
MIT 9.520/6.860, Fall 2017
Statistical Learning Theory and Applications

Class 21: Neural Nets and Deep Representations

Road map

Last class:

I Part II: Data representations by unsupervised learning

– Dictionary Learning
– PCA
– Sparse coding
– K-means, K-flats

This class:

I Part III: Deep data representations (unsupervised, supervised)

– Neural Networks basics
– Autoencoders
– ConvNets

9.520/6.860 Fall 2017

Why learning?

Ideally: automatic, autonomous learning

I with as little prior information as possible,

but also.... . .

I . . . with as little human supervision as possible.

f (x) = 〈w ,Φ(x)〉F , ∀x ∈ X

Two-step learning scheme:

I supervised or unsupervised learning of Φ:X → F
I supervised learning of w in F

9.520/6.860 Fall 2017

Neural networks

Data representation schemes that involve multiple layers.

I Explicit parametrization of Φ(x) ∈ F
– Nonlinear features
– Linear projections and pointwise nonlinearities

I Multiple layers, multiple maps Φl , l = 1 . . . L.

I Compositional Φl−1 ◦ Φl(x)

I Additional constraints on Φl

– Locality
– Sparsity
– Covariance: tied values
– Invariance: pooling

I Joint learning of (Φ(x),w).

9.520/6.860 Fall 2017

In practice all is multilayer! (an old slide)

Pipeline
Raw data processing:

I compute some low level features,

I learn some mid level representation,

I . . .

I use supervised learning.

These stages are often done separately:

I Features by design, e.g. kernels OR

I Unsupervised feature learning

– Use unlabeled data and reconstruction error loss.

I Is it possible to design end-to-end learning systems?

9.520/6.860 Fall 2017

In practice all is deep learning! (updated slide)

Pipeline

I design some wild- but “differentiable” multilayer architecture.

I proceed with end-to-end learning!

Architecture (rather than feature) engineering.

9.520/6.860 Fall 2017

Road Map

Part A: Neural networks basics

I Setting and definitions

I Learning, optimization

Part B: Architectures

I Auto-encoders

I Convolutional neural networks

9.520/6.860 Fall 2017

Shallow nets

f (x) = w>Φ(x), x 7→ Φ(x)︸ ︷︷ ︸
Fixed

.

Examples

I Dictionaries

Φ(x) = cos(B>x) = (cos(β>1 x), . . . , cos(β>p x))

with B = β1, . . . , βp fixed frequencies.

I Kernel methods

Φ(x) = (e−‖β1−x‖2

, . . . , e−‖βn−x‖2

)

with β1 = x1, . . . , βn = xn the input points.
9.520/6.860 Fall 2017

Example: dictionaries

x1

x2

x3

x4

f (x) = 〈w ,Φ(x)〉

features

Φ(x) = cos ◦(BT x)

input

9.520/6.860 Fall 2017

Example: kernel methods

x1

x2

x3

x4

f (x) =
∑n

i c
iK (x , xi)

kernel function

K (x , xi)

input

9.520/6.860 Fall 2017

Shallow nets (cont.)

f (x) = w>Φ(x), x 7→ Φ(x)︸ ︷︷ ︸
Fixed

Empirical Risk Minimization (ERM)

min
w

n∑

i=1

(yi − w>Φ(xi))2

Note: Function f depends linearly on w : ERM problem is convex!

Convex vs. Nonconvex Optimization

Unique optimum: global/local. Multiple local optima

9.520/6.860 Fall 2017

Interlude: optimization by Gradient Descent (GD)

Batch gradient descent

w (t+1) = w (t) − γ∇w Ê(w (t))

where

Ê(w) =
n∑

i=1

(yi − w>Φ(xi))2

so that

∇w Ê(w) = −2
n∑

i=1

Φ(xi)
>(yi − w>Φ(xi))

9.520/6.860 Fall 2017

Gradient descent illustrated: step size

Image: A. Geron, ”Hands-on ML with scikit-learn and tensorFlow”, 2017.

