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Abstract

Top-down synapses are ubiquitous throughout neocortex and play a central role in cognition, yet little is known about their
development and specificity. During sensory experience, lower neocortical areas are activated before higher ones, causing
top-down synapses to experience a preponderance of post-synaptic activity preceding pre-synaptic activity. This timing
pattern is the opposite of that experienced by bottom-up synapses, which suggests that different versions of spike-timing
dependent synaptic plasticity (STDP) rules may be required at top-down synapses. We consider a two-layer neural network
model and investigate which STDP rules can lead to a distribution of top-down synaptic weights that is stable, diverse and
avoids strong loops. We introduce a temporally reversed rule (rSTDP) where top-down synapses are potentiated if post-
synaptic activity precedes pre-synaptic activity. Combining analytical work and integrate-and-fire simulations, we show that
only depression-biased rSTDP (and not classical STDP) produces stable and diverse top-down weights. The conclusions did
not change upon addition of homeostatic mechanisms, multiplicative STDP rules or weak external input to the top neurons.
Our prediction for rSTDP at top-down synapses, which are distally located, is supported by recent neurophysiological
evidence showing the existence of temporally reversed STDP in synapses that are distal to the post-synaptic cell body.
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Introduction

Connectivity patterns between different areas in neocortex are

often discussed in terms of bottom-up and top-down connections

[1,2,3]. With few exceptions, communication between any two

connected neocortical areas occurs in both directions [1,4].

Feedforward or ‘‘bottom-up’’ connections are those which run

from lower neocortical areas (such as visual area V1) to higher

areas (such as V2); they typically but not always originate in layers

2/3 and synapse onto neurons in layer 4 [1,4,5,6]. By contrast,

feedback or ‘‘top-down’’ connections, which run from higher

neocortical areas to lower ones, typically originate in layer 6 and

frequently synapse onto distal dendrites in layer 1. While bottom-

up synapses have been widely studied and modeled, the

development, functions and properties of the more-abundant

top-down connections are less well understood [2,3,7].

Here we investigate the learning rules that govern the

development of top-down connections in neocortex. We study

variations on a classical paradigm describing changes in synaptic

strength between two neurons: spike-timing dependent plasticity

(STDP) [8,9,10]. According to STDP, when a pre-synaptic spike

occurs within tens of milliseconds before a post-synaptic spike, the

synaptic strength is enhanced. Conversely, when a pre-synaptic

spike occurs shortly after a post-synaptic spike, the synaptic strength

is decreased. STDP has been observed in a wide variety of systems

and conditions [11] and has been examined in many computational

studies as well (e.g. [12,13,14]; for reviews, see [15,16,17]).

In order to calculate the effects of different types of learning

rules in neocortical circuits, the relative timing of firing events

during signal propagation needs to be taken into account. During

activity evoked by transient stimuli, neurons in a lower area such

as V1 will generally be activated before neurons in a higher area

(such as V4) [18,19,20,21]. Under this scenario, bottom-up

synapses will experience a predominance of pre-synaptic spikes

followed by postsynaptic ones (‘‘pre-post’’ spike pairs). For top-

down synapses, on the other hand, the identities of the pre- and

post-synaptic neurons are reversed, meaning that stimulus-evoked

activity will be experienced as a predominance of ‘‘post-pre’’ spike

pairs. Here, motivated by this identity reversal, we hypothesize

that the learning rule at top-down synapses might exhibit unusual

temporal dependences. Specifically, we propose that learning at

top-down synapses follows a temporally reversed version of spike-

time-dependent plasticity, which we call rSTDP (Figure 1).

We compare the long-term effects of training a population of

top-down synapses using either classical STDP (cSTDP) or

rSTDP. We argue that the plasticity rules must lead to a

distribution of top-down synaptic weights that fulfills the following

three key properties. (1) Top-down weights should be stable. When the

statistics describing the environment are stationary, the top-down

connections should settle into an unchanging pattern, allowing the

information carried through top-down connections to be consis-

tently interpreted. (2) Top-down weights should be diverse. We expect to

observe a continuous distribution of strengths in top-down

connections with a significant spread (as opposed to binary
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weights or all weights taking the same value) [14]. Functionally, a

diverse set of top-down connections can perform a richer set of

computations. (For discussions of the computational properties of

synapses with graded strengths, see [22,23].) (3) Top-down weights

should be weak. Specifically, top-down connections should not create

any strong loops [15,24,25], as these can amplify neuronal activity

to pathological levels. We emphasize that this condition does not

preclude the existence of strong individual top-down connections;

these are permitted so long as the combined effect of all bottom-up

and top-down connections does not lead to runaway excitation.

Using analytical methods and numerical simulations, we

compare networks whose top-down connections exhibit plasticity

via rSTDP with those whose top-down connections exhibit classical

STDP. We further examine the effects of biasing learning towards

depression or towards potentiation. We argue that depression-

biased rSTDP, but not cSTDP, can lead to a stable, diverse and

weak distribution of top-down weights. Finally, we show that the

model’s predictions are consistent with recent experimental findings

about the relationship between plasticity and neuroanatomy.

Results

We study the characteristics of synaptic plasticity learning rules

at top-down synapses and evaluate whether the resulting

distribution of synaptic strengths fulfill the three properties

outlined above: stability, diversity and weakness. We start by

considering a simple model that we can solve analytically, and

then evaluate the results with integrate-and-fire simulations. The

network models described in the analytical and integrate-and-fire

sections share the same basic structure (Figure 1a–b). The model

consists of two levels of neurons, with every neuron in the lower

level connected reciprocally to every neuron in the higher level. A

number of simplifications should be noted: (i) there are no lateral

connections within a level; (ii) there is no separation of excitatory

and inhibitory neurons although weights can take positive or

negative values; (iii) external inputs arrive only at the lower level

(except in section ‘‘Top-down modulatory signals’’).

The steps in each computational experiment were to a) generate

a network with initial bottom-up and top-down synaptic strengths;

b) specify an external stimulus to initiate activity in lower-level

neurons; c) calculate the resultant neuronal activity over time in

the network; d) change synaptic weights according to this activity

and to our specified learning rule; and e) repeat steps b–d until we

can determine the characteristics of the final weight distribution.

In most cases, we modify only the top-down weights in step (d),

keeping the bottom-up weights constant (however, we explore

concurrent modification of bottom-up weights and top-down

weights in the section ‘‘Additional stability mechanisms’’.)

The outcomes of this basic paradigm are calculated analytically in

the first section and determined through simulations in the

integrate-and-fire section.

Analytical model of plasticity at top-down synapses
In this section, we consider model neurons whose activities at

each time-point are linear sums of the synaptic inputs at the

previous time-point. During a stimulus presentation, the activity in

lower-level neurons at the first time-point t~0 is given by
~LL(0)~~LL0, where ~LL0 is a vector describing the external inputs to

the lower-level neurons. Activity in higher-level neurons in the next

time-point is ~HH(1)~Q~LL0, where Q is a matrix describing bottom-

up synaptic weights. Activity then propagates back to the lower-level

neurons, with~LL(2)~W0
~HH(1)~W0Q~LL0, where W0 is the matrix of

top-down weights. We assume that plasticity is slow, so that we can

approximate top-down weights as unchanging during a single

stimulus presentation (see Text S1). Activity continues to move up

and down through the network during the stimulus presentation.

At the end of each stimulus presentation, we determine the

change in synaptic strength for each pair of neurons by considering

the joint activities of those two neurons, as calculated in every pair of

adjacent time-points during a stimulus presentation. Because we

focus on the top-down synapses, the higher-level units are pre-

synaptic and the lower-level units are post-synaptic. The learning

rule is a simplified version of spike-timing dependent plasticity

(STDP) (Figure 1c–d and Text S1). The learning rule is written

here for clarity with two terms: the first term represents joint activity

from events when the post-synaptic lower-level units are activated

before the pre-synaptic higher-level units (Dt~tpost{tpre~{1),

while the second term describes joint activity from events when the

post-synaptic lower-level units are activated after the pre-synaptic

higher-level units (Dt~tpost{tpre~z1). We write two equations,

one describing cSTDP (Figure 1c, Eq 1) and the other one

describing rSTDP (Figure 1d, Eq 19):

DW~m
X?

t~0,2,4:::

{a~LL(t)~HH(tz1)T|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dt~{1

z

0
@

~LL(tz2)~HH(tz1)T|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dt~z1

1
CA for cSTDP

ð1Þ

DW~m
X?

t~0,2,4:::

~LL(t)~HH(tz1)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Dt~{1

T
{

0
@

a~LL(tz2)~HH(tz1)T|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dt~z1

1
CA for rSTDP

ð19Þ

The learning rate of synaptic plasticity is set by a parameterm.

