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Chapter 1

Basic Probability

1.1 Basic Definitions

Trials

? Probability is concerned with the outcome of tri-
als.

? Trials are also called experiments or observa-
tions (multiple trials).

? Trials refers to an event whose outcome is un-
known.

Sample Space (S)

? Set of all possible elementary outcomes of
a trial.

? If the trial consists of flipping a coin twice, the
sample space is S = (h, h), (h, t), (t, h), (t, t).

? The probability of the sample space is always
1.

Events (E)

? An event is the specification of the outcome of
a trial.

? An event can consist of a single outcome or a
set of outcomes.

? The complement of an event is everything in
the sample space that is not that event (not E
or ∼ E).

? The probability of an event is always between
0 and 1.

? The probability of an event and its complement
is always 1.

Several Events

? The union of several simple events creates a
compound event that occurs if one or more
of the events occur.

? The intersection of two or more simple events
creates a compound event that occurs only if
all the simple events occurs.

? If events cannot occur together, they are mutu-
ally exclusive.

? If two trials are independent, the outcome of
one trial does not influence the outcome of an-
other.

Permutations

? Permutations are all the possible ways ele-
ments in a set can be arranged, where the order
is important.

? The number of permutations of subsets of size k
drawn from a set of size n is given by:

nPk =
n!

(n− k)!
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Combinations

? Combinations are similar to permutations with
the difference that the order of elements is
not significant.

? The number of combinations of subsets of size k
drawn from a set of size n is given by:

nPk =
n!

k!(n− k)!

1.2 Probability of Events

? If two events are independents, P (E|F ) =
P (E). The probability of both E and F occur-
ring is:

P (E ∩ F ) = P (E)× P (F )

? If two events are mutually exclusive, the prob-
ability of either E or F :

P (E ∪ F ) = P (E) + P (F )

? If the events are not mutually exclusive (you
need to correct the ‘overlap’):

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ),

where

P (E ∩ F ) = P (E)× P (F |E)

1.3 Bayes’ Theorem

Bayes’ theorem for any two events:

P (A|B) =
P (A ∩B)
P (B)

=
P (B|A)P (A)

P (B|A)P (A) + P (B| ∼ A)P (∼ A)

? Frequentist:

– There are true, fixed parameters in a model
(though they may be unknown at times).

– Data contain random errors which have a
certain probability distribution (Gaussian
for example).

– Mathematical routines analyse the proba-
bility of getting certain data, given a par-
ticular model.

? Bayesian:

– There are no true model parameters. In-
stead all parameters are treated as random
variables with probability distributions.

– Random errors in data have no probability
distribution, but rather the model param-
eters are random with their own distribu-
tions.

– Mathematical routines analyze probability
of a model, given some data. The statisti-
cian makes a guess (prior distribution) and
then updates that guess with the data.



Chapter 2

Basic Definitions

2.1 Types of Data

There two types of measurements:

? Quantitative: Discrete data have finite val-
ues. Continuous data have an infinite number
of steps.

? Categorical (nominal): the possible responses
consist of a set of categories rather than numbers
that measure an amount of something on a con-
tinuous scale.

2.2 Errors

? Random error: due to chance, with no partic-
ular pattern and it is assumed to cancel itself out
over repeated measurements.

? Systematic errors: has an observable pattern,
and it is not due to chance, so its causes can be
often identified.

2.3 Reliability

How consistent or repeatable measurements are:

? Multiple-occasions reliability (test-retest,
temporal): how similarly a test perform over
repeated administration.

? Multiple-forms reliability (parallel-forms):
how similarly different versions of a test perform
in measuring the same entity.

? Internal consistency reliability: how well
the items that make up instrument (a test) re-
flect the same construct.

2.4 Validity

How well a test or rating scale measures what
is supposed to measure:

? Content validity: how well the process of mea-
surement reflects the important content of the
domain of interests.

? Concurrent validity: how well inferences
drawn from a measurement can be used to pre-
dict some other behaviour that is measured at
approximately same time.

? Predictive validity: the ability to draw infer-
ences about some event in the future.

2.5 Probability Distributions

? Statistical inference relies on making assump-
tions about the way data is distributed, trans-
forming data to make it fit some known distri-
bution better.

? A theoretical probability distribution is de-
fined by a formula that specifies what values can
be taken by data points within the distribution
and how common each value (or range) will be.
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2.6 Population and Samples

? We rarely have access to the entire population of
users. Instead we rely on a subset of the popu-
lation to use as a proxy for the population.

? Sample statistics estimate unknown popu-
lation parameters.

? Ideally you should select your sample ran-
domly from the parent population, but in prac-
tice this can be very difficult due to:

– issues establishing a truly random selection
scheme,

– problems getting the selected users to par-
ticipate.

? Representativeness is more important than ran-
domness.

Nonprobability Sampling

? Subject to sampling bias. Conclusions are of lim-
ited usefulness in generalizing to a larger popu-
lation:

– Volunteer samples.

– Convenience samples: collect informa-
tion in the early stages of a study.

– Quota sampling: the data collector is
instructed to get response from a certain
number of subjects within classifications.