9.520/6.860 Fall 2017

Gradient descent illustrated: small step size

Image: A. Geron, ”Hands-on ML with scikit-learn and tensorFlow”, 2017.

9.520/6.860 Fall 2017

Gradient descent illustrated: large step size

Image: A. Geron, ”Hands-on ML with scikit-learn and tensorFlow”, 2017.

9.520/6.860 Fall 2017

Interlude: optimization by Gradient Descent (GD)

w (t+1) = w (t) + 2γ
n∑

i=1

Φ(xi)
>(yi − w>Φ(xi))

I Constant step-size depending on the curvature (Hessian norm)

I Iterative scheme is a descent method.

– every step is a descent direction for the loss function

Ê(w (t+1)) < Ê(w (t)),

except when w (t) is optimal.

9.520/6.860 Fall 2017

Stochastic gradient descent (SGD)

wt+1 = wt + 2γtΦ(xt)
>(yt − w>t Φ(xt))

Compare to

wt+1 = wt + 2γ
n∑

i=1

Φ(xi)
>(yi − w>t Φ(xi))

I Decaying step-size γ = 1/
√
t

I Lower iteration cost

I Multiple passes (epochs) over data needed

I Not a descent method (SGD?)

9.520/6.860 Fall 2017

SGD vs GD

SGD behavior (vs. GD):
I not a descend method: each update can reduce or enlarge the loss,
I converges faster: more frequent updates,
I takes longer to reach global or local minimum: needs multiple

passes.
– regularization: early stopping, less prone to overfitting.

9.520/6.860 Fall 2017

Batch vs. Mini-batch vs. Stochastic GD

Parameter convergence for linear regression

f (x) = wT x , w = (θ1, θ0)

Figure: SGD iterations

9.520/6.860 Fall 2017

Summary so far

Given data (x1, y1), . . . , (xn, yn) and a fixed representation Φ

I Consider
f (x) = w>Φ(x)

I Find w by SGD

wt+1 = wt + 2γtΦ(xt)
>(yt − w>Φ(xt))

Can we jointly learn Φ?

9.520/6.860 Fall 2017

Shallow neural networks

Neural networks correspond to a specific choice of the feature space

F ⊂
{

Φ : ∀x ∈ X , Φ(x) = σ
(
W T x + b

)}

where:

I σ : X → X ; activation operator defined component-wise by
activation functions s : R→ R

I W is p × d weight matrix

I b ∈ Rd is an offset vector.

9.520/6.860 Fall 2017

Neural networks illustrated

y

W

x

9.520/6.860 Fall 2017

Neurons

I Each neuron computes an inner product using a column of the
weight matrix W .

I The non-linearity σ is the neuron activation function.

Image: Stanford CS231n: CNNs for Visual Recognition, 2017.

9.520/6.860 Fall 2017

Neural nets vs kernel methods

Learning with kernels
Given K , find the coefficients c1, . . . , cn in the linear expansion

f (x) =
n∑

i=1

c iK (xi , x)

by typically solving a convex problem.

Learning in neural nets
Find the coefficients c1, . . . , cn and the weights W 1, . . . ,W p, b1, . . . , bp

f (x) =

p∑

j=1

c js
(〈
W j , x

〉
+ bj

)

by typically solving a non-convex problem.

9.520/6.860 Fall 2017

Computations in kernels

x1

x2

x3

x4

f (x) =
∑

i c
iK (x , xi)

l1, hidden layer

K (x , xi)

l0, input lL, output layer

9.520/6.860 Fall 2017

Computations in neural nets

x1

x2

x3

x4

f (x) = 〈w ,Φ(x)〉

l1, hidden layer

Φ(x) = σ ◦ (Wx)

l0, input lL, output layer

9.520/6.860 Fall 2017

Neural nets vs kernel methods (cont.)

f (x) =

p∑

j=1

c js
(〈
W j , x

〉)
vs f (x) =

n∑

i=1

c iK (xi , x)

A comparison

I kernel methods lead to convex problems,

I the weights (centers) are the training points,

I . . . but with a fixed representation,

I . . . and are currently prohibitive for large scale learning (memory!).

