MIT 9.520/6.860, Fall 2017
 Statistical Learning Theory and Applications

Class 19: Data Representation by Design

What is data representation?

Let \mathcal{X} be a data-space

A data representation is a map

$$
\Phi: \mathcal{X} \rightarrow \mathcal{F}
$$

from the data space to a representation space \mathcal{F}.
A data reconstruction is a map

$$
\Psi: \mathcal{F} \rightarrow \mathcal{X}
$$

Name game

$$
\Phi: \mathcal{X} \rightarrow \mathcal{F}, \quad \Psi: \mathcal{F} \rightarrow \mathcal{X}
$$

Different names in different fields:

- learning: feature map/pre-image
- signal processing: analysis/synthesis
- information theory: encoder/decoder
- computational geometry: representation=embedding

Learning and data representation

$$
f(x)=\langle w, \Phi(x)\rangle_{\mathcal{F}}, \quad \forall x \in \mathcal{X}
$$

Two-step learning scheme:

- Data representation: $\Phi: \mathcal{X} \rightarrow \mathcal{F}, \quad x \mapsto \Phi(x)$
- Supervised learning of w in \mathcal{F}

Representation examples:

- By design: Fourier, Frames, Random projections, Kernels
- Unsupervised: VQ, K-means/K-flats, Sparse Coding, Dictionary Learning, PCA, Autoencoders, NMF, RBF networks
- Supervised: Neural Networks, ConvNets, Supervised DL

Road map

- Prologue/summary: Learning theory and data representation
- Part I: Data representations by design
- Part II: Data representations by learning
- Part III: Deep data representations

Data representation \& learning theory

Supervised learning is the most mature and well understood form of machine learning.

Foundational results in learning theory establish when learning is possible \& show the importance of data representation.
keywords: sample complexity, no free lunch theorem, reproducing kernel Hilbert space

Key theorem in supervised learning

- Supervised learning: find unknown function

$$
f: \mathcal{X} \rightarrow \mathcal{Y}
$$

given examples $S_{n}=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \in(\mathcal{X}, \mathcal{Y})$.

- Key theorem: finite sample complexity ${ }^{1}$ only possible within a suitable space of hypothesis space $\mathcal{H} \subset\{f \mid f: \mathcal{X} \rightarrow \mathcal{Y}\}$.

More formally...

- Data space $\mathcal{X} \times \mathcal{Y}$ with probability distribution ρ
- Loss function $V: \mathcal{Y} \times \mathcal{Y} \rightarrow[0, \infty)$,

Problem: Solve

$$
\inf _{f \in \mathcal{F}} \mathcal{E}(f), \quad \mathcal{E}(f)=\int_{\mathcal{X} \times \mathcal{Y}} V(f(x), y) d \rho(x, y)
$$

given a training set $S_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ sampled identically and independently with respect to ρ.

Note:

- ρ fixed but unknown
- \mathcal{F} space of all (measurable) functions

Learning algorithms \& hypothesis space

$$
\inf _{f \in \mathcal{F}} \mathcal{E}(f)
$$

- Learning algorithm: procedure providing an approximate solution \hat{f} given a training set S_{n}.
- Hypothesis space: space of all possible solutions \mathcal{H} that can be returned by a learning algorithm.

Examples: Regularization Nets, Kernel Machines/SVM, Neural Networks, Nearest Neighbors ...

Sample complexity

The quality of a learning algorithm is captured by the sample complexity.

Definition (Sample Complexity)

For all $\epsilon \in[0, \infty), \delta \in[0,1]$, an algorithm has sample complexity $n_{\mathcal{H}}(\epsilon, \delta, \mathcal{H}) \in \mathbb{N}$ if

$$
\forall n \geq n_{\mathcal{H}}(\epsilon, \delta, \rho), \quad \mathbb{P}\left(\mathcal{E}(\hat{f})-\inf _{f \in \mathcal{H}} \mathcal{E}(f) \geq \epsilon\right) \leq \delta
$$

Note:

- Space of all functions \mathcal{F} is replaced by the hypothesis space \mathcal{H}.
- Probably approximately correct (PAC) solution, with $n_{\mathcal{H}}(\epsilon, \delta, \mathcal{H})$ samples achieves accuracy ϵ with confidence $1-\delta$.