Probability Sampling

? Every member of the population has a know
probability to be selected for the sample.

? The simplest type is a simple random sam-
pling (SRS).

? Systematic sampling: need a list of your pop-
ulation and you decide the size of the sample and
then compute the number n, which dictates how
you will select the sample:

– Calculate n by dividing the size of the pop-
ulation by the number of subjects you want
in the sample.

– Useful when the population accrues over
time and there is no predetermined list
of population members.

– One caution: making sure data is not cyclic.

? Stratified sample: the population of interest
is divided into non overlapping groups or strata
based on common characteristics.

? Cluster sample: population is sampled by us-
ing pre-existing groups. It can be combined with
the technique of sampling proportional to size.

2.7 Bias

? Sample needs to be a good representation of the
study population.

? If the sample is biased, it is not representative
of the study population, conclusions draw from
the study sample might not apply to the study
population.

? A statistic used to estimate a parameter is un-
biased if the expected value of its sampling dis-
tribution is equal to the value of the parameter
being estimated.

? Bias is a source of systematic error and enter
studies in two primary ways:

– During the selection and retention of
the subjects of study.

– In the way information is collected
about the subjects.

Sample Selection Bias

? Selection bias: if some potential subjects are
more likely than others to be selected for the
study sample. The sample is selected in a way
that systematically excludes part of the popula-
tion.
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? Volunteer bias: the fact that people who vol-
unteer to be in the studies are usually not rep-
resentative of the population as a whole.

? Nonresponse bias: the other side of volunteer
bias. Just as people who volunteer to take part
in a study are likely to differ systematically from
those who do not, so people who decline to par-
ticipate in a study when invited to do so very
likely differ from those who consent to partici-
pate.

? Informative censoring: can create bias in any
longitudinal study (a study in which subjects are
followed over a period of time). Losing subjects
during a long-term study is common, but the
real problem comes when subjects do not drop
out at random, but for reasons related to the
study’s purpose.

Information Bias

? Interviewer bias: when bias is introduced in-
tro the data collected because of the attitudes or
behaviour of the interviewer.

? Recall bias: the fact that people with a life ex-
perience such as suffering from a serious disease
or injury are more likely to remember events that
they believe are related to that experience.

? Detection bias: the fact that certain charac-
teristics may be more likely to be detected or
reported in some people than in others.

? Social desirability bias: caused by people’s
desire to present themselves in a favorable light.

2.8 Questions on Samples

Representative Sampling

? How was the sample selected?

? Was it truly randomly selected?

? Were there any biases in the selection process?

Bias

? Response Bias: how were the questions worded
and the response collected?

? Concious Bias: are arguments presented in a dis-
interested, objective fashion?

? Missing data and refusals: how is missing data
treated in the analysis? How is attrition (loss of
subjects after a study begins) handled?

Sample Size

? Were the sample sizes selected large enough for
a null hypothesis to be rejected?

? Were the sample sizes so large that almost any
null hypothesis would be rejected?

? Was the sample size selected on the basis of a
power calculation?

2.9 Central Tendency

Mean

? Good if data set that is roughly symmetrical:

µ =
1
n

n∑
i=1

xi.

? Outliers: data error or they belong to other
population.

Median

? Middle value when the values are ranked in as-
cending or descending order.

? When data is not symmetrical, mean can be
heavily influenced by outliers, and median pro-
vides a better idea o most typical value.

? For odd samples, the median is the central value
(n + 1)/2th. For even samples, it’s the average
of the two central values, [n/2 + (n+ 1)/2]/2th.
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? In a small sample of data (less than 25 or so),
the sample median tends to do a poor job of
estimating the population median.

? For task-time data the geometric mean
tends to provide a better estimate of the pop-
ulation’s middle value than the sample median.

Mode

? The most frequently occurring value.

? Is useful in describing ordinal or categorical data.

Dispersion

? Range: simplest measure of dispersion, which
is the difference between the highest and lowest
values.

? Interquartile range: less influenced by ex-
treme values.

? Variance:

– The most common way to do measure dis-
persion for continuous data.

– Provides an estimate of the average differ-
ence of each value from the mean.

– For a population:

σ2 =
1
n

n∑
i=1

(xi − µ)2

– For a sample:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2

? Standard deviation:

– For a population:

σ =
√
σ2,

– For a sample:

s =
√
s2.



Chapter 3

The Normal Distribution

Figure 3.1: (left) All normal distributions have the
same shape but differ to their µ and σ: they are
shifted by µ and stretched by σ. (right) Percent of
data failing into specified ranges of the normal distri-
bution.

? All normal distributions are symmetric,
unimodal (a single most common value), and
have a continuous range from negative infinity
to positive infinity.

? The total area under the curve adds up to 1, or
100%.

? Empirical rule: For the population that fol-
lows a normal distribution, almost all the values
will fall within three standard deviations above
and bellow the mean (99.7%). Two standard de-
viations are about 95%. One standard deviation
is 68%.

