MIT 9.520/6.860, Fall 2017
Statistical Learning Theory and Applications

Class 20: Dictionary Learning



What is data representation?

Let X be a data-space

> v
— T\ wea(Mm)
F

A data representation is a map

X

¢ X - F,

from the data space to a representation space F.

A data reconstruction is a map

V:F—=X.

9.520/6.860 Fall 2017



Road map

Last class:
» Prologue: Learning theory and data representation

» Part I: Data representations by design

This class:
» Part Il: Data representations by unsupervised learning

Dictionary Learning
- PCA

— Sparse coding

— K-means, K-flats

Next class:

» Part lll: Deep data representations
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Notation

X': data space

» X =R? or ¥ = C9 (also more general later).

> xeX
Data representation: ¢ : X — F.

Vx € X,3z € F: P(x)

F: representation space
» F=RPor F=CP
» ze F

Data reconstruction: ¥V : F — X.

Vze F,3xe X : V(z) =x
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Why learning?

Ideally: automatic, autonomous learning

» with as little prior information as possible,

but also......

> ...with as little human supervision as possible.

f(x)=(w,d(x))r, VxeX

Two-step learning scheme:
» supervised or unsupervised learning of &: X — F

> supervised learning of w in F
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Unsupervised representation learning

Samples from a distribution p on input space X

S={x,....,xn} ~p"

Training set S from p (supported on X,).

Goal: find ®(x) which is “good” not only for S but for other x ~ p.

Principles for unsupervised learning of “good” representations?
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Unsupervised representation learning principles

Two main concepts:

1. Similarity preservation, it holds

P(x) ~d(X) e x~x, VxeX

2. Reconstruction, there exists a map ¥V : F — X such that

Vod(x)~x, VxeX

9.520/6.860 Fall 2017



Plan

We will first introduce a reconstruction based framework for learning
data representation, and then discuss in some detail several examples.

We will mostly consider X = R? and F = RP

» Representation: ¢ : X — F.
» Reconstruction: V : F — X.

If linear maps:
» Representation: ®(x) = Cx (coding)
» Reconstruction: V(z) = Dz (decoding)
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Reconstruction based data representation

Basic idea: the quality of a representation ® is measured by the
reconstruction error provided by an associated reconstruction W

Ix = Wod(x)],

Vo ®: denotes the composition of ® and ¥
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Empirical data and population

Given S = {xq, ..., X, } minimize the empirical reconstruction error
~ 1 <& )
E@,¥) = 23— Wo o)
i=1
as a proxy to the expected reconstruction error

£(, W) = /X dp(x) [Ix — W o d(x)|1,

where p is the data distribution (fixed but uknown).
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Empirical data and population

D E@.V). E©.¥) = [ o x—wo o0,

Caveat
Reconstruction alone is not enough...
copying data, i.e. W o ® =/, gives zero reconstruction error!
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Parsimonious reconstruction

Reconstruction is meaningful only with constraints!

» constraints implement some form of parsimonious reconstruction,
> identified with a form of regularization,

» choice of the constraints corresponds to different algorithms.

Fundamental difference with supervised learning: problem is not well
defined!
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Parsimonious reconstruction

o \
T LD
— T\ woam)
X F X
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Dictionary learning

[[x = Wod(x]

Let X = RY, F =RP.

1. linear reconstruction
V(z)=Dz, DeD,

with D a subset of the space of linear maps from & to F.
2. nearest neighbor representation,

®(x) = dy(x) = argmin||x — Dz||*, DeD, F\CJF.

zEFx
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Linear reconstruction and dictionaries

Reconstruction D € D can be identified by a d x p dictionary matrix

with columns
at,...,ap e RY.

Reconstruction of x € X' corresponds to a suitable linear expansion on
the dictionary D with coefficients 8, = z¥, z € F)

p
X:Dz:Zakzk:Zakﬁk, B1,---, Bk €R.

9.520/6.860 Fall 2017



Nearest neighbor representation

®(x) = dy(x) = argmin||x — Dz||>, DeD, F\cCF.
zEF,

A

Nearest neighbor (NN) representation since, for D € D and letting
X\ = DF,,
®(x) provides the closest point to x in X)),

d(x,X\) = min ||x —x||> = min ||x— DZ|.
x'e X z'€Fx
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Nearest neighbor representation (cont.)

