MIT 9.520/6.860, Fall 2017
Statistical Learning Theory and Applications

Class 21: Neural Nets and Deep Representations

Road map

Last class:
» Part Il: Data representations by unsupervised learning

— Dictionary Learning
- PCA

— Sparse coding

— K-means, K-flats

This class:
> Part Il: Deep data representations (unsupervised, supervised)

— Neural Networks basics
— Autoencoders
— ConvNets

9.520/6.860 Fall 2017

Why learning?

Ideally: automatic, autonomous learning

» with as little prior information as possible,

but also......

> ...with as little human supervision as possible.

f(x)=(w,d(x))r, VxeX

Two-step learning scheme:
» supervised or unsupervised learning of &: X — F

> supervised learning of w in F

9.520/6.860 Fall 2017

Neural networks

Data representation schemes that involve multiple layers.

» Explicit parametrization of ®(x) € F

— Nonlinear features
— Linear projections and pointwise nonlinearities

v

Multiple layers, multiple maps ¢;,/ =1...L.

» Compositional ®;_; o ®;(x)

v

Additional constraints on &,

Locality

Sparsity

— Covariance: tied values
— Invariance: pooling

v

Joint learning of (®(x), w).

9.520/6.860 Fall 2017

In practice all is multilayer! (an old slide)

Pipeline
Raw data processing:
» compute some low level features,
> learn some mid level representation,
> ..
>

use supervised learning.

These stages are often done separately:
> Features by design, e.g. kernels OR

» Unsupervised feature learning

— Use unlabeled data and reconstruction error loss.

> [s it possible to design end-to-end learning systems?

9.520/6.860 Fall 2017

In practice all is deep learning! (updated slide)

Pipeline

> design some wild- but “differentiable” multilayer architecture.

» proceed with end-to-end learning!

| @; it o

7oag \dense

13 dense

.
126 Max

Max 126 Max poaling
pooling pooling

204 2048

Architecture (rather than feature) engineering.

9.520/6.860 Fall 2017

Road Map

Part A: Neural networks basics
» Setting and definitions

» Learning, optimization

Part B: Architectures
» Auto-encoders

» Convolutional neural networks

9.520/6.860 Fall 2017

Shallow nets

f(x)= WTCD(X), x = ®(x)
Fixed

Examples
» Dictionaries
®(x) = cos(B ' x) = (cos(B] x),...,cos(f, x))

with B = 1, ..., 3, fixed frequencies.

» Kernel methods
O(x) = (e IBr=xI" el

with 81 = x1,..., 8, = X, the input points.

9.520/6.860 Fall 2017

Example: dictionaries

9.520/6.860 Fall 2017

Example: kernel methods

9.520/6.860 Fall 2017

Shallow nets (cont.)

f(x) = WT(D(X), x = ®(x)

Empirical Risk Minimization (ERM)
min > (i — w ®(x;))>
i=1

Note: Function f depends linearly on w: ERM problem is convex!

AX000
ARXN00
o
A,
)
s
RS IAEAINTN 74
AR i
R

it

Susessess,
N
LA

9.520/6.860 Fall 2017

Interlude: optimization by Gradient Descent (GD)

Batch gradient descent
wtth — (0 _ ng(w(w)

where
n

E(w) = (v — w'o(x))’

i=1
so that

VaE(w) = 722 O(x) " (yi — w' ®(x;))
i=1

9.520/6.860 Fall 2017

Gradient descent illustrated: step size

Cost

Learning step

Minimum

Random
initial value

A
0

Image: A. Geron, "Hands-on ML with scikit-learn and tensorFlow”, 2017.

9.520/6.860 Fall 2017

Gradient descent illustrated: small step size

Cost

> 0

Start

Image: A. Geron, "Hands-on ML with scikit-learn and tensorFlow”, 2017.

9.520/6.860 Fall 2017

Gradient descent illustrated: large step size

Cost

| > e
Start

Image: A. Geron, "Hands-on ML with scikit-learn and tensorFlow”, 2017.