The Central Limit Theorem

? As the sample size approaches infinity, the dis-
tribution of sample means will follow a nor-

mal distribution regardless of what the parent
population’s distribution (usually 30 or larger).

? The mean of this distribution of sample
means will also be equal to the mean of the
parent population. If X1, X2, ..., Xn all have
mean µ and variance σ2, sampling distribution
of X̄ =

P
Xi
n :

E(X̄) = µ, V ar(X̄,
σ2

n
),

using the central limit theorem, for large n, X̄ ∼
N(µ, σ

2

n ).

? If we are interested on p, a proportion or the
probability of an event with 2 outcomes. We use
the estimator p̂, proportion of times we see the
event in the data. The sampling distribution of
p̂ (unbiased estimator of p) has expected value p

and standard deviation
√

p(1−p)
n . By the central

limit theorem, for large n the sampling distribu-
tion is p̂ ∼ N(p, p(1−p)n ).

The Z-Statistic

? A z-score is the distance of a data point from the
mean, expressed in units of standard deviation.
The z-score for a value from a population is:

Z =
x− µ
σ

? Conversion to z-scores place distinct populations
on the same metric.
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12 CHAPTER 3. THE NORMAL DISTRIBUTION

? We are interested in the probability of a par-
ticular sample mean. We can use the normal
distribution even if we do not know the distri-
bution of the population from which the sample
was drawn, by calculating the z-statistics:

Z =
x̄− µ
σ√
n

.

? The standard error of the mean σ√
n

is the
standard deviation of the sampling distribution
of the sample mean:

– It describes the mean of multiple mem-
bers of a population.

– It is always smaller than the standard de-
viation.

– The larger our sample size is, the smaller is
the standard error and less we would expect
our sample mean to differ from the popula-
tion mean.

? If we know the mean but not the standard devi-
ation, we can calculate the t-statistic instead
(following sessions).
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The Binomial Distribution

? An example of discrete distribution

? Events in a binomial distribution are gen-
erated by a Bernoulli process. A single trial
within a Bernoulli process is called a Bernoulli
trial.

? Data meets four requirements:

– The outcome of each trial is one of two mu-
tually exclusive outcomes.

– Each trial is independent.

– The probability of success, p, is constant for
every trial.

– There is a fixed number of trials, denoted
as n.

? The probability of a particular number of suc-
cesses on a a particular number of trials is:

P (X = k) =
(
n

k

)
pk(1− p)n−k

where (
n

k

)
= nCk =

n!
k!(n− k)!

? If both np and n(1 − p) are grater than 5, the
binomial distribution can be approximated by
the normal distribution.

13
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Chapter 5

Confidence Intervals

Point Estimate

? Point estimate is a single statistic, such as the
mean, to describe a sample.

? If we drew a different sample, the mean calcu-
lated from that sample would probably be dif-
ferent.

? Interval estimates state how much a point es-
timate is likely to vary by chance.

? One common interval estimate is the confi-
dence level, calculated as (1 − α). where α
is the significance.

Confidence Interval

? The confidence interval is the range of values
that we believe will have a specified chance of
containing the unknown population parameter.

? The confidence interval is a range of values
around the mean for which if we drew an infi-
nite number of samples of the same size from
the same population, x% of the time the true
population mean would be included in the con-
fidence interval calculated from the samples. It
gives us the information about the precision of a
point estimate such as the sample mean.

? CI will tell you the most likely range of the un-
known population mean or proportion.

? The confidence is in the method, not in any in-
terval.

? Any value inside the interval could be said to be
a plausible value.

? CI are twice the margin of error and provide
both a measure of location and precision.

? Three things affect the width of a confidence in-
terval:

– Confidence Level: usually 95%.

– Variability: if there is more variation in
a population, each sample taken will fluc-
tuate more and wider the confidence inter-
val. The variability of the population is es-
timated using the standard deviation from
the sample.

– Sample size: without lowering the confi-
dence level, the sample size can control the
width of a confidence interval, having an
inverse square root relationship to it.

CI for Completion Rate (Binary Data)

? Completion rate is one of the most funda-
mental usability metrics, defining whether a
user can complete a task, usually as a binary
response.

15
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? The first method to estimate binary success rates
is given by the Wald interval:

p̂± z(1−α2 )

√
p̂(1− p̂)

n
,

where p̂ is the sample proportion, n is the sample
size, z(1−α2 ) is the critical value from the normal
distribution for the level of confidence.

? Very inaccurate for small sample sizes (less than
100) or for proportions close to 0 or 1.

? For 95% (z = 1.96) confidence intervals, we can
add two successes and two failures to the ob-
served number of successes and failures:

p̂adj =
x+ z2

2

n+ z2
=
x+ 1.962

2

n+ 1.962
∼ x+ 2
n+ 4

, (5.0.1)

where x is the number that successfully com-
pleted the task and n the number who attempted
the task (sample size).

CI for Task-time Data

? Measuring time on task is a good way to as-
sess task performance and tend to be positively
skewed (a non-symmetrical distribution, so the
mean is not a good measure of the center of the
distribution).

? In this case, the median is a better measure of the
center. However, there is two major drawbacks
to the median: variability and bias.