The parameter describing the balance between depression and

Author Summary

The complex circuitry in the cerebral cortex is character-
ized by bottom-up connections, which carry feedforward
information from the sensory periphery to higher areas,
and top-down connections, where the information flow is
reversed. Changes over time in the strength of synaptic
connections between neurons underlie development,
learning and memory. A fundamental mechanism to
change synaptic strength is spike timing dependent
plasticity, whereby synapses are strengthened whenever
pre-synaptic spikes shortly precede post-synaptic spikes
and are weakened otherwise; the relative timing of spikes
therefore dictates the direction of plasticity. Spike timing
dependent plasticity has been observed in multiple
species and different brain areas. Here, we argue that
top-down connections obey a learning rule with a reversed
temporal dependence, which we call reverse spike timing
dependent plasticity. We use mathematical analysis and
computational simulations to show that this reverse time
learning rule, and not previous learning rules, leads to a
biologically plausible connectivity pattern with stable
synaptic strengths. This reverse time learning rule is
supported by recent neuroanatomical and neurophysio-
logical experiments and can explain empirical observations
about the development and function of top-down
synapses in the brain.

Feedback Synapses Use Reverse Plasticity Rule
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potentiation is a; when aw1, depression dominates over

potentiation. Equation 1 reflects cSTDP, in which the weights

increase from joint activity where Dtw0 and decrease when Dtv0
(Figure 1c). The alternative learning rule considered here

(rSTDP) is given by Equation 19; in this case the weights

decrease from joint activity when Dtw0 and increase when Dtv0
(Figure 1d). As discussed below, this sign reversal between

cSTDP and rSTDP is at the heart of the discussion about the

stability of the learning rule for top-down synapses.

Using the expressions for neuronal activity and synaptic

plasticity, we can determine and characterize fixed points of the

system. These are sets of top-down weights which produce activity

that, on average, leads to no further change in the weights. Fixed

points represent potential places where the weights might settle

Figure 1. Schematic description of the model and learning rules. a. Schematic description of the model used in the analytical and
computational work. The model consists of two layers: a ‘‘lower’’ cortical area (units with activity Li(t)) and a ‘‘higher’’ cortical area (units with activity
Hj(t)). b. The strength of the all-to-all bottom-up connections from the lower area to the higher area is represented by the matrix Q (gray arrows).
These synapses occur in proximal dendrites and their weights are fixed unless otherwise noted. The strength of the all-to-all top-down connections
from the higher area to the lower area is represented by the matrix W (black arrows). These synapses occur in distal dendrites. The W weights evolve
according to the plasticity rules described in c–d. There are no connections within each layer. c. Schematic description of ‘‘classical’’ spike-time
dependent plasticity (cSTDP). For a given synapse, the y-axis indicates the change in the weight (Dw) and the x-axis represents the temporal
difference between the post-synaptic action potential and the pre-synaptic action potential (Dt~tpost{tpre). The green curve shows the learning rule
used in the analytical section while the blue curve shows the learning rule used in the integrate-and-fire simulations. In cSTDP, a pre-synaptic action
potential followed by a post-synaptic action potential (Dt.0) leads to potentiation (Dw.0). The learning rate at each synapse is controlled by the
parameter m and the ratio of depression to potentiation is controlled by a. In the computational simulations, the parameter tSTDP controls the rate of
weight change with Dt. d. Schematic description of ‘‘reverse’’ STDP (rSTDP).
doi:10.1371/journal.pcbi.1002393.g001

Feedback Synapses Use Reverse Plasticity Rule

PLoS Computational Biology | www.ploscompbiol.org 3 March 2012 | Volume 8 | Issue 3 | e1002393



after multiple stimulus presentations. To find an expression for

fixed points, we plug the expressions for neuronal activity into

Equation 1 or 19 and look for points where DW becomes zero

(Text S1).

We show that any fixed point W� must obey a simple relation: for

cSTDP, the relation is W�QCL0L0
QT~aCL0L0

QT ; for rSTDP, it is

W�QCL0L0
QT~

1

a
CL0L0

QT . Here, CL0L0
~S~LL0

~LL0
T
T is the cross-

correlation matrix formed by averaging the joint initial activity of

pairs of lower-level neurons across many external stimuli. These

equations imply that for cSTDP a is an eigenvalue of W�Q, and that

1=a is an eigenvalue of W�Q for rSTDP.

From these relations, we see that for both cSTDP and rSTDP,

top-down weights at a fixed point will typically be diverse: they will

make up a continuous distribution, and will not be binary or

single-valued. Counter-examples exist only for very particular

choices of Q and CL0L0
, such as when the distribution of bottom-

up weights Q is itself single-valued. We conclude that fixed points

in this model will generally meet the criterion of diversity,

regardless of the parameters of the learning rule.

We also note that potential fixed points depend both on the

bottom-up weights (Q) and on the statistical structure of the

external inputs (CL0L0
). The presence of the correlation term

CL0L0
, specifically, means that we can describe the learning rule as

correlative. In the special case where Q is invertible, the relations

simplify to W�~aQT for cSTDP and W�~
1

a
QT for rSTDP,

meaning that top-down connections simply reproduce a scaled

version of earlier lower-level activity (see further discussion below.)

Requirements for prevention of strong loops
We ask whether top-down weights at fixed points meet the

criterion of weakness (defined as the absence of strong excitatory

loops.) A strong loop exists whenever there are patterns of

neuronal activity which are amplified as they pass up and down

through the network. Because the network is linear, activity at any

time-point can be calculated by multiplying the previous activity

by the matrix W0Q (for example ~LL(2)~W0Q~LL(0).) The activity

will increase, implying the existence of strong loops, whenever the

matrix W0Q has eigenvalues greater than one. As discussed above,

for fixed points, W�Q has eigenvalues of a (for cSTDP) and

1=a(for rSTDP) (see Text S1 for further details). This means that

strong loops must exist at every fixed point for depression-biased

cSTDP and for potentiation-biased rSTDP. Thus, the only

plasticity rules which can produce weak and potentially stable

top-down weights are potentiation-biased cSTDP and depression-

biased rSTDP.

Depression-biased reverse STDP is required for
development of unchanging top-down weights

Finally, we consider the requirement for stability. We evaluate

whether fixed points are stable or not by performing a linear

stability analysis, which examines the effect of plasticity when

weights are close to but not equal to a fixed point. If the fixed point

is stable, plasticity must draw the weights ever closer; if it is

unstable, plasticity will push weights away from the fixed point.

To perform the stability analysis, we calculate how the

difference between the current top-down weights and the fixed

point changes over time [26] (Text S1). We show that under

cSTDP, at least one component of the difference between the

current top-down weights and the fixed point will actually grow

over time as a result of plasticity, and hence the fixed point must

be unstable. Therefore, in the model architecture presented here,

networks where top-down connections are trained with cSTDP

cannot have any stable fixed points. By contrast, networks in

which top-down connections are learned with rSTDP may have

stable fixed points. We conclude that fixed points in this model can

meet the criterion of stability only for rSTDP. Putting these results

together, we see that only for depression-biased rSTDP can

plasticity lead to sets of top-down weights that simultaneously meet

the criteria of stability, diversity and weakness.