NN representation are defined by a constrained inverse problem,

min ||x — Dz||*.
zeF

Alternatively, let 7, = F and add a regularization term R : F — R

m|n{||x—Dz|| +AR(z )}

Note: Formulations coincide for R(z) = 1¢,, z € F.
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Dictionary learning

Empirical reconstruction error minimization

for joint dictionary and representation learning:

n

1
min - E min ||x; — Dz]|*.
DeD n < FASNEN
~— =1 e —

Dictionary learning Representation learning

Dictionary learning

> learning a regularized representation on a dictionary,

> while simultaneously learning the dictionary itself.
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Examples

The DL framework encompasses a number of approaches.

PCA (& kernel PCA)
K-SVD

Sparse coding
K-means

K-flats

vV v.v v v .Y
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Principal Component Analysis (PCA)

Let F\ = Fx = Rk, k < min{n, d}, and

D={D:F — X, linear | D*D = I}.

» Dis a d x k matrix with orthogonal, unit norm columns

» Reconstruction:

k
Dz:Zajzj, ze F
J=1

» Representation:

D* X - F, D*x=({a;,x),...,(ak,x)), x€X
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PCA and subset selection

k
DD*: X — X, DD*x=Y a(a,x), x€AX.
=1
P = DD* is a projection® on subspace of RY spanned by a;, ..., a.

1p— p2 (idempotent) 9.520/6.860 Fall 2017



Rewriting PCA

n

o1 2
min — E m|n lIxi — Dz]|
DeD n 4 zi€F)

=1 _/—/
Representation learning

Note that:

®(x) = D*x = argmin||x — Dz||*, Vx e X,
zEFk

Rewrite minimization (set z = D*x) as

min — Z |x; — DD*x;|?

DeD n

Subspace learning

Finding the k—dimensional orthogonal projection D* with the best

(empirical) reconstruction.
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Learning a linear representation with PCA

Subspace learning

Finding the k—dimensional orthogonal projection with the best
reconstruction.
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PCA computation

Recall the solution for k = 1.
For all x € X,
DD*x = (a, x) a,
2
Ix = {a, %) all* = [Ix]I* = | (a,x)

with a € RY such that ||a|| = 1.

Then, equivalently:

min — Z I — DD*X,'H2 max Z | (a
DeD n acRY,||al|=1 n
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PCA computation (cont.)

Let X the n x d data matrix and V = %)A(T)A(

%Z |{a,x;) |> = % Z (a, x;) (a, x;) <a7 % Z (a, x;) x,-> = (a, Va).
i=1 '

i=1
Then, equivalently:

1 n
max — Z | (a, x;) |2 < max (a, Va)
acRd Jlall=1 n <~ acR? ||a]|=1
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PCA is an eigenproblem

max a, Va
aERd,uau=1< Va)

» Solutions are the stationary points of the Lagrangian
2
L(a,A) = (a, Va) — A(l|lal|” — 1).
» Set 9L/0a =0, then

Va=2Xa, (a,Va)=2A

Optimization problem is solved by the eigenvector of V' associated to the
largest eigenvalue.

Note: reasoning extends to k > 1 — solution is given by the first k
eigenvectors of V.
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PCA model

Assumes the support of the data distribution is well approximated by a
low dimensional /inear subspace.

Can we consider an affine representation?

Can we consider non-linear representations using PCA?
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PCA and affine dictionaries

Consider the problem, with D as in PCA:

1 n
min  — Z min ||x; — Dz; — b||*.
DeD,beR? N o1 zi€Fk

The above problem is equivalent to

2
n

min — E X; — DD* x;
DeD n 4 ~—~
i=1 P

with x; =x;,—m, i=1...,n.

Note:
- Computations are unchanged but need to consider centered data.
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PCA and affine dictionaries (cont.)

DeD,beR? N

1 n
min Z m|n |x; — Dz — b||* < min = Z Ix; —
DED n

Proof.

> Note that ®(x) = D*(x — b) (by optimality for z), so that

Z 1QCx: — b)|

min Z lIxi — b — P(x

DeED,bcRY N

with P = DD* and Q =1 — P.
» Solving with respect to b,

so that

—b)|?= min
DeD,beRd N

DD*x;||?
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Projective coordinates

We can rewrite
Dz—b=D7,
if we let
» D’: matrix obtained by adding to D a column equal to b

» Z': vector obtained by adding to z a coordinate equal to 1.