Key theorem: No free lunch!

The sample complexity of an algorithm can be infinite if \mathcal{H} is too big (e.g. space of all possible function \mathcal{F})

$$
\begin{aligned}
& \sup _{\mathcal{F}} \sup _{\rho} n_{\mathcal{F}}(\varepsilon, \delta, \rho)=\infty \\
& \inf _{\hat{f}} \sup _{\rho} n_{\mathcal{F}}(\epsilon, \delta, \rho)=\infty
\end{aligned}
$$

Take home message (1):
Learning with finite samples is possible only if an algorithm operates in a constrained hypothesis space.

Hypothesis space \& data representations

Under weak assumptions:
hypothesis space $\mathcal{H} \Leftrightarrow$ data representation $\Phi: \mathcal{X} \rightarrow \mathcal{F}$

$$
f(x)=\langle w, \Phi(x)\rangle_{\mathcal{F}}
$$

Hypothesis space \& data representation

Requirements on the hypothesis space \mathcal{H} :

- statistical arguments (e.g., sample complexity)
- computational considerations

A function space suitable for

- efficient computations,
- defining empirical quantities (e.g. empirical data error)
\Rightarrow reproducing kernel Hilbert spaces (RKHS).

RKHS

Definition (RKHS)

Hilbert space of functions for which evaluation functionals are continuous, i.e. for all $x \in \mathcal{X}$

$$
|f(x)| \leq C_{x}\|f\|_{\mathcal{H}}
$$

Recall that aside from other technical aspects a Hilbert space is:

- a (possibly) infinite dimensional linear space ${ }^{2}$
- endowed with an inner product (hence, norm, distance, notion of orthogonality etc)

RKHS and data representation

Theorem

If \mathcal{H} is a RKHS there exists a representation (feature) space \mathcal{F} and a data representation $\Phi: \mathcal{X} \rightarrow \mathcal{F}$, such that for all $f \in \mathcal{H}$ there exists w satisfying

$$
f(x)=\langle w, \Phi(x)\rangle_{\mathcal{F}}, \quad \forall x \in \mathcal{X}
$$

- \mathcal{H} is equivalent to feature map $\Phi: \mathcal{X} \rightarrow \mathcal{F}$

$$
\mathcal{H}=\left\{f: \mathcal{X} \rightarrow \mathcal{Y}: \exists w \in \mathcal{F}, f(x)=\langle w, \Phi(x)\rangle_{\mathcal{F}}, \forall x \in \mathcal{X}\right\}
$$

- Feature space \mathcal{F} (Hilbert space isometric to \mathcal{H}):

$$
\|f\|_{\mathcal{H}}=\inf \left\{\|w\|_{\mathcal{F}}, w \in \mathcal{F}\right\}
$$

Take home message 2 :
Under (relatively) mild assumptions the choice of a hypothesis space and a data representation are equivalent.

End of prologue

$$
f(x)=\langle w, \Phi(x)\rangle_{\mathcal{F}}
$$

Currently: theory and algorithms to provably learn w from data with Φ assumed to be given...
although in practice the data representation Φ is known to often make the biggest difference.

Road map

- Prologue: Learning theory and data representation
- Part I: Data representations by design
- Part II: Data representations by learning
- Part III: Deep data representations
- Epilogue: What's next?