An intuitive understanding of the requirement for rSTDP can be

gained by considering only the first three time-points in a stimulus

presentation. The top-down weights only affect activity starting at

time t = 2. For cSTDP, the pre-post synaptic joint activity from

times 1 and 2 leads to potentiation and increased activity at t = 2,

which in turns causes further potentiation. In this positive feedback

loop the weights can increase indefinitely. By contrast, with rSTDP,

joint activity from times 1 and 2 leads to depression. Any increase in

the strength of the top-down weights will cause more activity at t = 2

and thus lead to additional depression, bringing the weights back

into balance. Therefore these circuits will tend to self-stabilize. The

analytical work discussed above and in the Text S1 together with

the simulations in the next section formalize and extend this

argument beyond the initial time points.

We emphasize that the requirement for rSTDP only applies to

learning at top-down synapses. A similar analysis can be

performed for bottom-up synapses by holding W constant while

modifying Q. In the Text S1, we show for simple cases that stable

training of bottom-up synapses requires cSTDP. Therefore, the

results presented here are consistent with the existence of a

conventional plasticity rule (cSTDP) at bottom-up connections

while implying the necessity of a temporally reversed plasticity rule

(rSTDP) for top-down connections. Concurrent changes in W and

Q are considered in section ‘‘Additional stability mecha-
nisms’’.

We also considered the case where the lower and upper cortical

areas were not reciprocally connected. In the Text S1, we show

that rSTDP is still required at top-down connections in this case.

Because the mathematics in this case are somewhat simpler, we

were able to move beyond linear neurons and show that the

requirement for rSTDP holds when the neurons have an arbitrary

non-linear but monotonic activation function. We also show that

in this case the bias towards depression is not necessary, since

strong excitatory loops cannot develop in the absence of reciprocal

connections.

Example of development of top-down weights
As a sanity check and to illustrate the dynamical changes in the

weights as a consequence of the learning rule, we created a

numerical implementation of our analytical network by using

Equation A22 (see Text S1). Figure 2 shows the results of a

simulation with rSTDP and depression dominating (aw1). The

evolution of the top-down weight matrix W over multiple stimulus

presentations is shown in Figure 2a. The weights change rapidly

at the beginning and converge to a stable solution. The magnitude

of the changes in W approaches zero as the algorithm converges

(Figure 2b) and the standard deviation of the weights approaches

a constant value (Figure 2c). We predicted that the top-down

weight matrix W would approach the inverse of Q when Q is

invertible, as it is in Figure 2. Figure 2d shows that the

correlation coefficient between W and Q{1 indeed approaches 1

over time. The final distribution of weights is continuous and

diverse (as opposed to being binary or single-valued) (Figure 2e).

Finally, all the eigenvalues of W are below 1 (Figure 2f) as

required to avoid runaway excitation. In sum, we have illustrated

that the circuit simulated in Figure 2 fulfills the three requisite

criteria: the final distribution of weights is stable, diverse and does

not lead to runaway excitation.

Feedback Synapses Use Reverse Plasticity Rule
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In an integrate-and-fire simulation, depression-biased
rSTDP leads to stable, diverse and weak top-down
weights

We supplement the analytical results above by relaxing many of

the assumptions and simulating a network under biologically more

realistic conditions. We performed numerical simulations of a

network of noisy and leaky integrate-and-fire neurons (Eqs. 2–5,

Methods). The simulations differed in four key ways from the

analytical work above. First and most importantly, the integrate-

and-fire model neurons enabled us to better simulate the non-

linear responses that neurons typically display in response to their

inputs as well as explicitly include spikes and plasticity rules based

on spike timing (Eqs. 2–4). Second, the external input to lower-

level neurons occurred over an extended period of time. Third,

instead of considering only adjacent pairs of spikes we used a

plasticity rule which varied smoothly in strength depending on the

time difference between pre- and post-synaptic spikes (Eq. 5).

Fourth, we introduced noise into our simulations in the form of

noisy synaptic inputs. In principle, these differences could lead to

qualitatively different effects on the requirement for depression-

biased rSTDP.

Apart from these differences, the model used in the simulations

was similar to the one used in the analytical formulation

(Figure 1). Bottom-up connections were fixed (and generated as

in Figure 2a). The external inputs to each lower-level neuron

were drawn from Gaussian distributions as described in Meth-
ods. Top-down weights were initially set to zero. In Figure 3, we

show the evolution of top-down weights in one example simulation

in which we used depression-biased rSTDP. In Figure 4, we show

typical results of these simulations for each of the four main

possible learning rules.

Each simulation was classified with one of four possible

outcomes (see Methods for details). The first of these outcomes

was ‘‘converged’’; in order to qualify, a simulation’s final top-down

weights needed to satisfy our three key criteria of stability,

diversity, and weakness. We assessed stability by calculating the

cross-correlation of the current weights with those from previous

time-points (Figure 3c, 4a first subplot) as well as comparing the

standard deviation of current and past weight distributions

(Figure 3b, 4a second subplot). We assessed diversity by asking

whether the standard deviation of the top-down weights, when the

simulation was stopped, surpassed a threshold value of 0.3

(Figure 3d, 4a third subplot). We ensured that weights had not

become too strong, assessing the absence of strong loops, by

requiring that a convergent simulation have less than 50% of its

weights at the maximum or minimum allowed weight. Simulations

not labeled as ‘‘Converged’’ were categorized as ‘‘Weights too

similar’’, ‘‘Extreme weights’’, or – in the rare cases when weights

had not stabilized after 625,000 stimulus presentations – ‘‘Did not

converge’’ (Figure 4b–d),

Figure 2. Example numerical implementation of the analytical results for depression-biased rSTDP learning. a. Development of top-
down synaptic weights (W) over multiple stimulus presentations. N indicates the stimulus presentation number and here we show 4 snapshots of
W(N). This model had 20 lower units and 20 higher units. The strength of each synaptic weight is represented by the color in the W matrix (see scale
on the right). The algorithm converged after 2005 iterations and the final W is shown on the right (see Methods for convergence criteria). b–d.
Measures of weight stability and diversity. b. Norm of the change in the top-down weight matrix (jDWj) as a function of stimulus presentation
number N (see text). As the algorithm converges, the change in the weights becomes smaller. The dotted lines mark the iterations corresponding to
the snapshots shown in part a. c. Standard deviation of the distribution of top-down weights as a function of iteration presentation number (loosely
represented in the y-axis as std(W)). The final value in this plot (N = 2005) corresponds to the standard deviation of the distribution shown in part e. d.
Pearson correlation coefficient between the vectorized W(N) and W(N-100) (blue line, calculated only for N. = 100) and between W(N) and the
predicted value of W at the fixed point (W* = Q21; green line, see text for details). As the algorithm converges, W(N)RW�. e. Measure of weight
diversity: Distribution of the final synaptic weights after the algorithm converged. Bin size = 4. f. Measure of absence of strong loops: Mean (blue) and
maximum (green) eigenvalue of the matrix WQ, as a function of stimulus presentation number. This matrix describes the activity changes produced
in a full up-down loop through the network. Eigenvalues greater than one would correspond to the existence of strong loops. The maximum
eigenvalue never surpasses 0.33, which is equal to 1/a. The mean eigenvalue also eventually stabilizes at this value.
doi:10.1371/journal.pcbi.1002393.g002

Feedback Synapses Use Reverse Plasticity Rule
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We next asked how the results of the simulations illustrated in

Figure 3 and 4a depended on the parameters used in the

simulations. In particular, we asked whether convergence

required depression-biased rSTDP as it did for the linear

network. We ran 6912 simulations, spanning a wide range of

different sets of parameters as outlined in Table 1, including

two bottom-up weight matrices Q and two external stimulus

correlation matrices CL0L0
. We ran each simulation three times

with different initial conditions. We summarize the results of this

parameter landscape characterization in Figure 5. Among the

simulations with depression-biased rSTDP, convergence did not

require fine-tuning of parameters – more than 90% of the

simulations were categorized as convergent. Critically, none of

the simulations with any of the other learning rules (potentiation

biased rSTDP, potentiation or depression biased cSTDP) led to

convergent simulations. Thus, in spite of the differences from

the analytic work, the integrate-and-fire network simulations

also lead us to a requirement for depression-biased rSTDP to

achieve a stable, diverse and weak distribution of top-down

weights.