? The median does not use all the information
available in sample, consequently, the medians of
samples from a continuous distribution are more
variable than their means.

? The increased variability of the median relative
to the mean is amplified when the sample sizes
are small.

? We also want our sample mean to be unbiased,
where any sample mean is just as likely to over-
estimate or underestimate the population mean.
The median does not share this property: at
small samples, the sample median of comple-
tion times tends to consistently overestimated
the population median.

? For small-sample task-time data the geometric
mean estimates the population median better
than the sample median. As the sample sizes
get larger (above 25) the median tends to be the
best estimate of the middle value. We can use
binomial distribution to estimate the confidence
intervals: the following formula constructs a con-
fidence interval around any percentile. The me-
dian (0.5) would be the most common:

np± z(1−α2 )

√
np(1− p),

where n is the sample size, p is the percentile
expressed as a proportion, and

√
np(1− p) is the

standard error. The confidence interval around
the median is given by the values taken by the
th integer values in this formula (in the ordered
data set).
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Hypothesis Testing

? H0 is called the null hypothesis and H1 is the
alternative hypothesis. They are mutually exclu-
sive and exhaustive. A null hypothesis cannot
never be proven to be true, it can only be shown
to be plausible.

? The alternative hypothesis can be single-tailed:
it must achieve some value to reject the null hy-
pothesis,

H0 : µ1 ≤ µ2, H1 : µ1 > µ2,

or can be two-tailed: it must be different from
certain value to reject the null hypothesis,

H0 : µ1 = µ2, H1 : µ1 6= µ2.

? Statistically significant is the probability that
is not due to chance.

? If we fail to reject the null hypothesis (find sig-
nificance), this does not mean that the null hy-
pothesis is true, only that our study did not find
sufficient evidence to reject it.

? Tests are not reliable if the statement of the
hypothesis are suggested by the data: data
snooping.

p-value

? We choose the probability level or p-value that
defines when sample results will be considered

strong enough to support rejection of the null
hypothesis.

? Expresses the probability that extreme results
obtained in an analysis of sample data are due
to chance.

? A low p-value (for example, less than 0.05)
means that the null hypothesis is unlikely to be
true.

? With null hypothesis testing, all it takes is suffi-
cient evidence (instead of definitive proof) that
we can see as at least some difference. The size of
the difference is given by the confidence interval
around the difference.

? A small p-value might occur:

– by chance
– because of problems related to data collec-

tion
– because of violations of the conditions nec-

essary for testing procedure
– because H0 is true

? if multiple tests are carried out, some are likely
to be significant by chance alone! For σ = 0.05,
we expect that significant results will be 5% of
the time.

? Be suspicious when you see a few significant re-
sults when many tests have been carried out or
significant results on a few subgroups of the data.

17
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Errors in Statistics

? If we wrongly say that there is a difference,
we have a Type I error. If we wrongly say
there is no difference, it is called Type II
error.

? Setting α = 0.05 means that we accept a 5%
probability of Type I error, i.e. we have a 5%
chance of rejecting the null hypothesis when we
should fail to reject it.

? Levels of acceptability for Type II errors are usu-
ally β = 0.1, meaning that it has 10% probabil-
ity of a Type II error, or 10% chance that the
null hypothesis will be false but will fail to be
rejected in the study.

? The reciprocal of Type II error is power, defined
as 1 − β and is the probability of rejecting the
null hypothesis when you should reject it.

? Power of a test:

– The significance level α of a test shows how
the testing methods performs if repeated
sampling.

– If H0 is true and α = 0.01, and you carry
out a test repetitively, with different sam-
ples of the same size, you reject the H0

(type I) 1 per cent of the time!

– Choosing α to be very small means that you
reject H0 even if the true value is different
form H0.

? The following four main factors affect power:

– α level (higher probability of Type I error
increases power).

– Difference in outcome between populations
(greater difference increases power).

– Variability (reduced variability increases
power).

– Sample size (larger sample size increases
power).

? How to have a higher power:

– The power is higher the further the alter-
native values away from H0.

– Higher significance level α gives higher
power.

– Less variability gives higher power.

– The larger the samples size, the greater is
the power.
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The t-Test

t-Distribution

? The t-distribution adjusts for how good our
estimative is by making the intervals wider as
the sample sizes get smaller. It converges to the
normal confidence intervals when the sample size
increases (more than 30).

? Two main reasons for using the t-distribution
to test differences in means: when working with
small samples from a population that is approx-
imately normal, and when we do not know the
standard deviation of a population and need to
use the standard deviation of the sample as a
substitute for the population deviation.

? t-distributions are continuous and symmetrical,
and a bit fatter in the tails.

? Unlike the normal distribution, the shape of the
t distribution depends on the degrees of freedom
for a sample.

? At smaller sample sizes, sample means fluctuate
more around the population mean. For exam-
ple, instead of 95% of values failing with 1.96
standard deviations of the mean, at a sample size
of 15, they fall within 2.14 standard deviations.