Plan

Data representations that are designed:

1. Classic representations in Signal Processing

- unitary, basis, Fourier
- frames
- dictionaries
- randomized

2. Representations for Machine Learning

- feature maps to kernels

Notation

\mathcal{X} : data space

- $\mathcal{X}=\mathbb{R}^{d}$ or $\mathcal{X}=\mathbb{C}^{d}$ (also more general later).
- $x \in \mathcal{X}$

Data representation: $\Phi: \mathcal{X} \rightarrow \mathcal{F}$.

$$
\forall x \in \mathcal{X}, \exists z \in \mathcal{F}: \Phi(x)=z \in \mathcal{F}
$$

\mathcal{F} : representation space

- $\mathcal{F}=\mathbb{R}^{p}$ or $\mathcal{F}=\mathbb{C}^{p}$
- $z \in \mathcal{F}$

Data reconstruction: $\Psi: \mathcal{F} \rightarrow \mathcal{X}$.

$$
\forall z \in \mathcal{F}, \exists x \in \mathcal{X}: \Psi(z)=x \in \mathcal{X}
$$

Unitary data representations

Let $\mathcal{X}=\mathcal{F}=\mathbb{C}^{d}$ and $\left\{a_{1}, \ldots, a_{d}\right\}$ an orthonormal basis in \mathbb{C}^{d}.

Consider $\Phi: \mathcal{X} \rightarrow \mathcal{F}$ such that for all $x \in \mathcal{X}$

$$
\Phi(x)=\left(\left\langle x, a_{1}\right\rangle, \ldots,\left\langle x, a_{d}\right\rangle\right)
$$

Remarks on Φ

- can be identified with $d \times d$ matrix U with rows given by the atoms a_{1}, \ldots, a_{d},
- is a linear map, $\Phi(x)=U x$,
- is a unitary transformation: $U^{*} U=I$.

Unitary transformations

$$
U^{*} U=U U^{*}=I
$$

Isomorphism between two Hilbert spaces

$$
\Phi: \mathcal{X} \rightarrow \mathcal{F}
$$

Bijective function that preserves the inner product

$$
\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle_{\mathcal{F}}=\left\langle x, U^{*} U x^{\prime}\right\rangle_{\mathcal{X}}=\left\langle x, x^{\prime}\right\rangle_{\mathcal{X}}, \quad \forall x, x^{\prime} \in \mathcal{X}
$$

Reconstruction for unitary data representation

Consider $\Psi: \mathcal{F} \rightarrow \mathcal{X}$ such that,

$$
\Psi(z)=\sum_{k=1}^{d} a_{k} z^{k}, \quad \forall z \in \mathcal{F}
$$

Reconstruction:

$$
x=\sum_{k=1}^{d} a_{k}\left(\left\langle a_{k}, x\right\rangle\right)=\sum_{k=1}^{d} a_{k} z^{k}, \quad \forall x \in \mathcal{X}
$$

Remarks on ψ

- can be identified with the $d \times d$ matrix U^{*} with columns given by the atoms,
- is a linear map $\Psi(z)=U^{*} z$,
- is exact, in the sense $\Psi \circ \Phi=U^{*} U=I$.

Metric properties of unitary representations

Satisfy Parseval's identity (norm preservation)

$$
\|\Phi(x)\|^{2}=\sum_{k=1}^{d}\left|\left\langle x, a_{k}\right\rangle\right|^{2}=\|x\|^{2}, \quad \forall x \in \mathcal{X}
$$

Representation is an isometry (distance preservation)

$$
\left\|\Phi(x)-\Phi\left(x^{\prime}\right)\right\|=\left\|x-x^{\prime}\right\|, \quad \forall x, x^{\prime} \in \mathcal{X}
$$

Example: Fourier representation (DFT)

Fourier basis: orthonormal basis of \mathbb{C}^{d} formed by the atoms:

$$
\left\{a_{k}\right\}_{k=1}^{d}=\left\{\frac{1}{\sqrt{d}}, \frac{1}{\sqrt{d}} e^{-2 \pi i k \frac{1}{d}}, \frac{1}{\sqrt{d}} e^{-2 \pi i k \frac{2}{d}}, \ldots, \frac{1}{\sqrt{d}} e^{-2 \pi i k \frac{(d-1)}{d}}\right\}
$$

Representation (discrete Fourier transform (DFT)):

$$
\Phi(x)=U x=z, \quad z^{k}=\frac{1}{\sqrt{d}} \sum_{j=0}^{d-1} x^{j} e^{-2 \pi i k \frac{j}{d}}, \quad k=0, \ldots, d-1,
$$

Reconstruction (inverse DFT):

$$
\Psi(z)=U^{*} z=x, \quad x^{j}=\frac{1}{\sqrt{d}} \sum_{k=0}^{d-1} z^{k} e^{2 \pi i j \frac{k}{d}}, \quad j=0, \ldots, d-1 .
$$

The pursuit of the right basis

Choice of the basis U or dictionary of atoms $\left\{a_{k}\right\}_{k=1}^{d}$ reflects prior information about the data or the problem, e.g.