9.520/6.860 Fall 2017

Interlude: optimization by Gradient Descent (GD)

w1 — (0 4 272 O(x) " (yi — w' d(x))
i=1

» Constant step-size depending on the curvature (Hessian norm)

> |terative scheme is a descent method.
— every step is a descent direction for the loss function

EwM) < Ew),

except when w® is optimal.

9.520/6.860 Fall 2017

Stochastic gradient descent (SGD)

Wiyl = We + 2’7t¢(xt)T(yt - Wer)(Xt))

Compare to

W1 = We + 2"/2 q)(Xi)T(yi - Wth)(Xi))
i=1

» Decaying step-size v = 1/1/t

> Lower iteration cost

» Multiple passes (epochs) over data needed
> Not a descent method (SGD?)

9.520/6.860 Fall 2017

SGD vs GD

gradient descent

ITERATIONS

SGD behavior (vs. GD):
> not a descend method: each update can reduce or enlarge the loss,
> converges faster: more frequent updates,
> takes longer to reach global or local minimum: needs multiple

passes.
— regularization: early stopping, less prone to overfitting. 0,520/6,660 Fall 2017

Batch vs. Mini-batch vs. Stochastic GD
Parameter convergence for linear regression

f(x)=w'x, w=(61,6)

.00 025 050 075 1.00 125 150 175 2.00

X1
Figure: SGD iterations

381 —=— Stochastic

—— Mini-batch
3.4, —e— Batch
913.2

3.0

3.6

2.8
2.6
2.4

2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50
6o

9.520/6.860 Fall 2017

Summary so far

Given data (x1,¥1),--.,(Xn, ¥n) and a fixed representation ¢

» Consider
f(x) = WTCD(X)

» Find w by SGD

Wiyl = Wy + 2”/t¢(Xt)T(yt - WTq)(Xt))

Can we jointly learn ®?

9.520/6.860 Fall 2017

Shallow neural networks

Neural networks correspond to a specific choice of the feature space
FcC{o:VxeXx, o(x)=0c(W'x+b)}

where:

» o : X — X, activation operator defined component-wise by
activation functions s : R — R

» W is p x d weight matrix
» b€ RY is an offset vector.

9.520/6.860 Fall 2017

Neural networks illustrated

e
WiINS

Neurons

Zo Wo
synapse
wWoTo

— e
axon from a neuron

impulses carried
toward cell body

cell body

Zwﬂ: +b

branches
of axon

/(Zee)

output axon
activation
function

axon
terminals

impulses carried
away from cell body

» Each neuron computes an inner product using a column of the
weight matrix W.

» The non-linearity o is the neuron activation function.

Image: Stanford CS231n: CNNs for Visual Recognition, 2017.

9.520/6.860 Fall 2017

Neural nets vs kernel methods

Learning with kernels
Given K, find the coefficients c!,...,c" in the linear expansion

n
= Z c'K(xi, x)
i=1
by typically solving a convex problem.

Learning in neural nets
Find the coefficients c!,..., c" and the weights W, ... WP bl ... bP

Zcf x) + b))

by typically solving a non-convex problem.

9.520/6.860 Fall 2017

Computations in kernels

lp, input h, hidden layer [, output layer

B
o

O 0 =X Kxx
pe ®
\‘

K(x, x;)

9.520/6.860 Fall 2017

Computations in neural nets

lp, input h, hidden layer [, output layer

9.520/6.860 Fall 2017

Neural nets vs kernel methods (cont.)

P n

f(x) = Z ds((W/,x)) vs f(x)= ZciK(x;,x)

j=1 i=1

A comparison

» kernel methods lead to convex problems,

> the weights (centers) are the training points,
> ...but with a fixed representation,
>

...and are currently prohibitive for large scale learning (memory!).

9.520/6.860 Fall 2017

Deep neural networks

hidden layer) hidden layer 1 hidden layer 2 hidden layer 3
input layer

9.520/6.860 Fall 2017

Depth: function spaces by composition

Given input space X, e.g. X = R? and output space), e.g. YV =R":

» Sequence of domains
X, =R% dyeN, (=1,...,L,

suchthat X1 =X and X =), henced; =d, d, =T.