Confidence Interval for t-Distributions

To construct the interval,

x̄± t(1−α2 )
s√
n
,

where x̄ is the sample mean, n is the sample size, s
is the sample standard deviation, t(1−α2 ) is the crit-
ical value from the t-distribution for n − 1 degrees
of freedom and the specified level of confidence, we
need:

1. the mean and standard deviation of the mean,

2. the standard error,

3. the sample size,

4. the critical value from the t-distribution for the
desired confidence level.

The standard error is the estimate of how much the
average sample means will fluctuate around the true
population mean:

se =
s√
n
.

19
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The t-critical value is simply:

t =
x̄− µ
s√
n

,

where we need α (level of significance, usually 0.05,
one minus the confidence level) and the degrees of
freedom. The degrees of freedom (df) for this type of
confidence interval is the sample size minus 1.

For example, a sample size of 12 has the expecta-
tion that 95% of sample means will fall within 2.2
standard deviations of the population mean. We can
also express this as the margin of error:

me = 2.2
s√
n
,

and the confidence interval is given as twice the mg.

t-test

Assumptions of t-tests:

? The samples are unrelated/independent, other-
wise the paired t-test should be used. You can
test for linear independence.

? t-tests assume that the underlying population
variances of the two groups are equal (variances
are pooled), so you should test for homogeneity.

? Normality of the distributions of both variables
are also assumed (unless the samples sizes are
large enough to apply the central limit theorem).

? Both samples are representative of their parent
populations.

? t-tests are robust even for small sample sizes, ex-
cept when there is an extreme skew distribution
or outliers.

1-Sample t-Test

One way t-test is used is to compare the mean of a
sample to a population with a known mean. The null

hypothesis is that there is no significant difference be-
tween the mean population from which your sample
was drawn and the mean of the know population.

The standard deviation of the sample is:

s =

√∑n
i=1(xi − x̄)2

n− 1

The degrees of freedom for the one sample t-test is
n− 1.

CI for the One-Sample t-Test

The formula to compute a two-tailed confidence in-
terval for the mean for the one-sample t-test:

CI1−α = x̄±
(
tα/2,df

)( s√
n

)
If you want to calculate a one-sided CI, change the

± sign to either plus or minus and use the upper
critical value and α rather than α/2.

2-Sample t-Test (Independent Sam-
ples)

The t-test for independent samples determines
whether the means of the populations from which the
samples were drawn are the same. The subjects in
the two samples are assumed to be unrelated and in-
dependently selected from their populations. We as-
sume that the populations are approximately a nor-
mal distribution (or sample large enough to invoke
the central limit theorem) and that the populations
have approximately equal variance:

t =
(x̄1 − x̄2)− (µ1 − µ2)√

s2p

(
1
n1

+ 1
n2

) ,

where the pooled variance is

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
.



21

CI for the Independent Samples t-Test

CI1−α = (x̄1 − x̄2)±
(
tα/2,df

)(√
s2p

( 1
n1

+
1
n2

))

Repeated Measures t-Test

Also know as related samples t-test or the depen-
dent samples t-tests, the samples are not indepen-
dent. The measurements are considered as pairs so
the two samples must be of the same size. The for-
mula is based on the difference scores as calculated
from each pairs of samples:

t =
d̄− (µ1 − µ2)

sd√
n

,

where d̄ is the mean of the different scores and n the
number of pairs. The degrees of freedom is still n−1.

The null hypothesis for the repeated measures t-
test is usually that the mean of the difference scores,
d̄, is 0.

CI for the Repeated Measures t-Test

CI1−α = d̄±
(
tα/2,df

)( sd√
n

)

Two Measurements

? H0 : µ = µ0, HA : µ 6= µ0

? observations: n, x̄, s, d = |x̄− µ0|

? Reject H0 if

P (|X̄ − µ0| ≥ d) ≤ α

= P (|X̄ − µ0√
s2/n

| ≥ d√
s2/n

)

= P (|tn−1| ≥
d√
s2/n

)

Comparing Samples

The concept of the number of standard errors that the
sample means differ from population means applies to
both confidence intervals and significance tests.

The two-sample t-test is found by weighting the
average of the variances:

t =
x̂1 − x̂2√

s21

n1+
s22
n2

,

where x̂1 and x̂2 are the means from sample 1 and
2, s1 and s2 the standard deviations from sample 1
and 2, and n1 and n2 the sample sizes. The degree
of freedom for t-values is approximately 2 less the
smaller of the two sample sizes. A p-value is just a
percentile rank or point in the t-distribution.

The null hypothesis for an independent samples
t-test is that the difference between the population
means is 0, in which case µ1 − µ2) can be dropped.
The degree of freedom is n1 + n2 − 2, fewer than the
number of cases when both samples are combined.