Additional stability mechanisms
We have to this point considered only networks with pure

STDP-type plasticity at top-down connections, and we have

shown that cSTDP is unstable in these networks. We now modify

the basic plasticity rule from Equation 1 in one of several ways –

by considering concurrent changes in bottom-up weights, by

adding homeostatic synaptic scaling [27] or by using a

multiplicative STDP rule [28,29,30,31]. These last two mecha-

nisms have been shown to stabilize inherently unstable Hebbian

learning in feedforward networks [31] and recurrent networks

[28,32]. However, this stabilization can cause a loss of synaptic

competition [14,28]. We asked how our conclusions would be

affected by adding these mechanisms. For each of these

mechanisms, we modified the linear firing-rate model (Methods)

and evaluated the systems numerically and using our integrate-

and-fire model (Methods).

In homeostatic synaptic scaling, all incoming synapses to a given

neuron are modified simultaneously so as to help a neuron

maintain a target firing rate. To model this homeostatic

mechanism, we first applied the weight changes predicted by

Figure 3. Example of the dynamics and evolution of top-down weights in the integrate-and-fire model. a. Snapshots showing the
evolution of W(N) in the integrate-and-fire network simulations over time defined by the number of stimulus presentations (N). The format is the
same as in Figure 2a. This model had 100 lower units and 100 higher units. The parameters used in this simulation are shown in the last column of
Table 1, with rSTDP and a = 1.2. b–c. Measures of weight stability. b. Standard deviation of the distribution of top-down weights as a function of the
stimulus presentation number. The convergence criterion for the standard deviation was that the slope of this plot (calculated as
½std(W(N)){std(W(N{DN))�=DN with DN = 6000) be less than 1025. The convergence criterion was met at the point indicated by the red
asterisk. The dotted vertical lines correspond to the times of the five snapshots shown in part a. c. Blue line: Pearson correlation coefficient between
the vectorized W(N) and W(N-DN), for DN = 3000 iterations. For comparison with Figure 2, we also show the correlation coefficient between W(N)
and the inverse of Q (green line). We note that in the integrate and fire simulations we do not expect W(N) to converge to the W�described in the
text and Figure 2. A simulation run was classified as ‘convergent’ when the correlation coefficient was greater than 0.99 and when the std criterion in
part b was met. In this example, the simulation achieved the correlation criterion at T = 75000 (red asterisk). d. Measure of weight diversity:
Distribution of the synaptic weights for the final snapshot. Bin size = 0.1. e. Measure of absence of strong loops: Average firing rate for lower-level
neurons as a function of stimulus presentation number. The average firing rate almost immediately stabilizes to a constant value, and does not
increase to pathological levels as occurs in the presence of strong excitatory loops.
doi:10.1371/journal.pcbi.1002393.g003
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STDP, then multiplied all top-down connection weights and

external inputs to a given neuron by a factor that depended on the

difference between the current firing rate and the target firing rate

(Methods). First, we tested homeostatic scaling with the

depression-biased rSTDP learning rule in our linear model. We

confirmed that, as in the case without synaptic scaling, these

networks generally converged to stable, diverse and weak

distributions of weights. Next, we considered potentiation-biased

rSTDP learning rules, which were unstable in the non-scaling

case. We found that with homeostatic synaptic scaling, although

learning did sometimes acquire stable and weak connection

weights, the distributions were never diverse: the standard

deviations of the weights was always at least 104 times smaller

than those in the depression-biased cases. Finally, we looked at

cSTDP learning rules, with either potentiation or depression

biases. We found no combinations of parameters in which

Figure 4. Representative results of integrate-and-fire simulations for different learning rules. We consider here four possible learning
rules: classical STDP (cSTDP, c,d), reverse STDP (rSTDP, a,b), depression-biased (a,c) and potentiation-based learning (b,d). For each learning rule, we
show the results for a representative simulation (see summary results in Figure 5.) The format and conventions for the subplots are the same as in
Figure 3. The subplots show the Pearson correlation coefficient between the vector containing all the entries of W(N) and that for W(N-DN), for
DN = 3,000 iterations (first subplot), the standard deviation of the distribution of weights (second subplot), the distribution of weights (third subplot),
the average firing rate of the lower level units (fourth subplot) and the final W. The simulation in part a converged; the convergence criteria were met
at the value of N indicated by an asterisk. The simulations in b–d were classified as having ‘‘extreme weights’’ meaning that .50% of the weights
were either at 0 or at the weight boundaries (650). The arrows in the second subplot in b–d denote inflection points where the weights reached the
boundaries and the standard deviation started to decrease. The parameters for each of these simulations are listed in the last column of Table 1,
with specifics as follows. a rSTDP, a = 1.2; b: rSTDP, a = 0.9; c: cSTDP, a = 1.2; d: cSTDP, a = 0.9. For the simulations in b–d, the weights varied most
strongly across lower-level neurons, leading to the appearance of vertical bands in the final subplots (note the differences in the color scale and
standard deviation values in 4b–d compared to 4a). Some lower-level neurons experienced greater joint activity than others due to the choice of Q
(and hence greater plasticity); the instability of learning in these simulations then magnified these initial imbalances.
doi:10.1371/journal.pcbi.1002393.g004
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homeostatic synaptic scaling with cSTDP led to stable and diverse

top-down weights. We confirmed each of these results using

integrate-and-fire simulations: homeostatic synaptic scaling only

allowed for convergent behavior with depression-biased STDP,

and led to extreme weights or loss of diversity in every other case

(Table 2, Figure 6). In several depression-biased rSTDP

simulations, the pull towards homeostasis was enough to shift

the steady-state weight values high enough that a fraction of the

feedback weights moved into the ‘‘extreme’’ range, causing more

simulations to be labeled as ‘‘extreme weights’’ than in the case

without homeostasis (Figure 5); however, learning was not truly

unstable in these cases.

Another modification of STDP used in several studies is a

multiplicative learning rule [28,29,30] in which the change in a

synaptic weight depends both on the current value of that weight

and on amounts of pre- and post-synaptic activity. Here, we

consider the particular implementation used in [30], in which the

strength of potentiation is linearly proportional to the distance

between the current weight and a maximum weight, while the

strength of depression is proportional to the distance of the current

weight from zero (Eq. 6–7, Methods). To test the effects of

multiplicative scaling in our linear model, we modified Equation
A22, for several values of the maximum weight (Methods), and

we tested learning rules with rSTDP or cSTDP and a greater than

or less than 1. In every case, all of the synaptic weights eventually

clustered tightly at single values either close to zero or close to the

maximum weight: we lost all diversity in the synaptic weights,

analogous to a loss of synaptic competition. We therefore conclude

that multiplicative learning is insufficient to allow for the

development of stable and diverse synaptic weights under either

cSTDP or potentiation-biased learning. The results were similar in

the integrate-and-fire simulations: every simulation was classified

as ‘‘weights too similar’’ (Table 2, Figure 6).

We argue that the loss of diversity under multiplicative scaling is

due to the quadratic nature of the multiplicative learning rule (Eq
6–7, Methods), in which W appears explicitly and multiplies
~LL(tz2), which implicitly depends on W. Quadratic learning rules

will tend to be bi-stable, with fixed-point weights either very strong

(near the maximum allowed value) or very weak (near zero). This

binary weight pattern has indeed been observed in fully recurrent

networks trained with a multiplicative cSTDP rule [32]; we

interpret the results of our simulations as feedback weights

Table 1. Parameters used in the integrate-and-fire simulations.

Parameter Description Values explored for Figure 5 and 7 Values explored for Figures 3, 4, 6, 8

Learning type rSTDP, cSTDP rSTDP, cSTDP for Figs. 3, 4, 6. rSTDP for Fig. 8.

A Depression/Potentiation balance 0.9, 1.2, 3 0.9,1.2 for Figs. 3, 4, 6. 0.9 for Fig. 8.