- physical system (frequencies)
- intepretability (spectral content)

Can this be extended to more general dictionaries than orthonormal bases? ${ }^{3}$

Frames

Generalization of a basis: a weaker form of Parseval's identity.

Definition (Frame)

A finite set of atoms $\left\{a_{1}, \ldots, a_{p}\right\}, a_{k} \in \mathbb{R}^{d}$ for which there exists $0<A \leq B<\infty$ such that for all $x \in \mathcal{X}$

$$
A\|x\|^{2} \leq \sum_{k=1}^{p}\left|\left\langle x, a_{k}\right\rangle\right|^{2} \leq B\|x\|^{2} .
$$

Remarks:

- Tight frame: $A=B$.
- Parseval frame: $A=B=1$.
- Union of orthonormal bases (renormalized) is a tight frame.

Frame examples

1. $\left\{a_{k}\right\}=\left\{e_{1}, e_{1}, e_{2}, e_{2}, \ldots\right\}, \quad\left\{e_{i}\right\}_{i=1}^{d} \in \mathbb{R}^{d}$

$$
\sum_{k=1}^{p}\left|\left\langle x, a_{k}\right\rangle\right|^{2}=\sum_{k=1}^{d}\left|\left\langle x, e_{k}\right\rangle\right|^{2}+\sum_{k=1}^{d}\left|\left\langle x, e_{k}\right\rangle\right|^{2}=2\|x\|^{2}
$$

tight frame for \mathbb{R}^{d} with $A=B=2$
2. $\left\{a_{k}\right\}=\left\{e_{1}, \frac{1}{\sqrt{2}} e_{2}, \frac{1}{\sqrt{2}} e_{2}, \frac{1}{\sqrt{3}} e_{3}, \frac{1}{\sqrt{3}} e_{3}, \frac{1}{\sqrt{3}} e_{3} \ldots\right\}, \quad\left\{e_{i}\right\}_{i=1}^{d} \in \mathbb{R}^{d}$

$$
\sum_{k=1}^{p}\left|\left\langle x, a_{k}\right\rangle\right|^{2}=\sum_{k=1}^{d} k\left|\left\langle x, \frac{1}{\sqrt{k}} e_{k}\right\rangle\right|^{2}=\sum_{k=1}^{d}\left|\left\langle x, e_{k}\right\rangle\right|^{2}=\|x\|^{2}
$$

Parseval frame for \mathbb{R}^{d} with $A=B=1$

Frame examples (cont.)

Many other useful examples of frames:

- wavelets: dyadic scaling and translations ${ }^{4}$

- Gabor frames

- curvelets: scale, rotation, translation (tight frame)
- shearlets

Frame data representation

Let $\mathcal{X}=\mathbb{R}^{d}, \mathcal{F}=\mathbb{R}^{p}$ and consider the representation

$$
\Phi: \mathcal{X} \rightarrow \mathcal{F}, \quad \Phi(x)=\left(\left\langle x, a_{1}\right\rangle, \ldots,\left\langle x, a_{p}\right\rangle\right), \quad \forall x \in \mathcal{X} .
$$

Remarks:

- linear map,
- can be identified with a $p \times d$ rectangular matrix F,

$$
\Phi(x)=F x, \quad \forall x \in \mathcal{X}
$$

Metric properties of frame representations

Relaxed Parseval's identity

$$
A\|x\|^{2} \leq\|\Phi(x)\|^{2} \leq B\|x\|^{2}, \quad \forall x \in \mathcal{X}
$$

