypothesis space H C {f|f : X — V}.

INumber of samples required to achieve an accuracy with a given confickeng.Fai 2017



More formally...

» Data space X x ) with probability distribution p
» Loss function V : Y x Y — [0, 00),

Problem: Solve

inf £(F),  E(F) = /X VUG, 9)dn(, )

feF

given a training set S, = {(x1, y1), ..., (Xn, ¥n)} sampled identically and
independently with respect to p.

Note:
- p fixed but unknown
- F space of all (measurable) functions
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Learning algorithms & hypothesis space

oLE0),

> Learning algorithm: procedure providing an approximate solution f
given a training set S,,.

» Hypothesis space: space of all possible solutions 7 that can be
returned by a learning algorithm.

Examples: Regularization Nets, Kernel Machines/SVM, Neural
Networks, Nearest Neighbors ...
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Sample complexity

The quality of a learning algorithm is captured by the sample complexity.

Definition (Sample Complexity)

For all € € [0,00), § € [0,1], an algorithm has sample complexity
ny(e,0,H) € N if

Vn > ny(e d,p), P (5(?) — inf £(f) > e) <6
S

Note:
» Space of all functions F is replaced by the hypothesis space .

» Probably approximately correct (PAC) solution, with ny (e, d, H)
samples achieves accuracy e with confidence 1 — 6.
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Key theorem: No free lunch!

The sample complexity of an algorithm can be infinite if H is too big
(e.g. space of all possible function F)

supsup nx(e, 4, p) = oo

F op

inf sup nr(e, 9, p) = 0o
f p

Take home message (1):
Learning with finite samples is possible only if an algorithm operates in a

constrained hypothesis space.
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Hypothesis space & data representations

Under weak assumptions:

hypothesis space H < data representation ¢ : X — F

f(x) = (w, ®(x)) £
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Hypothesis space & data representation

Requirements on the hypothesis space H:
> statistical arguments (e.g., sample complexity)
» computational considerations

A function space suitable for
» efficient computations,

» defining empirical quantities (e.g. empirical data error)

= reproducing kernel Hilbert spaces (RKHS).
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RKHS

Definition (RKHS)
Hilbert space of functions for which evaluation functionals are
continuous, i.e. for all x € X

FONN < CellFlly, -

Recall that aside from other technical aspects a Hilbert space is:

» a (possibly) infinite dimensional linear space®

» endowed with an inner product (hence, norm, distance, notion of
orthogonality etc)

2closed with respect to sum and multiplication by scalars 9.520/6.860 Fall 2017



RKHS and data representation

Theorem
If H is a RKHS there exists a representation (feature) space F and a
data representation ® : X — F, such that for all f € H there exists w
satisfying

f(x)=(w,®(x)) -, VxeX.

» 7 is equivalent to feature map ¢: X — F
H={f: X =Y :3IweF f(x)={(w, x))r,Vx € X}

» Feature space F (Hilbert space isometric to H):

[l = inf{{w]z,w e F}

Take home message 2:
Under (relatively) mild assumptions the choice of a hypothesis space and

a data representation are equivalent.
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End of prologue

f(x) = (w, ®(x))

Currently: theory and algorithms to provably learn w from data with ¢
assumed to be given...

although in practice the data representation ® is known to often make
the biggest difference.
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Road map

Prologue: Learning theory and data representation
Part I: Data representations by design

Part Il: Data representations by learning

Part Ill: Deep data representations

Epilogue: What's next?
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Plan

Data representations that are designed:

1. Classic representations in Signal Processing

unitary, basis, Fourier
— frames
— dictionaries
— randomized
2. Representations for Machine Learning
— feature maps to kernels
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Notation

X': data space

» X =R? or ¥ = C9 (also more general later).

> xeX
Data representation: ¢ : X — F.
VxeX,3zeF:d(x)=z€ F

F: representation space
» F=RPor F=CP
» ze F

Data reconstruction: ¥V : F — X.

Vze F,axe X:V¥(z)=xe X
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Unitary data representations

Let X = F = C? and {ay,...,aq4} an orthonormal basis in CY.

Consider ® : X — F such that for all x € X

d(x) = ((x,a1),...,{x,a4))

Remarks on ¢

> can be identified with d x d matrix U with rows given by the atoms
dil,...,dd,
> is a linear map, ®(x) = Ux,

> is a unitary transformation: U*U = I.
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Unitary transformations

uUru=0U0"=1

Isomorphism between two Hilbert spaces

¢ X = F

Bijective function that preserves the inner product

(O(x), (X)) 7z = (x, U Ux") y = (x,X) 5, ¥x,x' €X
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Reconstruction for unitary data representation
Consider V : F — X such that,

= Zakzk, Vze F

Reconstruction:
d
X = Z (ak, x Z azk, YxeXx
k=1

Remarks on ¥

> can be identified with the d x d matrix U* with columns given by
the atoms,

> is a linear map V(z) = U*z,

> is exact, in the sense Vo ® = U*U = I.
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Metric properties of unitary representations