» Sequence of function spaces
Hec{h : h: X1 — &), £=2,...,L
and

He={f X1 =X : f=fo---0ofy, e}, j=1,...,L

9.520/6.860 Fall 2017

Depth: function parametrization

Deep neural nets correspond to specific compositional function spaces
Hec {h : VxeXi1, h(x)=oc(W x+b)}, £=2,...,L

where:

> oy : Xy — Xy, activation operators defined component-wise by
activation functions, sy : R — R

» W, are dy_1 x dy weight matrices, and
> by € R% are offset vectors.

Neural network with L layers (L — 2 hidden), d; units per layer.

9.520/6.860 Fall 2017

Supervised neural nets: regression

Regression: X} =Y =R

last activation function can be chosen to be the identity

f(x) = (wr, h(x,-1)) + b € R.

Equivalently, writing one step of the recursion:

di—1

f(x) = z_: wisi-1 (<Wi_1, h(XL—2)> + b{_1> + be.

9.520/6.860 Fall 2017

Supervised neural nets: classification

Classification: X =Y =[1,...,T]
last activation function can be chosen to be the softmax
f(x) = o((We, h(xe-1)) + b) o :RT —=10,1]7,
where W, is T x d;_1 and
£l

S(a/) = §7

acRT, s:R—[0,1]

» Softmax regression (multinomial logistic regression).
» Probability distribution over T outputs.

> arg max;(f(x)’) for classification.

9.520/6.860 Fall 2017

Summary: Deep neural networks

Basic idea: compose simply parameterized representations

d=d,0---0dr0d;

Let dy = D and
O, RY1 5 RY% r=1,...,L

and in particular
¢Z:JOWK7 (21,...,L

where
W, :R¥1 5 RY% ¢=1,...,L

linear/affine and o is a non linear map acting component-wise

oc:R—R.

9.520/6.860 Fall 2017

Summary: Deep neural nets

f(x)= WT<D/_(X), O, =d,0---0;
compositional representation
61:001/\/1 EI_ZUOWL
ERM
1 n
. T 2
min = i —w DX
in, 5 20— wT0u(x)

9.520/6.860 Fall 2017

lo

Computations: Deep neural nets

h b Iy

9.520/6.860 Fall 2017

Neural networks jargon

O (x) =o(W,...oc(Wao(Wix)))

» hidden layer: any intermediate representation ®,, ¢ = {1,L — 1}.
» number of hidden units: dimensionalities (dy),

» activation function: nonlinearity o

9.520/6.860 Fall 2017

Activation functions

Fora e R
» sigmoid (logistic) s(a) =1/(1+ e_“),
» hyperbolic tangent s(a) = (e® “)/(e* + e~ %),
» ReLU (ramp, hinge) s(a) = |a |+,
> softplus s(a) = log(1 + e®).

5 I e e e,
= sigmoid
=—=thanh
4 L
=—RelU
== softplus
3 L
2 L
1 L
0 ;/ -]
5 0 5

Note: If the activation is linear: equivalent to a single lineag Jayek .., ..,

Logistic and Softmax regression

Recall logistic regression loss (linear activation):
F(x) = (w, ®(x))

V(f(x),y) = log(1+ ™) = —yf(x) + log(1 + &™)
" Cross-entropy” loss (single output, logistic activation):
f(x) =s((w,®(x))), s(a)=(1+e77)
V(F(x), ¥) = — (¥ Iog(F(x)) + (1 = y) log(1 — F(x))) = —yF(x) + log(1+ &)
" Cross-entropy” loss (multiple outputs, softmax activation):

F() = o(W.0(). s(&) =€/ ¢

T

V(f(x),y) =— Zy’ log(f(x)) = — Zyl <f(X)J _ Z |Og(ef(x)")>
a o = 9.520/6.860 Fall 2017

Questions with deep networks

fW,(W/z)z(X) = WTCD(WZ)Z(X), q)(Wz)z = 0(W[_ e O’(WQO’(Wlx)))

1. Approximation: how rich are the models?
2. Optimization: can we train efficiently?
3. Generalization: from finite data? overfitting?

TP will discuss these (next classes!)