Stable representation/embedding

$$
A\left\|x-x^{\prime}\right\|^{2} \leq\left\|\Phi(x)-\Phi\left(x^{\prime}\right)\right\|^{2} \leq B\left\|x-x^{\prime}\right\|^{2}, \quad \forall x, x^{\prime} \in \mathcal{X} .
$$

Stable isometries: preserve distances (up to distortions), not isometries

Non-unitary frame operator

Remarks (cont.):

- linear map $\Phi(x)=F x, \quad \forall x \in \mathcal{X}$
- F is not unitary $F^{*} F \neq 1$

Note that

$$
\langle F x, z\rangle_{\mathcal{F}}=\sum_{k=1}^{p}\left\langle a_{k}, x\right\rangle z^{k}=\left\langle\sum_{k=1}^{p} a_{k} z^{k}, x\right\rangle
$$

then

$$
F^{*} z=\sum_{k=1}^{p} a_{k} z^{k}, \quad \forall z \in \mathcal{F}
$$

Frame operator

$$
T=F^{*} F: \mathcal{X} \rightarrow \mathcal{X}, \quad T x=\sum_{k=1}^{p} a_{k}\left\langle a_{k}, x\right\rangle, \quad \forall x \in \mathcal{X}
$$

Frame operator invertibility

Remarks (cont.):

- F is not unitary $T=F^{*} F \neq I \ldots$
- ... however $T=F^{*} F$ is invertible.

$$
T=F^{*} F: \mathcal{X} \rightarrow \mathcal{X}, \quad T_{x}=\sum_{k=1}^{p} a_{k}\left\langle a_{k}, x\right\rangle, \quad \forall x \in \mathcal{X}
$$

Proof.

1. $F^{*} z=\sum_{k=1}^{d} a_{k} z^{k}, \quad \forall z \in \mathcal{F}$
2. using linearity $\sum_{k=1}^{p}\left|\left\langle x, a_{k}\right\rangle\right|^{2}=\|F x\|_{\mathcal{F}}^{2}=\left\langle F_{x}, F_{x}\right\rangle=\langle T x, x\rangle, \forall x \in \mathcal{X}$.
3. rewrite frame bound

$$
A \leq \frac{\langle T x, x\rangle}{\|x\|^{2}} \leq B, \quad \forall x \in \mathcal{X}
$$

4. $\frac{\langle T x, x\rangle}{\|x\|^{2}}$ is the Rayleigh quotient of T : minimized by its smallest eigenvalue.

Frame data reconstruction

Consider $\Psi: \mathcal{F} \rightarrow \mathcal{X}, \quad \mathcal{F}=\mathbb{R}^{p}, \quad \mathcal{X}=\mathbb{R}^{d}$

$$
\Psi(z)=\sum_{k=1}^{p} \tilde{a}_{k} z^{k}, \quad \forall w \in \mathcal{F},
$$

where

$$
\tilde{a}_{k}=T^{-1} a_{k}, \quad k=1, \ldots, p, \quad T=F^{*} F
$$

Remarks on Ψ

- linear,
- also as rectangular matrix \tilde{F} (with suitable atoms as columns)

$$
\Psi(z)=\tilde{F}_{z}=\left(\left\langle z, \tilde{a}_{1}\right\rangle, \ldots,\left\langle z, \tilde{a}_{p}\right\rangle\right), \quad \forall z \in \mathcal{F} .
$$

- well defined and exact, $\Psi \circ \Phi=I$.

Exact reconstruction

Remarks (cont.)

- Ψ is well defined and
- reconstruction is exact, $\Psi \circ \Phi=l$.