D Synaptic transmission delay 1, 15 ms 15 ms

tSTDP STDP time constant 5, 10, 20 ms 20 ms

S Noise level 1000, 2000 spikes/sec 2000 spikes/sec

tsyn Synaptic time constant 5, 15 ms 15 ms

sinput Input variance 100%,200% 100%

snoise Noise variance 100%, 200% 50%

W min, W max Minimum/maximum weight 50 for Figs. 3,4,6; 20 in Fig. 5 50

F Target firing rate, for homeostatic scaling n/a n/a for Figs. 3–4, 8; 20,80,120 spikes/sec for Fig. 6

g Relative strength of learning, for homeostatic scaling n/a n/a for Figs. 3–4, 8; 0.1,1,10,100 for Fig. 6

f Relative strength of learning, for concurrent plasticity n/a n/a for Figs. 3–4, 8; 210,21,20.1, 0.1,1,10 for Fig. 6

Only parameters that were varied are shown in here; for other parameters that were fixed across simulations, see Methods.
doi:10.1371/journal.pcbi.1002393.t001

Figure 5. Summary of the results of the integrate-and-fire
network simulations. We consider the four possible learning rules
illustrated in Figure 4. Here we show the proportion of all the
computational simulations in a parameter search (Methods, Table 1)
using integrate-and-fire units that converged (green), that reached
extreme weights (red) or that did not converge (light blue). For
comparison with Figure 6, we included a category for simulations in
which weights failed to achieve sufficient diversity (dark blue), although
none of the current simulations fell into that category. The quantitative
criteria for classifying the stimulations into these four categories as well
as the network and parameters spanned are described in the text. The
total number of simulations for each learning rule were 2298, 2304,
1148, and 1152. The only convergent simulations were seen for
depression-biased rSTDP.
doi:10.1371/journal.pcbi.1002393.g005
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clustering at the stronger of the two potential fixed points. Binary

learning of this sort can create a new functional connectivity

within a network; for instance, it can lead to the reduction of loops

[33]. However, it is not a satisfactory solution here because we

require diversity in the top-down weights.

The results presented thus far have assumed that the bottom-up

weights remain unchanged and that there is plasticity only in the

top-down weights. We evaluated whether the results would change

when bottom-up connections were allowed to change concurrently

with the top-down connections. We started with a set of randomly

determined set of bottom-up weights Q (Methods), but we now

allowed Q to change over time with a learning rule analogous to

that in Equation 1 (Eq. 8). We considered all combinations of

cSTDP and rSTDP as well as depression versus potentiation bias

for plasticity (16 possible combinations). For both the numerical

implementation of the linear work and for the integrate-and-fire

simulations, we found convergent learning only when top-down

connections were trained with depression-biased rSTDP (Table 2,
Figure 6). Stability did not depend critically on the parameters of

bottom-up learning; we found stable examples for bottom-up

plasticity both with cSTDP and with rSTDP and with both

depression and potentiation biases. We observed that the fraction

Figure 6. Summary of the results of the integrate-and-fire network simulations with additional stability mechanisms. We show the
results of simulations with homeostatic scaling, multiplicative plasticity, or concurrent bottom-up and top-down plasticity (Methods, Table 1). The
format is the same as in Figure 5. The only convergent simulations were seen for depression-biased rSTDP, in the homeostatic scaling and
concurrent plasticity cases. For all other learning conditions, homeostatic scaling simulations and concurrent plasticity reached extreme weights.
Multiplicative plasticity always led to a lack of diversity.
doi:10.1371/journal.pcbi.1002393.g006

Table 2. Summary of results for modifications to the plasticity rules described in Equation 1.

Homeostatic Scaling Potentiation bias Depression bias

rSTDP Stable but not diverse/EW Stable and diverse/C, WTS, EW

cSTDP Unstable/EW Unstable/EW

Multiplicative Scaling Potentiation bias Depression bias

rSTDP Unstable/WTS, Stable but not diverse/WTS

cSTDP Unstable/WTS Unstable/WTS

Concurrent changes in Q Potentiation bias Depression bias

rSTDP Unstable/EW Stable/C

cSTDP Unstable/EW Unstable/EW

We considered three modifications: Homeostatic scaling, Multiplicative scaling and concurrent changes in the bottom-up and top-down weights (see text for a
description of these modified rules). The first line in each entry of the table describes the results of the numeric implementation of the analytical work (based on
Equation A22). The second line of each entry describes the results of the Integrate and Fire simulations, by listing all the different outcomes seen for a particular
modification. C = ‘‘Converged’’, WTS = ‘‘Weights too similar’’, EW = ‘‘Extreme Weights’’ (see main text and Methods for a quantitative definition of each of these
categories).
doi:10.1371/journal.pcbi.1002393.t002
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of convergent simulations was increased relative to the case with

no bottom-up plasticity (Figure 5). This improvement and further

variations on simultaneous bottom-up and top-down learning

deserve further study in future work.

Top-down modulatory signals
Until this point, we have assumed that external input to the

system arrives in the form of initial activity in the lower layer. This

is a good way of modeling the bottom-up flow of information that

might be expected to dominate during sensory-driven activity (e.g.

flashes of visual stimuli). However, it is clear that top-down signals

modulate and transform inputs as they arrive (e.g. [2,34,35,36]).

We asked whether and how such additional external input to the

top layer impacts the stabilizing effects of rSTDP.

We ran integrate-and-fire and numerical simulations using the

same parameters from Figure 5, with the addition of simulta-

neous external input to the top layer (Methods, Figure 7). We

considered different possible scenarios where the external input to

Figure 7. Summary of the results of the integrate-and-fire simulations with external input to bottom-layer and higher-layer
neurons. a–c. In the simulations described here, external input was conveyed both to lower-level neurons and to higher-level neurons. The ratio of
the external input strength to higher-level neurons to lower-level neurons was 0.1 in a, 1 in b and 10 in part c. The format and other parameters are
the same as in Figure 5. d. For those simulations that converged (green in parts a–c), the histogram shows the distribution of average activity levels.
The gray bars denote simulations using rSTDP and the dark bars denote simulations using cSTDP. Results from all three strength ratios (a–c) are
combined in this plot. Those few simulations which are convergent under cSTDP have very low average firing rates.
doi:10.1371/journal.pcbi.1002393.g007
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the top units could be stronger (10 times), equal or weaker (1/10)

than the external input to the bottom units. We found that

depression-biased rSTDP was still able to generate sets of top-

down weights which were stable, diverse, and weak (Figure 7a–
c). When the external input to the top neurons was very strong

(arguably a biologically less realistic condition [2,7]), there were

fewer simulations that converged, corresponding to a more

restricted set of parameter values (Figure 7c). We also observed

several simulations which met our convergence criteria even for

cSTDP or potentiation bias. However, neurons in these simula-

tions exhibited significantly less activity than in the depression-

biased rSTDP case (Figure 7d). These cases constitute examples

of a trivial fixed-point with low-activity levels where small amounts

of potentiation and depression from higher and lower-layer

external inputs cancel each other out.

Computational significance of rSTDP learning
We have focused thus far on the requirements to make learning

at top-down connections stable, diverse, and weak. These

properties are necessary regardless of the computational role of

top-down connections in any particular brain area. We now take

initial steps towards considering the computations performed by

the top-down connections after training in the particular

architecture studied here. For linear neurons, we look at the fixed

points of the training algorithm. As shown above, when the

feedforward weight matrix Q is invertible, the fixed point W� is
1

a
Q{1. This means that after training, top-down connections

create a scaled reconstruction of the initial lower-level neuronal

activity. We show in the Text S1 that this principle applies even

when Q is not invertible (so that perfect reconstruction is not

always possible); in this case, the rSTDP learning rule minimizes

the reconstruction error defined as the square of the difference

between the input and its reconstruction.