Between-subjects Comparison (Two-
sample t-test)

When a different set of users is tested on each prod-
uct, there is variation both between users and be-
tween designs. Any difference between the means
must be tested to see whether it is greater than
the variation between the different users. To deter-
mine whether there is a significant difference between
means of independent samples of users, we use the
two-sample t-test:

t =
x̂1 − x̂2√
s21
n1

+ s22
n2

The degrees of freedom for one-sample t-test is n−
1. For a two-sample t-test, a simple formula is n1 +
1n2 − 2. However the correct formula is given by
Welch-Satterthwaite procedure. It provides accurate
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results even if the variances are unequal:

df =

(
s21
n1

+ s22
n2

)2

(
s21
n1

)2

n1−1 +

(
s22
n2

)2

n2−1

CI Around the Difference

There are several ways to report an effect size, but
the most compelling and easiest to understand is the
confidence interval. The following formula generates
a confidence interval around the difference scores to
understand the likely range of the true difference be-
tween products:

(x̂1 − x̂2)± ta

√
s21
n1

+
s22
n2
.
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Regression

Linear Regression

? It calculates the equation that will produce the
line that is as close as possible to all the data
points considered together. This is described
as minimizing the square deviations, where the
squared deviations are the sum of the squared
deviations between each data point and the re-
gression line.

? The difference between each point and the re-
gression line is also called the residual because
it represents the variability in the actual data
points not accounted for by the equation gener-
ating the line.

? Minimizing the squared deviations can be ex-
pressed as minimizing the errors of prediction
or minimizing the residuals.

? The most important assumption of the linear re-
gression is the independence and normality of
errors in the independent and dependent vari-
ables.

? Other assumptions for simple linear regression
are: data appropriateness (outcome variable
continuous, unbounded), linearity, distribution
(the continuous variables are approximately nor-
mally distributed and do not have extreme out-
liers), homoscedasticity (the errors of prediction
are constant over the entire data range), inde-
pendence.

? The sum of the squared deviations is the sum of
squares of errors, or SSE:

SSE =
n∑
i=1

(yi − ŷi)2 =
n∑
i=1

(yi − (axi + b))2

? In this formula, yi is an observed data value and
ŷi is the predicted value according to the regres-
sion equation.

? The variance of s is

Sxx =
∑

x2 − (
∑
x)2

n

and the covariance of x and y is

Sxy =
∑

xy − (
∑
x)(
∑
y)

n
.

? The slope of a simple regression equation is

a =
Sxy
Sxx

,

and the intercept of a simple regression equation,

b =
∑
y

n
− a

∑
x

n

Independent and Dependent Variable

Variables can be either dependent if they represent an
outcome of the study, or independent if they are pre-

23
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sumed to influence the value of the dependent vari-
ables. There is also a third category, control vari-
ables, which might influence the dependent variable
but are not the main focus of interest.

In a standard linear model such as an OLS (ordi-
nary least squares) regression equation, the outcome
or dependent variable is indicated by Y , and the in-
dependent variables by X:

Y = β0 + β1X1 + β2X2 + ...+ ε,

where ε means error and reflects the fact that we
do not assume any regression equation will perfectly
predict Y , and βs are the regression coefficients.

Other terms used for the dependent variable in-
clude the outcome variable, the response variable, and
the explained variable. Other names for independent
variables are regressors, predictor, variables, and ex-
planatory variables.

Multiple Linear Regression

Multiple linear regression may be used to find the re-
lationship between a single, continuous outcome vari-
able and a set of predictor variables that might be
continuous, dichotomous, or categorical; if categori-
cal, the predictors must be recoded into a set of di-
chotomous dummy variables

Multiple linear regression, in which two or more in-
dependent variables (predictors) are related to a sin-
gle dependent variables is much more common than
simple linear regression. Two general principles ap-
ply to regression modelling. First, each variable in-
cluded in the model should carry its own weight, it
should explain unique variance in the outcome vari-
able. Second, when you deal with multiple predictors,
you have to expect that some of them will be corre-
lated with one another as well as with the dependent
variable.

Y = β0 + β1X1 − β2X2 + ..+ βnXn + ε,

where Y is the dependent variable and β0 is the in-
tercept. No variable can be a linear combination of
other variables.
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Logistic Regression

? We use logistic regression when the dependent
variable is dichotomous rather than continuous.

? Outcome variables conventionally coded as 0-1,
with 0 representing the absence of a characteris-
tic and 1 its presence.

? Outcome variable in linear regression is a logit,
which is a transformation of the probability of a
case having the characteristic in question.

? The logit is also called the log odds. If p is the
probability of a case having some characteristics,
the logit is:

logit(p) = log
p

1− p
= log(p)− log(1− p).

? The logistic regression equation with n predic-
tors is:

logit(p) = β0 + β1X1 + β2X2 + ...+ βnXn + ε.

? The differences to multiple linear regression us-
ing a categorical outcome are:

– The assumption of homoscedascitiy (com-
mon variance) is not met with categorical
variables.

– Multiple linear regression can return values
outside the permissible range of 0-1.

– Assume independence of cases, linearity
(there is a linear relationship between the

logit of the outcome variable and any con-
tinuous predictor), no multicollinearity, no
complete separation (the value of one vari-
able cannot be predicted by the values of
another variable of set variables).

? As with linear regression, we have measures of
model fit for the entire equation (evaluating it
against the null model with no predictor vari-
ables) and tests for each coefficient (evaluating
each against the null hypothesis that the coeffi-
cient is not significantly different from 0).