Proof.
For all $x \in \mathcal{X}$ with $z=F x \in \mathcal{F}$, then

$$
\Psi(z)=\sum_{k=1}^{p} \tilde{a}_{k} z^{k}=T^{-1} \sum_{k=1}^{p} a_{k}\left\langle x, a_{k}\right\rangle=T^{-1} T x=x
$$

Note:
It is also easy to check this by writing

$$
\begin{gathered}
\Psi(z)=\tilde{F}_{z}=\left(\left\langle z, \tilde{a}_{1}\right\rangle, \ldots,\left\langle z, \tilde{a}_{p}\right\rangle\right), \quad \forall z \in \mathcal{F} . \\
\Psi(z)=\Psi\left(\Phi(x)=\Psi(F x)=\tilde{F} F x=T^{-1} F^{*} F=T^{-1} T x=x\right.
\end{gathered}
$$

Linear representation given a dictionary

Consider a general (redundant) dictionary

$$
\left\{a_{1}, \ldots, a_{p}\right\}, \quad a_{k} \in \mathbb{R}^{d}, \quad p>d
$$

spanning a space of dimension smaller than d.

Linear representation letting $\mathcal{F}=\mathbb{R}^{p}$

$$
\Phi: \mathcal{X} \rightarrow \mathcal{F}, \quad \Phi(x)=\left(\left\langle x, a_{1}\right\rangle, \ldots,\left\langle x, a_{p}\right\rangle\right)=w, \quad \forall x \in \mathcal{X} .
$$

- $\Phi(x)$ identified by $p \times d$ matrix $C x=w$

Linear reconstruction given a dictionary

Reconstruction problem is ill-posed:

$$
\text { find } x \in \mathcal{X} \text { by solving } \Phi(x)=C x=w \text {. }
$$

Define reconstruction by the minimization problem

$$
\Psi(w)=\underset{x \in \mathcal{X}}{\arg \min }\|x\|_{2}, \quad \text { subject to } \quad \Phi(x)=w
$$

or using the linear maps

$$
D w=\underset{x \in \mathcal{X}}{\arg \min }\|x\|_{2}, \quad \text { subject to } \quad C x=w,
$$

Given the pseudoinverse of the representation,

$$
D=C^{\dagger}=\left(C^{*} C\right)^{-1} C^{*}
$$

Representation and reconstruction given a dictionary II

Complementary point of view

Consider the reconstruction (de-coding)

$$
\Psi: \mathcal{F} \rightarrow \mathcal{X}, \quad x=D w=\sum_{k=1}^{d} a_{k} w^{k}, \quad \forall w \in \mathcal{F},
$$

... and then an associate representation (coding)

$$
\Phi(x)=\arg \min \|w\|_{2}, \quad \text { subject to } \quad D w^{\prime}=x,
$$

so that

$$
C=D^{\dagger}
$$

Non-linear reconstruction given a dictionary

Representation and reconstruction from regularizers other than the square norm.

$$
\Phi(x)=\underset{w \in \mathcal{F}}{\arg \min } R(w), \quad \text { subject to } \quad D w=x .
$$

e.g., sparsity:

$$
\Phi(x)=\underset{w \in \mathcal{F}}{\arg \min }\|w\|_{1}, \quad \text { subject to } \quad D w=x .
$$

Remarks:

- sparsity: characterize data by few atoms.
- redundant (overcomplete) dictionaries.
- solution cannot be computed in closed form:
- involves solving a convex, non-smooth problem,
- e.g. splitting methods.

Noisy data

$$
\Phi(x)=\underset{w \in \mathcal{F}}{\arg \min } R(w), \quad \text { subject to } \quad\|D w-x\|^{2} \leq \delta, \quad \delta>0
$$

where δ is a precision related to the noise level.

Alternative formulations:

- Constrained:

$$
\Phi(x)=\underset{w \in \mathcal{F}}{\arg \min }\|D w-x\|^{2}, \quad \text { subject to } \quad R(w) \leq r, \quad r>0
$$

- Penalized:

$$
\Phi(x)=\underset{w \in \mathcal{F}}{\arg \min }\|D w-x\|^{2}+\lambda R(w), \quad \lambda>0
$$

Remarks

- Suitable choice of a dictionary allows to define a representation and robust reconstruction.
- Reconstruction/representation can become harder as more general dictionaries are considered.
- Redundancy allows for flexibility possibly at the expense of representation dimensionality.