For networks of integrate-and-fire neurons, the picture is slightly

more complicated. Frequently, the final W is well correlated with

Q21 (e.g. Figure 3c). However, because of the non-linear nature

of these neurons, the input strength is not always simply related to

the amount of subsequent firing; in certain parameter regions, the

input strength has more effect on the timing of neuronal firing

than on the overall rate. We therefore focus on a regime where

overall input is weak, so that only neurons with stronger inputs

were able to fire. We did this by subtracting a constant value from

the feedforward weight matrix Q used in previous sections

(Methods). Under these conditions, we observed that after

training with depression-biased rSTDP, the effect of the resulting

top-down connections is to recreate an approximation to a scaled

version of the original input (Figure 8). In Figure 8a, we show

an example of how the network, after training, is capable of

reconstructing a given activity pattern. The input to each lower-

layer neuron (blue line) causes an early bout of activity in the

lower-layer neurons (green line). Later in the stimulus presenta-

tion, the lower-level activity is due to feedback via the top-down

connections. When the top-down weights have not yet been

trained, this activity bears little resemblance to the initial activity

(cyan line). However, after training is completed, the activity

pattern constitutes a good reconstruction of the original input (red

line). This effect is quantified in Figure 8b, which shows an

increase in the correlation between early time and late-time

neuronal activity as a function of the number of training iterations.

Discussion

We studied plasticity at top-down synapses in a model of two

reciprocally connected neocortical areas, such as visual areas V1

and V2. The strength of top-down synapses evolved according to

an activity-dependent STDP-type learning rule. We asked which

plasticity rules lead to a distribution of top-down weights which

met three criteria: stability, diversity, and weakness (lack of strong

loops). We studied this biological model analytically and using

computer simulations, and we concluded that top-down synapses

could achieve these three criteria only when their strength was

governed by a depression-biased temporally-reversed STDP rule,

rSTDP. By contrast, both classical STDP (cSTDP) and potenti-

ation-biased rSTDP led to pathological outcomes such as the

uncontrolled growth of synaptic weights or run-away neuronal

excitation.

Under a temporally reversed STDP learning rule, post-synaptic

spikes shortly followed by pre-synaptic spikes lead to potentiation

and pre-synaptic spikes shortly followed by post-synaptic spikes

Figure 8. Integrate-and-fire network trained with rSTDP learns
to reconstruct its input. a. Example of the network’s ability to
reconstruct its inputs after training using depression-biased rSTDP. By
construction, the strength of external input during a single stimulus
presentation to each neuron in the lower layer (input strength, blue
line) is similar to the average spike rate of each lower-level neuron
during the initial period from 0–50 ms (initial activity, green line). The
cyan and red lines show the average spike rate of each lower-level
neuron during the later period (late activity, 80–160 ms), when activity
is due to top-down stimulation, using the top-down weights given early
in training (after 10 iterations, cyan line) or after 51,000 iterations (red
line). b. Average correlation coefficient between early time and late-
time neuronal activity rates as a function of the number of training
iterations. The average is computed over n = 100 distinct external input
stimuli, and the error bars represent the standard deviation of the
correlation coefficients for the 100 stimuli. The arrows indicate the
iteration numbers illustrated in part a.
doi:10.1371/journal.pcbi.1002393.g008
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lead to depression (Figure 1d). Our theoretical prediction for this

type of temporal dependency is consistent with recent empirical

evidence documented in several experimental systems (for a

review, see [37]). In slices of rat visual cortex, pre-synaptic activity

followed by post-synaptic activity caused synaptic depression while

post-synaptic activity followed by pre-synaptic activity induced

potentiation in distal L2/3 to L5 and L5 to L5 synapses [38]. A

similar effect was observed in rat barrel cortex, where pairing

single EPSPs with subsequent postsynaptic bursts induced

depression at L2/3 to L5 distal synapses, while potentiation was

induced when the timing was reversed [39]. Importantly, rSTDP

has been observed only in distal synapses whereas cSTDP has been

observed in synapses near the soma.

The neuroanatomical location of top-down synapses suggests

that they are ideal candidates to display this temporally reversed

form of synaptic plasticity: anatomical work shows that top-down

connections occur predominantly at distal synapses [1,4]. For

example, tracing studies show that the synapses from visual area

V2 to visual area V1 end up forming synaptic connections in the

distal dendrites of layer 1 in V1 [6].

We considered depression and potentiation biased versions of

STDP through the parameter a (Figure 1c–d). We found that a

potentiation bias can lead to runaway excitation. Several

experiments in different systems have found biases towards

depression [38,39,40,41,42] (see however [9,10]). A depression

bias was also discussed and implemented in computational studies

(e.g. [13,14]).

Throughout most of our study, bottom-up connections were

fixed to focus on the development of top-down connections

because experimental studies suggest that bottom-up synapses may

mature earlier than their top-down counterparts [43,44]. Howev-

er, in Figure 6 we consider concurrent plasticity at bottom-up

and top-down connections and show that this does not change our

requirements for rSTDP at top-down synapses. We emphasize

that we do not expect plasticity at bottom-up synapses to require

rSTDP. Indeed, in the Text S1 we show a case in which bottom-

up synapses were only stable when trained with cSTDP, which is

consistent with experimental evidence showing cSTDP at these

synapses.

Critical to the analysis presented here was our choice of three

criteria for successful plasticity: weights need to be stable, diverse

and weak. What support can be found experimentally for the idea

that top-down weights in biological neural networks exhibit these

three properties? With regards to stability, there is evidence that

many dendritic and axonal structures in adult cortex are stable

over long periods of time yet change dramatically upon large

changes to the sensory environment (for a review, see [45]).

The degree of diversity in top-down connections remains poorly

understood at the experimental level. Some evidence implies that

top-down synapses can connect neurons with different tuning

preferences [5,46] (but see also [47]), which might seem to be

consistent with a generic, modulatory role for top-down signals,

not requiring any particular diversity of synaptic weights.

However, variations in synaptic weights occurring within the

context of a broad non-selective connectivity pattern [48] could

provide a mechanism for specificity of these signals. Several

computational models that aim to describe the functions of top-

down connections implicitly or explicitly assume a high degree of

specificity (see e.g. [35,36]).

We define weak distributions of top-down connections as those

which keep the network from exhibiting any strong loops. It has

long been recognized that strong loops must be avoided in cortical

circuits [15,24,25], as these can amplify neuronal activity to

pathological levels.

Our results depended crucially on several features in our

biological model. First among these was our focus on top-down

synapses (in contrast to bottom-up synapses which may require

cSTDP). The second important feature was the timing of neuronal

activity. We modeled each stimulus presentation as a flow of

activity affecting first lower area and then higher area neurons; this

initial bottom-up direction of flow was crucial for determining the

effects of our timing-based learning rules. Different timing patterns

could affect our results, an effect which we briefly explored in

Figure 7. Third, the requirement for a depression bias in the

learning rule arose because the cortical areas in our model were

reciprocally connected, allowing for neuronal activity to reverber-

ate up and down through the network. It is only in this context

that activity can build up to pathological levels when strong loops

exist.

Several other features in our model did not prove to be crucial

to our results. For instance, reciprocal connectivity between the

two cortical areas was not necessary in order for top-down

connections to require rSTDP. In the Text S1, we showed that

rSTDP is still required in a case where higher-level neurons are

activated independently of lower level neurons, even for neurons

with non-linear activation functions. (The external higher-level

input in this case could be the result of a separate path, as in

thalamic input feeding into both V1 and V2, or it could be a

simplified description of a complicated multi-synaptic feedforward

path between the two areas.) Similarly, none of our results depend

on reciprocal connections between any two individual neurons.

Furthermore, rSTDP still led to adequate solutions in cases

where modulatory external input to the top layer was added

(Figure 7a–b). When the external input to the top layer was 10

times stronger than the external input to the bottom layer a

smaller fraction of tested parameter values led to adequate

solutions (Figure 7c). Biological data seems to suggest that

external input to the top units would have a modulatory role

consistent with the values in 7a or even 7b rather than 7c [2–4,7].

Yet, the results in 7c suggest that the stability of depression-biased

rSTDP may show a stronger dependence on the particular

parameter values when strong external input to the top layer is

present compared to the situation when weaker external input to

the top layer is present. We expect the effects of external stimuli to

the top layer and bottom layer to differ given the asymmetry in our

model imposed by changing W while maintaining Q fixed in

Equation 1.