? The interpretation of the coefficients is different:
instead of interpreting them in terms of linear
changes in the outcome, we interpret them in
terms of the odds ratios.

Ratio, Proportion, and Rate

Three related metrics:

? A ratio express the magnitude of one quantity
in relation to the magnitude of another without
making further assumptions about the two num-
bers or having them sharing same units.

? A proportion is a particular type of ratio in which
all cases in the numerator are included in the
denominator. They are often expressed as per-
cents.

25
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? A rate is a proportion in which the denominator
includes a measure of time.

Prevalence and Incidence

? Prevalence describes the number of cases that ex-
ist in a population at a particular point in time.
It is defined as the proportion of individuals in
a population who have the characteristic at a
particular point in time.

? Incidence requires three elements to be defined:
new cases, population at risk, and time interval.

Odds Ratio

? The odds ratio was developed for use in case-
control studies.

? The odds ratio is the ratio of the odds of expo-
sure for the case group to the odds of exposure
for the control group.

? The odds of an event is another way to express
the likelihood of an event, similar to probabil-
ity. The difference is that although probability
is computed by dividing the number of events by
the total number of trials, odds are calculated by
dividing the number of events by the number of
non-events:

odds = probability/(1− probability)

or
probability = odds(1 + odds)

? The odds ratio is simply the ratio of two odds:

OR =
odds1
odds2

=
p1(1− p1)
p2(1− p2)
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Other Topics

ANOVA

? Analysis of variance is a statistical procedure
used to compare the mean values on some vari-
able between two or more independent groups.

? It is called analysis of variance because the pro-
cedure involves partitioning variance, attribut-
ing the variance observed in a data set to dif-
ferent cause of factors, including group member-
ship.

? ANOVA is a useful technique when analysing
data from designed experiments.

? Assumptions of ANOVA:

– Assumes independence, normality, and
equality of variances.

– It is more reliable when the study is bal-
anced (sample sizes are proximately equal).

? The major test statistics for an ANOVA is the F-
ratio, which can be used to determine whether
statistically significant differences exist between
groups.

? One-Way ANOVA: The simplest form of
ANOVA, in which only one variable is used to
form the groups to be compared. This variable
is called factor. A one-way ANOVA with two
levels is equivalent to performing a t-test. The
null hypothesis in this type of design is usually
that the two groups have the same mean.

? Factorial ANOVA: ANOVA with more than
one grouping variable or factor. We are often in-
terested in the influence of serveral factors, and
how they interact. We might be interested in
both main effects (of each factor alone) and in-
teractions effects.

Factor Analysis

? Uses standardized variables to reduce data sets
by using principal component analysis (PCA)
(data reduction technique).

? It is based on an orthogonal decomposition of
an input matrix to yield an output matrix that
consists of a set of orthogonal components (or
factors) that maximize the amount of variation
in the variables from the input matrix.

? This process produces a smaller, more compact
number of output components (produce a set of
eigenvectors and eigenvalues).

? The components in the output matrix are linear
combinations of the input variables, the compo-
nents are created so the first component max-
imizes the variance captured, and each subse-
quent component captures as much of the resid-
ual variance as possible while taking on an un-
correlated direction in space (produce variables
that are orthogonal).

27
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Nonparametric Statistics

? Distribution-free statistics: make few or no
assumptions about the underlying distribution
of the data.

? Sign Test: analogue to the one-sample t-test
and is used to test whether a sample has a
hypothesized median.

– Data values in the sample are classified as
above (+) or below (-) the hypothesized
median.

– Under the null hypothesis that the sample
is drawn from a population with the speci-
fied median, these classifications have a bi-
nomial distribution with π = 0.5 (probabil-
ity of the population).

Z =
(X ± 0.5)− np√

np(1− p)
,

where X is the number of observed values
greater than median, 0.5 is the continuity
correction (negative in this case for a hy-
pothesis π > 0.5), np is the mean of the
binomial distribution (the expected value
for X if the null hypothesis is true), and
the denominator is the standard deviation
of the binomial distribution.
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Some Related Questions

Design an experiment to see whether a new
feature is better?

? Questions:

– How often Y occurs?

– Do X and Y co-vary? (requires measuring
X and Y)

– Does X cause Y? (requires measuring X
and Y and measuring X, and accounting
for other independent variables)

? We have:

– goals for visitor (sign up, buy).

– metrics to improve (visit time, revenue, re-
turn).

? We are manipulating independent variables (in-
dependent of what the user does) to measure de-
pendent variables (what the user does).

? We can test 2 versions with a A/B test, or many
full versions of a single page.

? How different web pages perform using a ran-
dom sample of visitor: define what percentage of
the visitor are included in the experiment, chose
which object to test.

Mean standard deviation of two blended
datasets for which you know their means and
standard deviations:

The difference between the means of two sam-
ples, A and B, both randomly drawn from the same
normally distributed source population, belongs to
a normally distributed sampling distribution whose
overall mean is equal to zero and whose standard de-
viation (”standard error”) is equal to√

(sd2/na) + (sd2/nb),

where sd2 is the variance of the source population.