Q:Is it is possible to work with more compact representations?

Randomized linear representation

Consider a set of random atoms of size smaller then data dimension:

$$
\left\{a_{1}, \ldots, a_{k}\right\}, \quad k<d .
$$

where the atoms are, for example, vectors with i.i.d. normal entries.

Randomized representation (of reduced dimensionality):

$$
\Phi: \mathcal{X} \rightarrow \mathcal{F}=\mathbb{R}^{k}, \quad w=\Phi(x)=\left(\left\langle x, a_{1}\right\rangle, \ldots,\left\langle x, a_{k}\right\rangle\right), \quad \forall x \in \mathcal{X} .
$$

Johnson-Lindenstrauss Lemma

Randomized representation defines a stable embedding (ϵ-isometry), i.e.

$$
(1-\epsilon)\left\|x-x^{\prime}\right\|_{2}^{2} \leq\left\|\Phi(x)-\Phi\left(x^{\prime}\right)\right\|_{2}^{2} \leq(1+\epsilon)\left\|x-x^{\prime}\right\|_{2}^{2}
$$

for given $\epsilon \in(0,1)$, with probability $1-\delta$ and for all $x, x^{\prime} \in Q \subset \mathcal{X}$, if the number of random projections is

$$
k=O\left(\frac{\log (|Q| / \delta)}{\epsilon^{2}}\right)
$$

Random matrix design

Restricted Isometry Property (RIP)

$$
\left(1-\delta_{s}\right)\|x\|_{2}^{2} \leq\|C X\|_{2}^{2} \leq\left(1+\delta_{s}\right)\|x\|_{2}^{2}
$$

for matrix C, x being $s-$ sparse with $0<\delta_{s}<1$.

Random matrices have shown to have bounded δ_{s}.

- Gaussian, Bernoulli, and partial Fourier satisfy RIP with $k \approx s$.

Compressed Sensing

Exact reconstruction is possible provided:

- class of data Q is sufficiently "nice" (e.g., sparse vectors)
- number of projections is sufficiently large,
- projection matrix is nearly orthonormal (RIP).

Example:

If \mathcal{C} is the of s-sparse vectors and $k \sim s \log \frac{d}{s}$, then exact reconstruction is possible with high probability, considering

$$
\Psi(w)=\underset{x \in \mathcal{X}}{\arg \min }\|x\|_{1}, \quad \text { subject to } \quad \Phi(x)=C x=w
$$

Randomized representation beyond linearity

CS extensions consider non-linear randomized representations

$$
\Phi: \mathcal{X} \rightarrow \mathcal{F}, \quad w=\Phi(x)=\left(\sigma\left(\left\langle x, a_{1}\right\rangle\right), \ldots, \sigma\left(\left\langle x, a_{k}\right\rangle\right)\right), \quad \forall x \in \mathcal{X}
$$

for some non-linear function $\sigma: \mathbb{R} \rightarrow \mathbb{R}$.

From signal processing to kernel machines

So far:

- unitary, frames \& dictionary representations
- randomized representations \& compressed sensing

Note: interplay between distance preservation and reconstruction.

Such methods:

- lead to parametric supervised learning models

$$
f(x)=\langle w, \Phi(x)\rangle_{\mathcal{F}}, \quad \Phi: \mathcal{X} \rightarrow \mathbb{R}^{p}, \quad p<\infty
$$

- mostly restricted to vector data.

Recall: Kernel methods provide a way to tackle both issues.

Few remarks on kernels

- Computational complexity is independent of feature space dimension... but becomes prohibitive for large scale learning
\Rightarrow subsampling/randomized approximations.
- While flexible, kernel methods rely on the choice of the kernel. . . can it be learned?
\Rightarrow supervised multiple kernel learning.

Wrap-up

This class: Data representations by design

- orthonormal basis,
- frames,
- dictionaries,
- random projections,
- kernels.
...based on prior assumptions about the problem or data.
Next class: Can they be learned from data?
- Part II: Data representations by learning
- Part III: Deep data representations