9.520/6.860 Fall 2017

Deep neural networks

9.520/6.860 Fall 2017

Depth: function spaces by composition

Given input space X , e.g. X = Rd and output space Y, e.g. Y = RT :

I Sequence of domains

X` = Rd` , d` ∈ N, ` = 1, . . . , L,

such that X1 = X and XL = Y, hence d1 = d , dL = T .

I Sequence of function spaces

H` ⊂ {h : h : X`−1 → X`}, ` = 2, . . . , L

and

H` = {f : X1 → X` : f = f` ◦ · · · ◦ f1, fj ∈ Hj}, j = 1, . . . , `.

9.520/6.860 Fall 2017

Depth: function parametrization

Deep neural nets correspond to specific compositional function spaces

H` ⊂
{
h : ∀x ∈ X`−1, h(x) = σ`

(
W T
` x + b`

)}
, ` = 2, . . . , L

where:

I σ` : X` → X`; activation operators defined component-wise by
activation functions, s` : R→ R

I W` are d`−1 × d` weight matrices, and

I b` ∈ Rd` are offset vectors.

Neural network with L layers (L− 2 hidden), d` units per layer.

9.520/6.860 Fall 2017

Supervised neural nets: regression

Regression: XL = Y = R

last activation function can be chosen to be the identity

f (x) = 〈wL, h(xL−1)〉+ bL ∈ R.

Equivalently, writing one step of the recursion:

f (x) =

dL−1∑

j=1

w j
LsL−1

(〈
W j

L−1, h(xL−2)
〉

+ bjL−1

)
+ bL.

9.520/6.860 Fall 2017

Supervised neural nets: classification

Classification: XL = Y = [1, . . . ,T]

last activation function can be chosen to be the softmax

f (x) = σ(〈WL, h(xL−1)〉+ bL) σ : RT → [0, 1]T ,

where WL is T × dl−1 and

s(aj) =
ea

j

∑T
j=1 e

aj
, a ∈ RT , s : R→ [0, 1]

I Softmax regression (multinomial logistic regression).

I Probability distribution over T outputs.

I arg maxj(f (x)j) for classification.

9.520/6.860 Fall 2017

Summary: Deep neural networks

Basic idea: compose simply parameterized representations

Φ = ΦL ◦ · · · ◦ Φ2 ◦ Φ1

Let d0 = D and

Φ` : Rd`−1 → Rd` , ` = 1, . . . , L

and in particular
Φ` = σ ◦W`, ` = 1, . . . , L

where
W` : Rd`−1 → Rd` , ` = 1, . . . , L

linear/affine and σ is a non linear map acting component-wise

σ : R→ R.

9.520/6.860 Fall 2017

Summary: Deep neural nets

f (x) = w>ΦL(x), ΦL = ΦL ◦ · · · ◦ Φ1︸ ︷︷ ︸
compositional representation

Φ1 = σ ◦W1 . . . ΦL = σ ◦WL

ERM

min
w ,(Wj)j

1

n

n∑

i=1

(yi − w>ΦL(xi))2

9.520/6.860 Fall 2017

Computations: Deep neural nets

x1

x2

x3

x4

f (x) = 〈w ,ΦL(x)〉

l1 l2

Φ̄1(x) Φ̄2 ◦ Φ̄1(x)

l0 lL

9.520/6.860 Fall 2017

Neural networks jargon

ΦL(x) = σ(WL . . . σ(W2σ(W1x)))

I hidden layer: any intermediate representation Φ`, ` = {1, L− 1}.
I number of hidden units: dimensionalities (d`)`
I activation function: nonlinearity σ

9.520/6.860 Fall 2017

Activation functions

For α ∈ R
I sigmoid (logistic) s(α) = 1/(1 + e−α),
I hyperbolic tangent s(α) = (eα − e−α)/(eα + e−α),
I ReLU (ramp, hinge) s(α) = |α|+,
I softplus s(α) = log(1 + eα).