Satisfy Parseval’s identity (norm preservation)

d
IC)I* =D [t a) P =IxI*,  ¥xe .

k=1

Representation is an isometry (distance preservation)

[00) = (N[ = [Ix =XI|, ¥x,x" €,
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Example: Fourier representation (DFT)

Fourier basis: orthonormal basis of C¢ formed by the atoms:

1 1 ol 1 2 1 g (d—=1)
d 2mik 5 2mik 5 2mik
a =< —F=,—F—=¢€ i, ——e d,....,—e€ d
{ k}k ! {\/g \/a \/g \/3 }

Representation (discrete Fourier transform (DFT)):

d—
d(x) = Ux = z, Z e72kG Kk =0,... d—1,

Reconstruction (inverse DFT):

d—
V(z)=U"z=x, Z e i j=0,...,d—1.
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The pursuit of the right basis

Choice of the basis U or dictionary of atoms {ay}¢_; reflects prior
information about the data or the problem, e.g.

> physical system (frequencies)
> intepretability (spectral content)
| S

Can this be extended to more general dictionaries than orthonormal
bases? 3

3Image credit: C. Hale, "What is a Frame?", 2003 0.520/6.860 Fall 2017



Frames

Generalization of a basis: a weaker form of Parseval’s identity.

Definition (Frame)

A finite set of atoms {ai,...,a,},ax € RY for which there exists
0 < A< B < o such that for all x € X

P
AlXIP <D 1) P < BIx|1?
k=1

Remarks:

> Tight frame: A= B.
» Parseval frame: A= B =1.

» Union of orthonormal bases (renormalized) is a tight frame.
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Frame examples

1. {ak} ={e, e1,€,6,... }, {e, leRd

P d d
Slta P =3 e P+ 31 (x e [2 = 2xI2
k=1 k=1 k=1

tight frame for R? with A= B =2

2. {a} = {er. 5, J5e, 50, 58 56 1 e}l € R

P d d
1
x,a5) > = k‘<x7e> X, € = ||x||?
> [ (x,a) | ;ﬂ MO ;:1‘ k) [[x]|

k=1

2

Parseval frame for R with A=B =1
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Frame examples (cont.)

*Many* other useful examples of frames:

» wavelets: dyadic scaling and translations *
! |
! bt “ t
i L t “"’ 4\'
Lo P R}
ho ﬁm)‘lw A .

Gabor frames

v

> curvelets: scale, rotation, translation (tight frame)
> shearlets
>

4Image credit: L. Jacques, et. al., 2013
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Frame data representation

Let X = R?, F = RP and consider the representation

P:X = F, O(x)=((x,a1),...,(x,ap)), VxeX.

Remarks:

» linear map,

> can be identified with a p x d rectangular matrix F,

d(x) =Fx, VxeX
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Metric properties of frame representations

Relaxed Parseval’s identity

2 2 2
AllX® < lIeC)II" < BIx|I,  Vxe .

Stable representation/embedding

Allx = X'|° < [lo(x) — o(x)|* < Bllx = x|, ¥x,x € X.

Stable isometries: preserve distances (up to distortions), not isometries
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Non-unitary frame operator

Remarks (cont.):
> linear map ®(x) = Fx, Vxe X
» F is not unitary F*F # |

Note that

P
(Fx, z Z (ak, x) z —<Zakz X>

=1
then

P
Fz = Zakzk, Vze F

Frame operator
T=FF: X=X, Tx=) alarx), VxeX.
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Frame operator invertibility

Remarks (cont.):
> Fisnot unitary T = F*F # [ ...
> ...however T = F*F is invertible.

T=FF: XX, Tx=) ala.x), VxeX.

Proof.
L Fz=Y0 az", VvzeF
2. using linearity 37, | (x, a) |* = || Fx||% = (Fx, Fx) = (Tx,x), Vx € X.
3. rewrite frame bound
(Tx, x)

I

<B, VYxeX.

4. % is the Rayleigh quotient of T: minimized by its smallest eigenvalue.
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Frame data reconstruction

Consider V: F —» X, F=RP, X =R

where

Remarks on ¥
> linear,

» also as rectangular matrix F (with suitable atoms as columns)

V(z)=Fz=((z,3),...,(2,3)), Vze&F.

» well defined and exact, Vo ® = /.
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Exact reconstruction

Remarks (cont.)
> W is well defined and

> reconstruction is exact, Vo & = /.

Proof.

For all x € X with z = Fx € F, then

p
\U(z) = Zé'kzk = T_lzak <x,ak> = T_ITX = X.
k=1

Note:
It is also easy to check this by writing

V(z)=Fz=((z,41),...,(z,3p)), VYzeF.