9.520/6.860 Fall 2017

Neural networks function spaces

Consider nonlinear space of functions of the form f,, (), : R® — R,

fW7(Wz)e(X) = WTCD(WZ)Z(X), (D(We)z = 0'(W[_ Ce. O'(WQO'(W1X)))

where w, (W), may vary.

Very little structure ... but we can:
> train by gradient descent (next)

> get (some) approximation/statistical guarantees (later, next
classes)

9.520/6.860 Fall 2017

One layer NN: learning

Consider single hidden layer:
P
frww)(x) = w'o(Wx) = Z wo (x " W)
j=1

and ERM

n

i=1

Vryin E(w, W), g(w, W) = Z(Yi - f(W,W)(X"))Q'

Problem is non-convex! (possibly smooth depending on o)

00K
d KD
e ity
N Sl
A\ g 0

T
T
s

9.520/6.860 Fall 2017

Gradient descent: non-convex problems

Cost

Plateau

Global > 8

Local minimum . .
minimum

Image: A. Geron, "Hands-on ML with scikit-learn and tensorFlow”, 2017.

9.520/6.860 Fall 2017

Back-propagation & GD

n

Mrpin E(w, W), g(W, W) = Z(Yi - f(w,W)(Xi))2-
i=1

Approximate minimizer is computed via GD iterations

o€
+1
W= e g, (W)
o€
+1 _ +1
le:k = V‘/jfk_7t6|/|/j7k(Wt 7Wt)

where the step-size (7;); is the learning rate.

9.520/6.860 Fall 2017

Back-propagation & chain rule

3 £ Ofy,
v Ofw,wy 0w
0 (w, W) = 0€ fww) do(WT)

oW, , Oy Do (W) W s

Direct computations show that:

o€ -
aTVj(W, W) = _22 i — fw) () o (W, x;)
A; hi j
o€)
aw W W) = ,22 i =) (1))’ (W, 1) wyf
Js
Ni.j

’I],';j = A,‘UI(VVJ-TX,')

9.520/6.860 Fall 2017

Back-propagation equations

77,'7]' = A,(.)

Weight updates are performed in two steps:
» Forward pass: compute function values with weights

» Backward pass: compute errors and propagate

9.520/6.860 Fall 2017

SGD (and non-convexity)

W = W — 3.2y — 0wy () (W) Txe)

WO = W) — 5yt — fteon weon (xe))w o (W) Txe)k

Starting pt.

Local minima

Global minima

9.520/6.860 Fall 2017

Remarks

Optimization by gradient methods— typically SGD

Online update rules are potentially biologically plausible- Hebbian
learning rules describing neuron plasticity

Multiple layers can be analogously considered

> Multiple step-size per layers can be considered

NO convergence guarantees

Making things work:
— Initialization is tricky- more later
— Activation function
— Regularization: weight, stochastic
— Normalization: weight, batch, layer, ...
— Accelerated optimization/GD
— Training set augmentation
— More tricks later

9.520/6.860 Fall 2017

Questions

1. Optimization: can we train efficiently?
— Why does SG iterative method work?

2. Approximation: how rich are the models?
— What is the benefit of multiple layers?

3. Generalization: from finite data? overfitting?

TP will discuss these (next classes!)

9.520/6.860 Fall 2017

Approximation theory

One-layer, see [Pinkus '99] and references therein,
fu(x) = 3 wio (x" W)
j=1

Universality, if o is not a polynomial,

lim min|f, — f||=0, VfecC(RP)
u—oo f,

Approximation rates for smooth o,

min max ||f, — f|| Su”d
fu fEW2s

where W25 is the space of functions with s (integrable) derivatives

» Representation via Kolmogorov Superposition theorem

» Is Sobolev the right smoothness class? [Barron '93, Poggio,
Mhaskar et al. '16]

» Multiple layers: TP will discuss (next classes!)
9.520/6.860 Fall 2017

Unsupervised learning with neural networks

Autoencoders: parametric encodings by learning to reconstruct.

Unlabeled data abound
Pre-training: weights to initialize supervised learning

(Nonlinear) dimensionality reduction: bottleneck features

vV v . v v

Embeddings for metrics: similarity, ranking, one-shot, ...