Our results also did not appear to depend on the exact form of

the STDP learning rule. We used two different forms in our

analytical and integrate-and-fire work (see Figure 1), including a

variety of parameters in the integrate-and-fire case (Table 1), and

additionally examined modifications including homeostatic scaling

and multiplicative plasticity (Figure 6). In every case, the

requirement for rSTDP was unchanged. Yet, while we have

considered several possible modifications, we cannot rule out the

existence of additional biological mechanisms that could help

stabilize the network. For example, recent elegant work has shown

that temporal shifts in the STDP rule also lead to stable and

diverse solutions [14]. It is interesting to point out that in the

vicinity of Dt~0 and on one side of the STDP learning rule, the

net effect of the modifications introduced in [14] are similar to the

ones we propose here.

Our integrate-and-fire simulations allowed us to relax many of

the biologically unrealistic simplifications made in our analytical

work. The simulations allowed us to make a better approximation

of the complex nonlinear firing dynamics of real biological

neurons, including synaptic transmission delays and noise. The

results of these simulations are concordant with the analytical
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predictions and were robust to changes in many of the parameters

in the simulations (Table 1, Figure 5) as well as different choices

for the fixed bottom-up connection weights. Although simulations

cannot exhaustively sample the entire parameter space, the

parameter landscape described here in combination with the

analytical work suggest the generality of the conclusions. Thus, we

argue that our results may be relevant in biological circuits.

Using analytical work and integrate-and-fire simulations, we

explored the computational significance of the rSTDP learning

rule by showing that the network could learn to reconstruct its

inputs (Figure 8). When the bottom-up weight matrix is

orthogonal, the learning rule used here can lead to symmetric

bottom-up and top-down weight matrices, which are known to

show interesting computational properties (e.g. [35,49]). A

symmetric matrix also implies specificity in top-down modulatory

signals as assumed in several computational models [7,34,35,36].

Input reconstruction is closely related to ‘‘predictive coding’’

models [35], in which top-down information flow carries a

prediction about subsequent lower-level activity. Predictive coding

models also include the calculation of an error signal, which is the

difference between the predicted and the actual activity; implemen-

tation of this error signal would presumably require the inclusion

of populations of inhibitory neurons. It is intriguing to note that

our rSTDP model does calculate exactly the required top-down

signal for predictive coding. Another possible function for

reconstructive signals is in the area of error correction. Suppose

that the feedforward connections Q have been selected (or trained)

with a method such as Principal Component Analysis (PCA) or

Independent Component Analysis (ICA), so that the activity of the

higher-layer neurons is a projection of lower-level activity which

retains functionally important information while discarding

irrelevant or noisy components. Then the reconstruction, given

by the feedback connections, may be a de-noised version of the

original input (e.g. [50]). This is also the principle used in de-

noising autoencoders [51].

Ultimately, we hope that the hypothesis of reversed temporal

dependence for plasticity at top-down synapses will be evaluated at

the experimental level. The recent neurophysiological findings of

temporal variations in STDP give experimental support for the

existence of rSTDP at synapses which have distal dendritic

locations, as top-down synapses do. Combining these findings with

our computational results, we predict that a learning rule similar to

rSTDP will be found to govern plasticity in top-down synapses in

neocortex.

Methods

Numerical simulations of the analytical work
We considered a two-layer linear model that we can study

analytically (Text S1). We illustrated the dynamical weight

changes in this linear model by numerically simulating a network

with 20 lower-area neurons and 20 higher-area neurons

(Figure 1a–b). Each lower-area neuron was connected recipro-

cally to every higher-area neuron (but some of the weights could

be zero). Although weights could be positive or negative, in the

interest of simplicity and to reduce free parameters, we did not

separate neurons into excitatory and inhibitory ones. The bottom-

up weight matrix Q was chosen manually at the onset and was

fixed (i.e. Q did not evolve according to plasticity rules) unless

noted otherwise (Figure 6). Because we expected our final top-

down weights W to be dependent on the inverse of Q, we wanted

Q to be a well-conditioned random matrix. We generated it using

the following algorithm: (i). Generate a uniformly distributed

random matrix Z, the same size as the desired Q. In some cases,

for visualization purposes, smooth Z using a circular Gaussian

filter of width 3 pixels. (ii). Calculate the polar decomposition of Z
by finding unitary matrix Uand positive semi-definite matrix P
such that UP~Z. (iii). Calculate Q~pinv(ZzeU). (iv). Normal-

ize Q by dividing each column by its mean, then dividing the

matrix by its maximum value and multiplying by 5. For the

simulation in Figure 2, we did include the smoothing step and we

set e = 0.1. The top-down weights W were initialized to random,

normally distributed values. W evolved according to the plasticity

rule in Equation A22.

We stopped the simulations when either one of three conditions

was reached: 1. If the matrix WQ had any eigenvalues greater

than one, we stopped the simulation and classified the outcome as

‘Extreme Weights’. 2. If the standard deviation of the weights was

less than 10% of the initial value, we stopped the simulation and

classified the outcome as ‘Too similar’. 3. When the standard

deviation of the weights had stopped changing and the average

weight changes became small and constant in magnitude, we

classified the simulation as ‘converged’. At each time point, we

considered the previous 50 stimulus presentations, and computed

the average values and slopes for the standard deviation of the top-

down weights and the changes in weights. We then required that

(i) the slopes for the standard deviation and the weight changes be

less than 0.1% of their respective average values, and (ii) either the

average change in weights was less than 10{3 or the slope of the

change and weights was smaller than the initial change in weights.

Integrate-and-fire simulations
The architecture was the same as that for the numerical

simulations of the analytical work, described above, except that

each layer of the network contained 100 neurons. The nature of

the numerical simulations created some additional differences to

the analytical work. Our use of fixed time-steps (1 ms) ensured that

there was a maximum firing rate that neurons could ever attain;

we also imposed upper and lower limits on the values that top-

down weights could attain (Table 1). Pathological scenarios which

would cause activity or weights to become infinite in the analytical

model would, in simulations, cause the firing rates or synaptic

weights to reach their maximum allowed values. These constraints

were not expected to affect network behavior in the cases where

weights achieve an unchanging and diverse distribution, which

were those that concerned us here.

The bottom-up weights Q were chosen as for the numerical

simulation of the analytical work and were fixed unless otherwise

noted. For the simulations in Figures 3 and 4, we included the

smoothing step and set e = 1. For the simulations in Figures 5 and

6, we did not include the smoothing step and we set e = 0.1. We

generated the initial top-down weights W as a uniformly

distributed random matrix whose values ranged from 20.05 to

0.05.

Each lower level neuron’s membrane potential Vi evolved

according to

tmem
dVi

dt
~Vrest{Vizgi(t)(Vsyn{Vi) ð2Þ

with tmem a membrane time constant of 10 ms, Vrest = 274 mV,

and Vsyn = 0 mV. Parameters whose values are not specified here

were varied during the course of experiments; see Table 1. The

neuron fired an action potential when its membrane potential

reached {54mV; when this occurred, the membrane potential

was reset to 260 mV. gi(t) was a conductance determined by the

incoming spikes that have occurred since neuron i fired its last

action potential according to:

Feedback Synapses Use Reverse Plasticity Rule
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gi(t)~gmax

ðt

last spike

dt0 Ji(t
0{d)zSiz

X
j

wjiHj(t
0{d)

 !

exp({t0=tsyn)

ð3Þ

where, gmax = 0.04. Ji(t) is the rate of incoming external spikes due

to the stimulus, and d is a synaptic transmission delay. Si is the

number of spikes corresponding to excitatory noise, and its value is

chosen randomly at each time-point from a Gaussian distribution

of mean S spikes/sec and standard deviation equal to snoise times

the mean. wji is the synaptic top-down weight connecting neuron j

to neuron i, and Hj(t) is 1 if higher-level neuron j fired an action

potential at time t and 0 otherwise. Finally, tsyn is a synaptic time

constant. Higher-level neurons evolve according to a similar rule,

except that they do not receive external stimulus input, so we have

gj(t)~gmax

ðt

last spike

dt0 Sjz
X

i

qijLj(t
0{d)

 !
exp({t0=tsyn) ð4Þ

where Li(t) and qij represent the lower-level action potentials and

bottom-up weights, respectively. We simulated the above dynam-

ics using time-steps of 1 ms.