Note: If the activation is linear: equivalent to a single linear layer.9.520/6.860 Fall 2017

Logistic and Softmax regression

Recall logistic regression loss (linear activation):

f (x) = 〈w ,Φ(x)〉

V (f (x), y) = log(1 + e−yf (x)) = −yf (x) + log(1 + eyf (x))

”Cross-entropy” loss (single output, logistic activation):

f (x) = s(〈w ,Φ(x)〉), s(α) = (1 + e−a)

V (f (x), y) = − (y log(f (x)) + (1− y) log(1− f (x))) = −yf (x) + log(1 + eyf (x))

”Cross-entropy” loss (multiple outputs, softmax activation):

f (x) = σ(〈W ,Φ(x)〉), s(aj) = ea
j

/
T∑
j=1

ea
j

V (f (x), y) = −
T∑
j=1

y j log(f (x)j) = −
T∑
j=1

y j

(
f (x)j −

T∑
i=1

log(e f (x)i)

)
9.520/6.860 Fall 2017

Questions with deep networks

fw ,(W`)`(x) = w>Φ(W`)`(x), Φ(W`)` = σ(WL . . . σ(W2σ(W1x)))

1. Approximation: how rich are the models?

2. Optimization: can we train efficiently?

3. Generalization: from finite data? overfitting?

TP will discuss these (next classes!)

9.520/6.860 Fall 2017

Neural networks function spaces

Consider nonlinear space of functions of the form fw ,(W`)` : RD → R,

fw ,(W`)`(x) = w>Φ(W`)`(x), Φ(W`)` = σ(WL . . . σ(W2σ(W1x)))

where w , (W`)` may vary.

Very little structure . . . but we can:

I train by gradient descent (next)

I get (some) approximation/statistical guarantees (later, next
classes)

9.520/6.860 Fall 2017

One layer NN: learning

Consider single hidden layer:

f(w ,W)(x) = w>σ(Wx) =

p∑

j=1

wjσ
(
x>W j

)

and ERM

min
w ,W
Ê(w ,W), Ê(w ,W) =

n∑

i=1

(yi − f(w ,W)(xi))2.

Problem is non-convex! (possibly smooth depending on σ)

Convex vs. Nonconvex Optimization

Unique optimum: global/local. Multiple local optima
9.520/6.860 Fall 2017

Gradient descent: non-convex problems

Image: A. Geron, ”Hands-on ML with scikit-learn and tensorFlow”, 2017.

9.520/6.860 Fall 2017

Back-propagation & GD

min
w ,W
Ê(w ,W), Ê(w ,W) =

n∑

i=1

(yi − f(w ,W)(xi))2.

Approximate minimizer is computed via GD iterations

w t+1
j = w t

j − γt
∂Ê
∂wj

(w t ,W t)

W t+1
j,k = W t

j,k − γt
∂Ê
∂Wj,k

(w t+1,W t)

where the step-size (γt)t is the learning rate.

9.520/6.860 Fall 2017

Back-propagation & chain rule

∂Ê
∂wj

(w ,W) =
∂Ê

∂f(w ,W)

∂f(w ,W)

∂wj

∂Ê
∂Wj,k

(w ,W) =
∂Ê

∂f(w ,W)

∂f(w ,W)

∂σ(W>j ·)
∂σ(W>j ·)
∂Wj,k

Direct computations show that:

∂Ê
∂wj

(w ,W) = −2
n∑

i=1

(
yi − f(w ,W)(xi)

)
︸ ︷︷ ︸

∆i

σ(W>j xi)︸ ︷︷ ︸
hi,j

∂Ê
∂Wj,k

(w ,W) = −2
n∑

i=1

(yi − f(w ,W)(xi))σ′(W>j xi)︸ ︷︷ ︸
ηi,j

wjx
k
i

ηi,j = ∆iσ
′(W>j xi)

9.520/6.860 Fall 2017

Back-propagation equations

ηi,j = ∆i (. . .)