9.520/6.860 Fall 2017

Autoencoders

z Q O O Q O
W

k&

@ O O O O

» Neural network with one input layer, one output layer and one
(or more) hidden layers.

» Output layer has equally many nodes as the input layer.
» Trained to predict the input.

9.520/6.860 Fall 2017

v

v

v

v

Autoencoders (cont.)

Autoencoder with a hidden layer of k units

Representation-reconstruction pair with X = R, F, = R¥ k < d

Encoder:

O X = Fi, O(x)=0(Wex), ¥xeli
Decoder:

V:F—= X, V(z)=0c(Wyz), Vze F
Code: z € Fi

9.520/6.860 Fall 2017

Autoencoders (cont.)

X=RI F =Rk k<d

O X = Fr, O(x)=0(Wex), VxeX
V:F— X, V(z)=0(Wyz), Vze F

Reconstruction:
X' =Wod(x) =0 (Wyo (Wsx))
» If tied-weights: Wy = W] = W € R<*d
» & W can be made deep and compositional.

9.520/6.860 Fall 2017

Autoencoders & dictionary learning

d(x) =0 (Wyx), V(z)=0c(Wsz)

» Dictionary learning: weights can be seen as dictionary atoms.
023 I~ W 0(a) P = min 5™ s — o (Wao (o)
min — xi—Wod(x;)||"= min — X; — X
oV n ! ! Wa.Wo n < i oo e
i= i=

Notes:
» Connections with so called energy models [LeCun et al.].

» Probabilistic/Bayesian interpretations/formulation (e.g.
Boltzmann machines [Hinton, Salagutinov, 2006]).

9.520/6.860 Fall 2017

Linear autoencoders & PCA

O(x) =0 (Wx), V(z)=0(WTz)

e e 2
B 2 = o @0 = min T3 i — W |
> If we let

W={W:F =X, linear | WTW =1}
the solution to the autoencoder loss is PCA.

» Multiple linear layers collapse to one.

9.520/6.860 Fall 2017

Stacked auto-encoders

Multiple layers of auto-encoders can be stacked [Hinton et al '06]. ..

(P10Wy)o(PaoWy) - -0 (PpoWy)
~——

Autoencoder

... with the potential of obtaining richer representations.

9.520/6.860 Fall 2017

Are autoencoders useful?

Pre-training has not delivered:
— large-scale, supervised training works best.

Unsupervised, self-supervised, weakly-supervised learning in vision.

Data visualization, dimensionality reduction.

> Latent space description, distribution learning and sampling.

Ongoing work: denoising autoencoders, sparse autoencoders,
contrastive autoencoders, transforming autoencoders, variational
autoencoders . ..

9.520/6.860 Fall 2017

Convolutional auto-encoders

Convolution network Deconvolution network
5656
28x28 Laxia Laxia
” 7%7 7x7 »
1x1 1x1
— =D
Max
2 "83%iing pooling Unpocling Unpooling
L e T Unpooling
s D Unpooling
—
~Unpooling
~
sw\(chg g switch
variables variables.
inpu_——" T
pooled
e input
—_— ‘unpooled

Pooling Unpooling

Convolution Deconvolution

» Deconvolution
» Max un-pooling
» Tied encoder/decoder weights

limage: Noh et. al.,Learning Deconvolution Network for Semantic Segmentaticng26@GEs6 EALH17

Convolutional neural networks

Input Feature maps Feature maps Feature maps Feature maps Oulpu!
24x24 4@20x20 4@10x10 B@8x8 8@axs 20@1x1
L=

Convolution Subsampling Convolution Subsampling Convolution
Connectivity is designed in specific way (convolutional weight structure):

Weights are localized in the input domain.
Weights are repeated across the input domain.
Weights have progressively larger support.

Pooling and subsampling for robustness and reduced parameters.

9.520/6.860 Fall 2017

Convolutional layers

X F, Ox)=0c0W(x)

> representation by filtering W : X — F/,
> representation by pooling o : 7/ — F.

Note: o, W are more structured than in (densely-connected) NN.