9.520/6.860 Fall 2017



PCA beyond linearity
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PCA beyond linearity
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PCA beyond linearity
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Kernel PCA

Consider a feature map and associated (reproducing) kernel.

: X = F, and K(x,x)= <‘5(X)7&’(X/)>f

Empirical reconstruction error in the feature space,
n

.1 .
min — E min
DeD n 1 zi€ Fk

i=

- 2
q)(X,') — DZ,' F .
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Kernel PCA (cont.)

Similar to (linear) PCA (for k = 1),

max  (a, Va)
acFfall =1 T

where
Vo=t 3 <<T>(x,-), a>}_d~>(x,-).

n <
i=1

Representation is given by:
() = (v.8(x) ¥xex,
F
with v is the eigenvector of V with largest eigenvalue.

This can be computed for arbitrary feature map/kernel.
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Proof Linear case: K(x,x') =

A representer theorem for kernel PCA

n

d(x) = <<T>(x), v>}_ = % K(x;,x)u'.

i=i
(x,x"y, for all x,x" € X.

> Let 1K = 1XXT, v = 1XTX.

> V and K have same (non-zero) eigenvalues.

» If uis an eigenvector of K with eigenvalue o, Ku=ou

1 1 &
v=—X"Tu= fZX,'u'
he =

no

is an eigenvector of V also with eigenvalue o.

Then, for all x € X,

d(x) = (x,v) = % Z (xi, x) u'.

Extends to any arbitrary kernel: x — ®(x), <<i>(x)7 CTD(X’)>

= K(x,x').
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Comments on PCA, KPCA

» PCA allows to find good representation for data distribution
supported close to a linear/affine subspace.

» Non-linear extension using kernels.

Note:

» Connection between KPCA and manifold learning, e.g.
Laplacian/Diffusion maps.

» Off-set/re-centering not needed if kernel is rich enough.
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Sparse coding

One of the first and most famous dictionary learning techniques.

It corresponds to
> F =R~
> p>d Fa={zeF : |z|; <A}, A>0,
» D={D:F — X | ||Dell» <1}.

Hence,

, 1o~ 2
min fz min ||x; — Dz||
n 4 zeF

DeD ziceF
~— R —
dictionary learning sparse representation
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v

v

v

Computations for sparse coding

1 :
min — Z min llxi — DZiH2
DED n < zeRP ||z, <A

not convex jointly in (D, {z})...

separately convex in the {z} and D.

Alternating Minimization is natural
— Fix D, compute {z;}.
— Fix {z}, compute D.

(other approaches possible—see e.g. [Schnass '15, Elad et al. '06])
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Representation computation

1. Given dictionary D,

min Ixi — Dzi|*,i=1,....n
ZERP, || ||, <A

Problems are convex and correspond to a sparse estimation.

Solved using convex optimization techniques.

Splitting /proximal methods

2O ) SA(z(t) — D" (x — Dz(t))), t=0,..., tnax

I

with Sy the soft-thresholding operator,

Sx(u) = max{|u| — A,O}ﬁ7 ueER
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Dictionary computation

2. Given the representation {®(x;) =z}, i=1,....n
i 2~ D0( = i 7 % - 770

where Z is the n x p matrix with rows z; and |-z, the Frobenius norm.

Problem is convex. Solvable using convex optimization techniques.

Splitting/proximal methods

DO pEY = p(D® — 4, B*(X = DYB)), t=0,..., tmax

with P the prox operator (projection) from the constraints (||Dej|| - < 1)
Py =o/|0|. o>,
P(D') = D/, ifHDngl.
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Sparse coding model

» Assumes support of the data distribution to be a union of (’S’)
subspaces, i.e. all possible s-dimensional subspaces in RP, where s
is the sparsity level. 2

» More general penalties, more general geometric assumptions.

2Image credit: Elhamifar, Eldar, 2013 9.520/6.860 Fall 2017



K-means & vector quantization

Typically seen as a clustering algorithm in machine learning. ..
but it is also a classical vector quantization (VQ) approach. 3

Green level

50 100 150 200 250
Red level

We revisit this point of view from a data representation perspective.

3Image:Wikipedia 9.520/6.860 Fall 2017



K-means & vector quantization (cont.)

K-means corresponds to
» Fr=Fk=1{e1,..., e}, the canonical basis in R, k < n
» D={D:F — X | linear}.