Weight updates are performed in two steps:

I Forward pass: compute function values with weights

I Backward pass: compute errors and propagate

9.520/6.860 Fall 2017

SGD (and non-convexity)

w
(t+1)
j = w

(t)
j − γt2(yt − f(w (t),W (t))(xt))σ((W

(t)
j)>xt)

W
(t+1)
j,k = W

(t)
j,k − γt(yt − f(w (t+1),W (t))(xt))w

(t+1)
j σ′((W

(t)
j)>xt)x

k
t

9.520/6.860 Fall 2017

Remarks

I Optimization by gradient methods– typically SGD

I Online update rules are potentially biologically plausible– Hebbian
learning rules describing neuron plasticity

I Multiple layers can be analogously considered

I Multiple step-size per layers can be considered

I NO convergence guarantees

I Making things work:

– Initialization is tricky- more later
– Activation function
– Regularization: weight, stochastic
– Normalization: weight, batch, layer, . . .
– Accelerated optimization/GD
– Training set augmentation
– More tricks later

9.520/6.860 Fall 2017

Questions

1. Optimization: can we train efficiently?

– Why does SG iterative method work?

2. Approximation: how rich are the models?

– What is the benefit of multiple layers?

3. Generalization: from finite data? overfitting?

TP will discuss these (next classes!)

9.520/6.860 Fall 2017

Approximation theory

One-layer, see [Pinkus ’99] and references therein,

fu(x) =
u∑

j=1

w jσ
(
x>W j

)

Universality, if σ is not a polynomial,

lim
u→∞

min
fu
‖fu − f ‖ = 0, ∀f ∈ C(RD)

Approximation rates for smooth σ,

min
fu

max
f∈W 2,s

‖fu − f ‖ . u−
s
d

where W 2,s is the space of functions with s (integrable) derivatives

I Representation via Kolmogorov Superposition theorem

I Is Sobolev the right smoothness class? [Barron ’93, Poggio,
Mhaskar et al. ’16]

I Multiple layers: TP will discuss (next classes!)
9.520/6.860 Fall 2017

Unsupervised learning with neural networks

Autoencoders: parametric encodings by learning to reconstruct.

I Unlabeled data abound

I Pre-training: weights to initialize supervised learning

I (Nonlinear) dimensionality reduction: bottleneck features

I Embeddings for metrics: similarity, ranking, one-shot, . . .

9.520/6.860 Fall 2017

Autoencoders

W

x

x

I Neural network with one input layer, one output layer and one
(or more) hidden layers.

I Output layer has equally many nodes as the input layer.

I Trained to predict the input.

9.520/6.860 Fall 2017

Autoencoders (cont.)

I Autoencoder with a hidden layer of k units

I Representation-reconstruction pair with X = Rd ,Fk = Rk , k < d

I Encoder:

Φ : X → Fk , Φ(x) = σ (WΦx) , ∀x ∈ X

I Decoder:

Ψ : Fk → X , Ψ(z) = σ (WΨz) , ∀z ∈ Fk .

I Code: z ∈ Fk

9.520/6.860 Fall 2017

Autoencoders (cont.)

X = Rd ,Fk = Rk , k < d

Φ : X → Fk , Φ(x) = σ (WΦx) , ∀x ∈ X
Ψ : Fk → X , Ψ(z) = σ (WΨz) , ∀z ∈ Fk .

Reconstruction:

x ′ = Ψ ◦ Φ(x) = σ (WΨσ (WΦx))

I If tied-weights: WΨ = W T
Φ = W ∈ Rk×d

I Φ,Ψ can be made deep and compositional.

9.520/6.860 Fall 2017

Autoencoders & dictionary learning

Φ(x) = σ (WΨx) , Ψ(z) = σ (WΦz)

I Dictionary learning: weights can be seen as dictionary atoms.

min
Φ,Ψ

1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 = min
WΨ,WΦ

1

n

n∑

i=1

‖xi − σ (WΨσ (WΦx))‖2

Notes:

I Connections with so called energy models [LeCun et al.].

I Probabilistic/Bayesian interpretations/formulation (e.g.
Boltzmann machines [Hinton, Salagutinov, 2006]).