9.520/6.860 Fall 2017

Convolution and filtering
Weight matrix W is made of blocks
W: (th,...7GtT)

Each block is a convolution matrix of a single filter (template) t
Gt = (glta et 7gNt)

{gi} is a transformation, e.g. circular shift, shift, ...

tto2 3t tt 2 2 ... 0 0 0
4 ¢l o2 . pd? o tt 2 ... 0 0 O
Gy = |td71 ¢4 1 ... ¢d2 G=|0 0 ¢t ... 0 0 O
2 B3 tl 0 0 O tt 2 3

9.520/6.860 Fall 2017

Convolution and filtering

Weight matrix W is made of blocks:
W= (Gy,...,G), Gy =1 (gti,...,gnti)
For all x € X,
(Wx)(L,-) = XTg,-l‘j7 Wx = ((t1 xx), ..., (tT xx)),

where t; x x = (x ' git;) is the convolution operator.

Note: In standard (densely-connected) neural nets Wx = x " t;,...,x " tr
9.520/6.860 Fall 2017

Pooling

A Pooling map aggregates the values corresponding to same filter

X*xt= nglt,...,ngNt,

Can be followed by (or seen as a form of) subsampling.

9.520/6.860 Fall 2017

Pooling functions

For some nonlinear activation o, e.g. o(-) = |- |4, let

B=o(xxt)= (U(XTglt), .. ,O’(XTgNt)) .

Examples
» max pooling
J
j:T?(,Nﬁ’
> average pooling
1N
L
j=1
» {, pooling
N H
18I, = [D_ 18717
j=1

9.520/6.860 Fall 2017

Why pooling?

Pooling can provide robustness, even invariance to the transformations.

> Filtering: covariant map

» Pooling: invariant map

Invariance & selectivity
A good representation should be
> invariant to semantically irrelevant transformations.

» discriminative with respect to semantically relevant information.

9.520/6.860 Fall 2017

Basic computations

V1 in visual cortex: [Hubel and Wiesel|

> Simple cells: {(x,gt)}
» Complex cells: >° o ((x,gt))

» Convolution filters: {(x, gt)}
» Pooling: > o ({x,gt))

9.520/6.860 Fall 2017

Deep convolutional networks

Filtering

l
<,

Pooling

|

!

Filtering Pooling
, Output
Input First Second Classifier
Layer Layer
In practice:

» multiple convolution layers are stacked,
» pooling is not global, but over a local subset of the transformations,

> filter size (receptive field) increases by layers.

9.520/6.860 Fall 2017

Theory

O (x) =0 (W, ...0(Wa(o(Wix)))

No pooling: metric properties of networks with random weights —
connection with compressed sensing [Giryes et al. '15]

Invariance

x' = gx = d(x') = ¢(x)

[Anselmi et al. '12, R. Poggio '15, Mallat '12, Soatto, Chiuso '13]
and covariance for multiple layers [Anselmi et al. '12].

Selectivity/Maximal Invariance, i.e. injectivity modulo

transformations
d(x') = d(x) = x' = gx

[R. Poggio '15, Soatto, Chiuso '15]

9.520/6.860 Fall 2017

v

v

v

v

Theory (cont.)

Similarity preservation
[6(x') = () = min ' — gx|[727
g
Stability to diffeomorphisms [Mallat, '12]
[®(x) = @(d(NI < Mldllo 1]l

Reconstruction: connection to phase retrieval /one bit compressed
sensing [Bruna et al '14].

Weight sharing: fewer parameters to learn!

9.520/6.860 Fall 2017

Which activation function?

= sigmoid
——thanh

4

——RelU

—softplus

» Biological motivation

» Rich function spaces

» Avoid vanishing gradient
» Fast gradient computation

RelLU: Has the last two properties. Work best in practice!

9.520/6.860 Fall 2017

SGD is slow...