Empirical reconstruction error:
1L . 2
min — E min _|x; — Dz||
DeD n ‘= zie{er, .. e}

i=

Problem is not convex (in (D, {z}). Approximate solution through AM.
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K-means solution

Alternating minimization (Lloyd's algorithm)
Initialize dictionary D.

1. Let {®(x;) = z},i =1,...,n be the solutions of problems

min  |x —Dz|?, i=1,...,n.
zic{er,...,ex}

Assignment:

Vi={xeS|dx)=z=¢}.
(multiple points have same representation since k < n).
2. Update: Let aj = Dej (single dictionary atom)

1
min 7Z||X, DO(x)|*>= min fz Z ||X—aj||2.
DeD n €RI N <

at,..-,ak
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Step 1: assignment

Solving the discrete problem:

min  |x —Dz|?, i=1,...,n
zic{er,...,e

Voronoi sets - Data clusters
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Step 2: dictionary update

min ,Z |x; — DO(x)||> = min Z > lx = all?.
DeD n .,ak€ERI n
Jj=1xeV;
where ¢(X,') =2z, a; = Dej.

Minimization wrt. each column a; of D is independent to all others.

Centroid computation

1 .
—argmanHX—aJH V_|ZX:, j=1... k.
JX

x€eV;

m
<

Minimimum for each column is the centroid of corresponding Voronoi set.
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K-means convergence

Algorithm for solving K-means is known as Lloyd’s algorithm.

» Alternating minimization approach:
= value of the objective function can be shown to be
non-increasing with the iterations.

> Only a finite number of possible partitions in k clusters:
= ensured to converge to a local minimum in a finite number
of steps.
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K-means initialization

Convergence to a global minimum can be ensured (with high
probability), provided a suitable initialization.

Intuition: spreading out the initial k centroids.

K-means++ [Arthur, Vassilvitskii;07]

1. Choose a centroid uniformly at random from the data.

2. Compute distances of data to the nearest centroid already chosen.

D(x,{g}) = min |x — g|*,¥x € S,j < k
G

3. Choose a new centroid from the data using probabilities proportional
to such distances.

4. Repeat steps 2 and 3 until k centers have been chosen.
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K-means model

M = supp{p}

1

> representation: extreme sparse representation, only one non-zero
coefficient (vector quantization).

> reconstruction: piecewise constant approximation of the data,
each point is reconstructed by the nearest mean.

Extensions considering higher order approximation, e.g. piecewise linear.
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K-flats & piece-wise linear representation

M = supp{p}
0, 7,

0
xz[\lll U, \Ijg}|:02:|

> k-flats representation: structured sparse representation,
coefficients are projection on flat.

> k-flats reconstruction: piecewise linear approximation of the data,
each point is reconstructed by projection on the nearest flat.
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Remarks on K-flats

M = supp{p}

vy v,

0
w%[\lll Uy \Ilg}|:02:|

Principled way to enrich k-means representation (cfr softmax).
Generalized VQ.
Geometric structured dictionary learning.

Non-local approximations.
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K-flats computations

Alternating minimization
1. Initialize flats Wq,..., Wy
2. Assign point to nearest flat,

Vi={x eS| |x—Wwix| < x— wwix|, t#j}

3. Update flats by computing (local) PCA in each cell V}, j =1,... k.
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Kernel K-means & K-flats

It is easy to extend K-means & K-flats using kernels.

O X > H, and K(x,x)= <<T>(X), &>(X/)>H

Consider the empirical reconstruction problem in the feature space,

1 — 2

min — Z min HCIND(X,) — Dz N

1 zic{er,...,e JCH

i=

Note: Computation can be performed in closed form
» Kernel K-means: distance computation.

» Kernel K-flats: distance computation + local KPCA.
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Wrap up

Parsimonious reconstruction
Algorithms, computations & models.

Have not talk about:
» Statistics/stability

'

» Geometry/quantization

n

1
min =Y min |x; — Dz]|* — min / dp(x) min ||x — Dz|)?
D n ) zi€Fk D zeFy

)

k—o00

. . , 2
lim mén/dp(x)zrgg\kﬂx Dz|*—=0

» Computations: non convex optimization? algorithmic guarantees?
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Road map

This class:
» Part Il: Data representations by unsupervised learning

— Dictionary Learning
- PCA

— Sparse coding

— K-means, K-flats

Next class:
> Part Il: Deep data representations (unsupervised, supervised)

— Neural Networks basics
— Autoencoders
— ConvNets
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