9.520/6.860 Fall 2017

Linear autoencoders & PCA

Φ(x) = σ (Wx) , Ψ(z) = σ
(
W T z

)

min
Φ,Ψ

1

n

n∑

i=1

‖xi −Ψ ◦ Φ(xi)‖2 = min
W

1

n

n∑

i=1

∥∥xi −WW>x
∥∥2

I If we let
W = {W : F → X , linear | W TW = I}.

the solution to the autoencoder loss is PCA.

I Multiple linear layers collapse to one.

9.520/6.860 Fall 2017

Stacked auto-encoders

Multiple layers of auto-encoders can be stacked [Hinton et al ’06]. . .

(Φ1 ◦Ψ1)︸ ︷︷ ︸
Autoencoder

◦(Φ2 ◦Ψ2) · · · ◦ (Φ` ◦Ψ`)

. . . with the potential of obtaining richer representations.

9.520/6.860 Fall 2017

Are autoencoders useful?

I Pre-training has not delivered:

– large-scale, supervised training works best.

I Unsupervised, self-supervised, weakly-supervised learning in vision.

I Data visualization, dimensionality reduction.

I Latent space description, distribution learning and sampling.

I Ongoing work: denoising autoencoders, sparse autoencoders,
contrastive autoencoders, transforming autoencoders, variational
autoencoders . . .

9.520/6.860 Fall 2017

Convolutional auto-encoders

1

I Deconvolution
I Max un-pooling
I Tied encoder/decoder weights
1Image: Noh et. al.,Learning Deconvolution Network for Semantic Segmentation, ICCV 20159.520/6.860 Fall 2017

Convolutional neural networks

Connectivity is designed in specific way (convolutional weight structure):

I Weights are localized in the input domain.

I Weights are repeated across the input domain.

I Weights have progressively larger support.

I Pooling and subsampling for robustness and reduced parameters.

9.520/6.860 Fall 2017

Convolutional layers

Φ : X → F , Φ(x) = σ ◦W (x)

I representation by filtering W : X → F ′,
I representation by pooling σ : F ′ → F .

Note: σ,W are more structured than in (densely-connected) NN.

9.520/6.860 Fall 2017

Convolution and filtering

Weight matrix W is made of blocks

W = (Gt1 , . . . ,GtT)

Each block is a convolution matrix of a single filter (template) t

Gt = (g1t, . . . , gNt)

{gi} is a transformation, e.g. circular shift, shift, . . .

Gt =




t1 t2 t3 . . . td

td t1 t2 . . . td−1

td−1 td t1 . . . td−2

. .
t2 t3 t4 . . . t1




Gt =




t1 t2 t3 . . . 0 0 0
0 t1 t2 . . . 0 0 0
0 0 t1 . . . 0 0 0
. .
0 0 0 . . . t1 t2 t3




9.520/6.860 Fall 2017

Convolution and filtering

Weight matrix W is made of blocks:

W = (Gt1 , . . . ,GtT), Gti = (g1ti , . . . , gNti)

For all x ∈ X ,

(Wx)(j,i) = x>gi tj , Wx = ((t1 ? x), . . . , (tT ? x)) ,

where tj ? x = (x>gi tj) is the convolution operator.

Note: In standard (densely-connected) neural nets Wx = x>t1, . . . , x
>tT

9.520/6.860 Fall 2017

Pooling

A Pooling map aggregates the values corresponding to same filter

x ? t = x>g1t, . . . , x
>gNt,

Can be followed by (or seen as a form of) subsampling.

9.520/6.860 Fall 2017

Pooling functions

For some nonlinear activation σ, e.g. σ(·) = | · |+, let

β = σ(x ? t) =
(
σ(x>g1t), . . . , σ(x>gNt)

)
.

Examples

I max pooling
max

j=1,...,N
βj ,

I average pooling

1

N

N∑

j=1

βj ,

I `p pooling

‖β‖p =




N∑

j=1

|βj |p



1
p

.

9.520/6.860 Fall 2017

Why pooling?