At the beginning of our simulations, we created a random cross-

correlation matrix CL0L0
. Then, for each stimulus presentation, we

randomly generated a vector ~LL0 describing the strength of external

input to each lower-level neuron, chosen such that their average

cross-correlation when calculated across many stimulus presenta-

tions S~LL0
~LL0

T
T was equal to CL0L0

. Within every stimulus

presentation, the input strength Ji(t) was chosen at each time-

point from a Gaussian distribution with mean Ji(t)~JmaxL0i
J0(t)

and standard deviation equal to sinput times the mean. Jmax was

20,000 spikes/sec. J0(t) describes the time evolution of the input. It

was the combination of an initial transient in the form of a

Gaussian of height 1 centered at 30 ms with a width of 20 ms,

followed by a sustained tonic input at 1/5 the maximum height

that lasted for an additional 80 ms.

The synaptic strengths were modified by every pair of spikes

which occurred during a stimulus presentation, according to the

rules for rSTDP and cSTDP. For cSTDP, the rule was

Dwji~

m
Xtmax

t~0

XDtmax

Dt~{Dtmax

Hj(t)Li(tzDt)|
e{Dt=tSTDP , Dtw0

{ae{Dt=tSTDP , Dtƒ0

(
ð5Þ

For rSTDP, the rule was

Dwji~

m
Xtmax

t~0

XDtmax

Dt~{Dtmax

Hj(t)Li(tzDt)|
{ae{Dt=tSTDP , Dtw0

e{Dt=tSTDP , Dtƒ0

(
ð59Þ

We set m to 0.01, tmax to 160 ms, and Dtmax to 80 ms.

We stopped the simulations when either one of two conditions

was reached:

1. If more than 50% of the top-down weights were within a

distance of 0.1 of the maximum or minimum weights, we

stopped the simulation and classified the outcome as ‘Extreme

Weights’ (red bars in Figures 5 and 6).

2. If the cross-correlation between the current top-down weights

and the weights of 3,000 stimulus presentations prior was

greater than 0.99 and if the change in standard deviation of the

distribution of top-down weights over the previous 6,000

presentations was less than 0.1% of the current value, we

declared that the weights had stabilized, and stopped the

simulation. If at this point the standard deviation of the weights

was less than 0.3, we classified the outcome as ‘Weights too

similar’ (blue bars in Figures 5 and 6). If, on the other hand,

the standard deviation of the weights was greater than 0.3, we

classified the outcome as ‘Convergent’ (green bars in Figures 5
and 6).

If neither stopping condition was reached after 625,000 stimulus

presentations, we classified the simulation as ‘Did not converge’

(light blue bars in Figures 5 and 6). This last situation occurred in

only a small fraction of the simulations.

We considered the parameters described in Table 1 and ran a

set of 6,912 simulations, to describe the conditions and sets of

parameters for which learning would or would not converge. We

varied 8 parameters, with 2–3 possible values for each parameter,

and we considered all possible combinations. The results are

summarized in Figure 5.

Homeostatic synaptic scaling
For both the numerical implementation of the analytical work

and the integrate-and-fire simulations, we made the same

modifications to plasticity: after every 30 stimulus presentations,

we calculated S~LLT, the vector of firing rates for every lower-level

neuron averaged during those 30 presentations. We then applied

the change W?(1zmg(F{S~LLT))W for a target firing rate F (the

same for all neurons), where g denotes a relative learning rate.

This multiplied all the top-down inputs to a lower-level neuron by

a constant value that is close to 1 when the neuron’s firing is close

to the target rate, or far from 1 otherwise. We also multiplied the

strength of all future external inputs by an amount

1zmg(F{S~LLT). Taken together, these two changes were

equivalent to changing the strength of all synaptic inputs to a

lower-level neuron, both the bottom-up synapses carrying the

external input and the top-down synapses carrying the feedback

signal. We verified that this moved the firing rate towards the

target value.

Multiplicative scaling
We modified our learning rule to be dependent on the current

weights, as follows. For the numerical implementation of the

analytical model, we used

DW~m
X?
t~0

{aW.~LL(t)~HH(tz1)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dt~{1

z

0
@

(Wmax{W).~LL(tz2)~HH(tz1)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dt~z1

1
CA for cSTDP

ð6Þ

DW~m
X?
t~0

(Wmax{W).~LL(t)~HH(tz1)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dt~{1

{

0
@

aW.~LL(tz2)~HH(tz1)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dt~z1

1
CA for rSTDP

ð69Þ
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Here, the bullet represents entry-wise multiplication and Wmax

was varied among 3, 27, 30, and 60. For the integrate-and-fire

simulations, we used

Dwji~m
Xtmax

t~0

XDtmax

Dt~{Dtmax

Hj(t)Li(tzDt)|

(Wmax{wji)e
{Dt=tSTDP , Dtw0

{awjie
{Dt=tSTDP , Dtƒ0

(
, for cSTDP

ð7Þ

Dwji~m
Xtmax

t~0

XDtmax

Dt~{Dtmax

Hj(t)Li(tzDt)|

{awjie
{Dt=tSTDP , Dtw0

(Wmax{wji)e
{Dt=tSTDP, Dtƒ0

(
for rSTDP

ð79Þ

Here, Wmax was the standard value used in the integrate-and-fire

simulations, 50.

Concurrent changes in Q
After each stimulus presentation, we applied the changes to W

as usual by performing W?WzDW. Additionally, we changed

Q. For the linear model, we used

DQ~mf
X?
t~0

~LL(t)~HH(tz1)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Dt~{1

{

0
@

a0~LL(tz2)~HH(tz1)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Dt~z1

1
CA

T

for cSTDP

ð8Þ

DQ~mf
X?
t~0

{a0~LL(t)~HH(tz1)|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dt~{1

z

0
@

~LL(tz2)~HH(tz1)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Dt~z1

1
CA

T

for rSTDP

ð89Þ

where f represented the relative strength of learning for top-down

connections and a0 was the potentiation/depression bias for

bottom-up connections, which could be different from that for top-

down connections. We modified the learning rule for our

integrate-and-fire simulations in the analogous way.

Higher-layer external input
For the numerical simulations in Figure 7, we generated a

cross-correlation matrix for higher-layer external inputs which was

different from that for lower-layer external inputs. We modified

our algorithm to include additional activity from the higher-layer

inputs when calculating joint activity levels for learning by

replacing Equation 4 with the following equation, similar to

Equation 3:

gj(t)~gmax

ðt

last spike

dt0 bJj(t
0{d)zSjz

X
i

qijLj(t
0{d)

 !

exp({t0=tsyn)

ð9Þ

The external inputs Jj(t
0{d) were generated in the same

manner as the lower-layer inputs given in in Equation 3. In

different simulations, we varied the strength of external higher-

layer input b to be 0.1, 1, and 10 times the strength of the lower-

layer input. We ran the simulations over the same 1,728

parameters used previously (but did not additionally run over

the four combinations of different bottom-up and input cross-

correlation matrixes).

Measurement of reconstruction error
We modified the feedforward weight matrix Q by multiplying it

by 2, subtracting the mean, and adding 0.5. Using this matrix, we

trained the top-down weights as described previously. We then

evaluated the ability of the top-down signals to provide a

reconstruction of the original input at different time points after

stimulus presentation and at different stages of training. We

presented an early burst of external input to the network using a

modified time-course that was zero after 50 ms. We measured the

total number of spikes for each lower-level neuron during the first

50 ms, and separately during the time from 80–160 ms. We

subtracted the later-time activity from that calculated in a network

where the top-down weights were zero. Typically, in the absence

of top-down weights, there was no later-time activity. We

calculated the Pearson correlation coefficient between the vector

of later-time mean activity levels with the vector of early-time

activity level. We then repeated this procedure for n = 100 distinct

external stimulus inputs, and averaged the correlation values. The

results are shown in Figure 8. The correlation coefficients

reached their maximum value and stabilized after stimulus

presentations, so we used the weights at this time to generate the

final activity (red line) in Figure 8a.

Supporting Information

Text S1 Analytical formulation and analytical solutions.

(PDF)
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