ITERATIONS

Accelerations
Momentum

v

» Nesterov's method
» Adam
» Adagrad
>

9.520/6.860 Fall 2017

Initialization & fine tuning

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

dog (0.01)
ytrue cat (0.04)
boat (0.94)
0g(0) bird (0.02)
t(0) -
“pout(t g

ird (0)

9.520/6.860 Fall 2017

Initialization & fine tuning

Output Predictions

Convolution Pooling Fully Fully
Connected Connected

Convolution Pooling

ytrue -~ - ug (0.05)
mug (0) L hone (0.95)
%hune (1)] __D
fc, fc, fcN
6 —7 — B CNN(X) = V,req

FORWARD

BACKWARD M E(YyruerYprea)

< l l l l l arg min E(w,, w,,...)

dE dE dE dE dE
dconvl dconv2 dfc6 dfc7 dfcN8

9.520/6.860 Fall 2017

Initialization & fine tuning

Output Predictions

Convolution Pooling Fully Fully
Connected Connected

Convolution Pooling

log (0.01)
Ytrue = m g 0.05)
i (0.94) hone (0.95)
[mug (0) DN0.02)
%ﬂhune) A] A
conv. fc, fcN,fcN
2 6 7 8 -
> CNN(X) = Ve

FORWARD

BACKWARD N EYyruerYprea)

< l l l l l arg min E(w,, w,,...)

dE dE dE dE dE
dconvl dconv2 dfc6 dfcN7 dfcN8

9.520/6.860 Fall 2017

Initialization & fine tuning

Output Predictions

Convolution Pooling Fully Fully
Connected Connected

Convolution Pooling

log (0.01)
Ytrue = m g 0.05)
i (0.94) hone (0.95)
[mug (0) DN0.02)
%ﬂhune) A] A
conv. fcNfcN,fcN
2 6 7 8 -
> CNN(X) = Ve

FORWARD

BACKWARD N EYyruerYprea)

< l l l l l arg min E(w,, w,,...)

dE dE dE dE dE
dconvl dconv2 dfcN6 dfcN7 dfeN8

9.520/6.860 Fall 2017

Initialization & fine tuning

Output Predictions

Convolution Pooling Fully Fully
Connected Connected

Convolution Pooling

0g (0.01)
Yirue = m ug (0.05)
i (0.94) hone (0.95)
[mug (0) DN0.02)
%ﬂhune[l) t1---0 A
conv, fc, fc, fcNg
> CNN(X) = g
FORWARD)
BACKWARD min EVyruerYorea)
< l l l l l arg min E(w;, w,,...)
dE dE dE dE dE
dconvl dconv2 dfc6 dfc7 dfcN8

9.520/6.860 Fall 2017

Initialization & fine tuning

Fully Fully Output Predictions

Pooling Convolution Pooling
Connected Connected

Convolution

o8 (0.01)
ug (0.05)

ytrue 1
[(0.94) hone (0.55)
%‘f‘“’ == DI0.02)
hone (1)] O 7
conv conv. fc, fc, fcN
1 2 6 7 1 -
X > CNN(X) = Ve
FORWARD
mMin E(VyryerYpred)
BACKWARD true’¥pred
< l l l l l arg min E(w, w,,...)
dE dE dE dE dE
dconv1 dconv2 dfc6 dfc7 dfcN8

» Learning layers from scratch/from pre-learned initialization

» Learning layers more/less aggressively using different step-sizes
9.520/6.860 Fall 2017

v

v

v

v

v

Training protocol(s)

Learning at different layers
— Initialization
— Learning rates

Mini-batch size

Further aspect: regularization!

— Weight constraints
— Drop-out

Batch normalization

Data augmentation

9.520/6.860 Fall 2017

Advances in architectures, state-of-the-art

Supervision (AlexNet)

GoogleNet (Inception)

Batch normalization (BN-Inception)
Residual networks (ResNet)

Dense networks (DenseNet)?

vV v vy vy

2Image: Huang et. al., Densely Connected Convolutional Networks, CVPR 201%.520/6.860 Fall 2017

Wrap-up/Remarks

This class:
> Learning representations with deep networks
> Learning deep networks
» Unsupervised: Autoencoders
» Supervised: CNNs
>

Convolutions as a strong prior/regularization

Other architectures:
» GANs, Recurrent NNs/LSTMs, ...

Next classes:
» Approximation
» Optimization
» Generalization /overfitting
» Deep learning, CNNs and visual cortex

9.520/6.860 Fall 2017