Pooling can provide robustness, even invariance to the transformations.

I Filtering: covariant map

I Pooling: invariant map

Invariance & selectivity
A good representation should be

I invariant to semantically irrelevant transformations.

I discriminative with respect to semantically relevant information.

9.520/6.860 Fall 2017

Basic computations

V1 in visual cortex: [Hubel and Wiesel]

I Simple cells: {〈x , gt〉}
I Complex cells:

∑
g σ (〈x , gt〉)

Convolutional networks: [Fukushima, LeCun, Poggio]

I Convolution filters: {〈x , gt〉}
I Pooling:

∑
g σ (〈x , gt〉)

9.520/6.860 Fall 2017

Deep convolutional networks

498 Y. LeCun

Fig. 2. A convolutional network architecture, which is a particular instance of the multi-stage
architecture shown above

The role of layer 1 is to decorrelate variables and accentuate the differences (or
ratios) between them, while eliminating variations of the absolute energy so that the
non-linearity of layers 3 can always operate at its sweet spot. Decorrelation (and mean
removal) has the additional advantage of accelerating gradient-based learning [8].

Layer 2 and 3 detect conjunctions of features or motifs on the previous stage. Its role
is to non-linearly embed the input into a higher-dimensional space, so that inputs that
are semantically different are likely to be represented by different patterns of activity.
This expansion plays a similar role as using a non-linear kernel functions in a kernel
machine: in high-dimensional spaces, categories are easier to separate. More generally,
a function of interest is more likely to be linear when its input variable is embedded in a
high dimensional space. The difference with kernel machine is that our filter banks will
be trained from data, rather than simply selected from the training set.

Layer 4 serves to merge semantically similar things that have been partitioned into
different patterns of activity by the simple cells. This is where invariance is built.
Rather than producing invariance in the mathematical sense, the pooling layer merely
“smoothes out” the input-output mapping so that irrelevant variations in the input affect
the output smoothly, and in ways that can be easily dealt with (eliminated, if necessary).
The pooling operation can consist of any symmetric aggregation function, such as an
average, a max, a log-mixture (log

∑
i exi), or an Lp norm (p

√∑
i |xi|p), particularly

with p = 1, 2, or ∞ (max). A theoretical analysis of pooling operations suggests that
L∞ is best when the features are sparse and the number of pooled variable is small,
while average, L1 or L2 are best when the features are less sparse or the pooling area is
large [9]. In practice L2 pooling is a good tradeoff.

One may interpret the filter bank and non-linearity as conjunction operators (similar
to logical AND or NAND in the boolean case) and the pooling operation as a sort of dis-
junction operator (similar to a logical OR), making a single stage a kind of non-boolean
Disjunctive Normal Form.

1.2 Convolutional Architectures

Data from natural sensors often comes to us as multi-dimensional arrays in which lo-
cal group of values are correlated, and the local statistics are invariant to the particular

Filtering Pooling

Filtering Pooling

First
Layer

Second
Layer

Input Output
Classifier

In practice:

I multiple convolution layers are stacked,

I pooling is not global, but over a local subset of the transformations,

I filter size (receptive field) increases by layers.

9.520/6.860 Fall 2017

Theory

ΦL(x) = σ(WL . . . σ(W2(σ(W1x)))

I No pooling: metric properties of networks with random weights –
connection with compressed sensing [Giryes et al. ’15]

I Invariance

x ′ = gx ⇒ Φ(x ′) = Φ(x)

[Anselmi et al. ’12, R. Poggio ’15, Mallat ’12, Soatto, Chiuso ’13]
and covariance for multiple layers [Anselmi et al. ’12].

I Selectivity/Maximal Invariance, i.e. injectivity modulo
transformations

Φ(x ′) = Φ(x)⇒ x ′ = gx

[R. Poggio ’15, Soatto, Chiuso ’15]

9.520/6.860 Fall 2017

Theory (cont.)

I Similarity preservation

‖Φ(x ′)− Φ(x)‖ � min
g
‖x ′ − gx‖???