W(z) = W(d(x) = W(Fx) = FFx = TIF*F = T 1 Tx = x
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Linear representation given a dictionary

Consider a general (redundant) dictionary
{a1,...,3p}, a eR?Y p>d,

spanning a space of dimension smaller than d.

Linear representation letting F = RP

P:X = F, O(x)=((x,a1),....(x,ap)) =w, VxelX.

> ®(x) identified by p x d matrix Cx = w
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Linear reconstruction given a dictionary

Reconstruction problem is ill-posed:

find x € X by solving (x) = Cx = w.

Define reconstruction by the minimization problem

V(w) = argmin ||[x||,, subjectto ®(x)=w,
xEX

or using the linear maps

Dw = argmin||x||,, subjectto Cx = w,
XEX

Given the pseudoinverse of the representation,

D=Cl=(c*C)"Ic*
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Representation and reconstruction given a dictionary ||

Complementary point of view

Consider the reconstruction (de-coding)
d
V. F—- X, X:DW:Zaka, Yw e F,
k=1

...and then an associate representation (coding)
®(x) = argmin ||w|[,, subjectto Dw'=x,
weF
so that

C =Dt
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Non-linear reconstruction given a dictionary

Representation and reconstruction from regularizers other than the
square norm.

®(x) = argmin R(w), subjectto Dw = x.
weF

e.g., sparsity:

®(x) = argmin ||w|[;, subjectto Dw = x.
we

Remarks:
> sparsity: characterize data by few atoms.
» redundant (overcomplete) dictionaries.

» solution cannot be computed in closed form:

— involves solving a convex, non-smooth problem,
— e.g. splitting methods.
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Noisy data

®(x) = argmin R(w), subject to ||Dw — x||2 <4, §>0
weF

where 0 is a precision related to the noise level.
Alternative formulations:
» Constrained:

®(x) = argmin ||[Dw — x||2, subjectto R(w)<r, r>0
F

we

» Penalized:

®(x) = argmin |Dw — x||> + AR(w), A >0
weF
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Remarks

» Suitable choice of a dictionary allows to define a representation and
robust reconstruction.

» Reconstruction/representation can become harder as more general
dictionaries are considered.

» Redundancy allows for flexibility possibly at the expense of
representation dimensionality.

Q:ls it is possible to work with more compact representations?
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Randomized linear representation

Consider a set of random atoms of size smaller then data dimension:
{a1,...,a}, k<d.

where the atoms are, for example, vectors with i.i.d. normal entries.

Randomized representation (of reduced dimensionality):

X F=R w=0dKx)=((xa1),...,(xa), VYxeci.
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Johnson-Lindenstrauss Lemma

Randomized representation defines a stable embedding (e-isometry), i.e.
2 2 2
(L—e)llx = X[, < [[@(x) = @), < (1 +€) Ix = XI5

for given ¢ € (0, 1), with probability 1 — § and for all x,x’ € Q C X, if
the number of random projections is

o (120

€2
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Random matrix design

Restricted Isometry Property (RIP)
2 2 2
(1= 6s) [Ix]l> < [[CX[l3 < (1 + 65) [Ix]3

for matrix C, x being s—sparse with 0 < ds < 1.

- Fagnes

Random matrices have shown to have bounded Js.

» Gaussian, Bernoulli, and partial Fourier satisfy RIP with k ~ s.
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Compressed Sensing

Exact reconstruction is possible provided:
> class of data Q is sufficiently “nice” (e.g., sparse vectors)
» number of projections is sufficiently large,

> projection matrix is nearly orthonormal (RIP).

Example:
If C is the of s—sparse vectors and k ~ slog g, then exact reconstruction
is possible with high probability, considering

V(w) = argmin||x|[;, subjectto ®(x)= Cx=w,
xXEX
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Randomized representation beyond linearity

CS extensions consider non-linear randomized representations
O X F, w=9d(x)=(c((x,a1)),...,0({x,ak))), VxeX

for some non-linear function ¢ : R — R.
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From signal processing to kernel machines

So far:
> unitary, frames & dictionary representations

» randomized representations & compressed sensing

Note: interplay between distance preservation and reconstruction.

Such methods:

» lead to parametric supervised learning models
f(x)=(w,d(x))z, P: X =>RP p<oo,
> mostly restricted to vector data.
Recall: Kernel methods provide a way to tackle both issues.
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Few remarks on kernels

» Computational complexity is independent of feature space
dimension. . . but becomes prohibitive for large scale learning

= subsampling/randomized approximations.

» While flexible, kernel methods rely on the choice of the kernel. ..

can it be learned?
= supervised multiple kernel learning.
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Wrap-up

This class: Data representations by design
» orthonormal basis,
» frames,
» dictionaries,
» random projections,
>

kernels.
...based on prior assumptions about the problem or data.

Next class: Can they be learned from data?

» Part Il: Data representations by learning
» Part lll: Deep data representations
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