I Stability to diffeomorphisms [Mallat, ’12]

‖Φ(x)− Φ(d(x))‖ . ‖d‖∞ ‖x‖

I Reconstruction: connection to phase retrieval/one bit compressed
sensing [Bruna et al ’14].

I Weight sharing: fewer parameters to learn!

9.520/6.860 Fall 2017

Which activation function?

I Biological motivation

I Rich function spaces

I Avoid vanishing gradient

I Fast gradient computation

ReLU: Has the last two properties. Work best in practice!
9.520/6.860 Fall 2017

SGD is slow...

Accelerations

I Momentum

I Nesterov’s method

I Adam

I Adagrad

I . . . 9.520/6.860 Fall 2017

Initialization & fine tuning

dog(0)
cat	(0)

boat(1)

bird	(0)

ytrue

9.520/6.860 Fall 2017

Initialization & fine tuning

mug	(0.05)

phone	(0.95)
mug	(0)

phone	(1)

ytrue

FORWARD

BACKWARD

	

x
conv

1
conv

2
fc

6
fc

7x CNN(X)	=	ypred
fcN

8

min	E(ytrue,ypred)	

arg	min	E(w1,	w2,…)	

			 	

9.520/6.860 Fall 2017

Initialization & fine tuning

mug	(0.05)

phone	(0.95)
mug	(0)

phone	(1)

ytrue

FORWARD

BACKWARD

	

x
conv

1
conv

2
fc

6
fcN

7x CNN(X)	=	ypred
fcN

8

min	E(ytrue,ypred)	

arg	min	E(w1,	w2,…)	

			 	

9.520/6.860 Fall 2017

Initialization & fine tuning

mug	(0.05)

phone	(0.95)
mug	(0)

phone	(1)

ytrue

FORWARD

BACKWARD

	

x
conv

1
conv

2
fcN

6
fcN

7x CNN(X)	=	ypred
fcN

8

min	E(ytrue,ypred)	

arg	min	E(w1,	w2,…)	

			 	

9.520/6.860 Fall 2017

Initialization & fine tuning

mug	(0.05)

phone	(0.95)
mug	(0)

phone	(1)

ytrue

FORWARD

BACKWARD

	

x
conv

1
conv

2
fc

6
fc

7x CNN(X)	=	ypred
fcN

8

min	E(ytrue,ypred)	

arg	min	E(w1,	w2,…)	

			 	

9.520/6.860 Fall 2017

Initialization & fine tuning

mug	(0.05)

phone	(0.95)
mug	(0)

phone	(1)

ytrue

FORWARD

BACKWARD

	

x
conv

1
conv

2
fc

6
fc

7x CNN(X)	=	ypred
fcN

8

min	E(ytrue,ypred)	

arg	min	E(w1,	w2,…)	

			 	

I Learning layers from scratch/from pre-learned initialization

I Learning layers more/less aggressively using different step-sizes
9.520/6.860 Fall 2017

Training protocol(s)

I Learning at different layers

– Initialization
– Learning rates

I Mini-batch size

I Further aspect: regularization!

– Weight constraints
– Drop-out

I Batch normalization

I Data augmentation

I . . .

9.520/6.860 Fall 2017

Advances in architectures, state-of-the-art

I Supervision (AlexNet)

I GoogLeNet (Inception)

I Batch normalization (BN-Inception)

I Residual networks (ResNet)

I Dense networks (DenseNet)2

x0

x1

H1

x2

H2

H3

H4

x3

x4

2Image: Huang et. al., Densely Connected Convolutional Networks, CVPR 2017.9.520/6.860 Fall 2017

Wrap-up/Remarks

This class:

I Learning representations with deep networks

I Learning deep networks

I Unsupervised: Autoencoders

I Supervised: CNNs

I Convolutions as a strong prior/regularization

Other architectures:

I GANs, Recurrent NNs/LSTMs, ...

Next classes:

I Approximation

I Optimization

I Generalization/overfitting

I Deep learning, CNNs and visual cortex

9.520/6.860 Fall 2017