If each of the two coefficient estimates in a
regression model is statistically significant, do
you expect the test of both together is still
significant?

? The primary result of a regression analysis is a
set of estimates of the regression coefficients.

? These estimates are made by finding values for
the coefficients that make the average residual 0,
and the standard deviation of the residual term
as small as possible.

? In order to see if there is evidence supporting the
inclusion of the variable in the model, we start
by hypothesizing that it does not belong, i.e.,
that its true regression coefficient is 0.

? Dividing the estimated coefficient by the stan-
dard error of the coefficient yields the t-
ratio of the variable, which simply shows how
many standard-deviations-worth of sampling er-
ror would have to have occurred in order to yield

29
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an estimated coefficient so different from the hy-
pothesized true value of 0.

? What the relative importance of variation in the
explanatory variables is in explaining observed
variation in the dependent variable? The beta-
weights of the explanatory variables can be com-
pared.

? Beta weights are the regression coefficients for
standardized data. Beta is the average amount
by which the dependent variable increases when
the independent variable increases one standard
deviation and other independent variables are
held constant. The ratio of the beta weights is
the ratio of the predictive importance of the in-
dependent variables.

How to analyse non-normal distributions?

? When data is not normally distributed, the cause
for non-normality should be determined and ap-
propriate remedial actions should be taken.

? Causes:

– Extreme values: too many extreme val-
ues in a data set will result in a skewed
distribution. Find measurement errors and
remove outliers with valid reasons.

– Overlap of two processes: see if it looks
bimodal and stratify the data.

– Insufficient data discrimination:
round-off errors or measurements devices
with poor resolution makes data look dis-
crete and not normal. Use more accurate
measurement systems or collecting more
data.

– Sorted data: if it represents simply a sub-
set of the total output a process produced.
It can happen if the data is collected and
analysed after sorting.

– Values close to zero or a natural limit:
the data will skew. All data can be raised or
transformed to a certain exponent (but we

need to be sure that a normal distribution
can be assumed).

– Data Follows a Different Distribution:
Poison distribution (rare events), Expo-
nential distribution (bacterial growth), log-
normal distribution (to length data), bino-
mial distribution (proportion data such as
percent defectives).

– Equivalente tools for non-normally dis-
tributed data:

∗ t-test, ANOVA: median test, kruskal-
wallis test.

∗ paired t-test: one-sample sign test.

How do you test a data sample to see
whether it is normally distributed?

? I would first plot the frequencies, comparing the
histogram of the sample to a normal probability
curve.

? This might be hard to see if the sample is small,
in this case we can regress the data against the
quantities of a normal distribution with the same
mean and variance as the sample, the lack of fit
to the regression line suggests a departure from
normality.

? Another thing you can do, a back-of-the-
envelope calculation, is taking the sample’s max-
imum and minimum and compute the z-score (or
more properly the t-statistics), which is the num-
ber of sample standard deviations that a sample
is above or below the mean:

z =
x− x̄
s/
√
N
,

and then compares it to the 68-95-99.7 rule.

? If you have a 3 sigma event and fewer than 300
samples, or a 4 sigma event and fewer than 15k
samples, then a normal distribution understates
the maximum magnitude of deviations in the
data.
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? For example: 6 sigmas events don’t happen in
normal distributions!

What’s a Hermitian matrix? What im-
portant property does a Hermitian matrix’s
eigenvalues possess?

? It is equal to its conjugate transpose, for example
the Paul matrices. A real matrix is Hermitian if
it is symmetric.

? The entries in the main diagonal are real.

? Any Hermitian matrix can be diagonalized by a
unitary matrix (U*U=I)and all the eigenvalues
are real and the matrix has n linearly indepen-
dent eigenvectors.

Random variable X is distributed as N(a, b),
and random variable Y is distributed as N(c,
d). What is the distribution of (1) X+Y, (2)
X-Y, (3) X*Y, (4) X/Y?

?

N(µ, σ) =
1

σ
√

2
e−

(x−µ)2

2σ2

or the standard normal distribution, described
by the probability density function:

φ(x) =
1√
2π
e=

1
2x

2
.

?
Z ∼ N(µx, σ2

x), Y ∼ N(µy, σ2
y)

them by convolution, we see that the Fourier
transform is a Gaussian PDF with:

Z = X + Y ∼ N(µx + µy, σ
2
x + σ2

y)

.

? Requires the assumption of independence: if the
random variables are correlated, the joint ran-
dom variables are still normally distributed how-
ever their variances are not additive, and we need
to calculate de correlation.

? Any linear combination of independent normal
deviates is a normal deviate!

? The product of two Gaussian PDFs is propor-
tional to a Gaussian PDF with mean that is half
of the coefficient of x and se that is the square
root of half of the denominator:

σXY =

√
σ2
xσ

2
y

σ2
x + σ2

y

,

and

µXY =
µxσ

2
y + µyσ

2
x

σ2
x + σ2

y

.

How to Write a Competitive Analysis?

? Your company’s competitors:

– list of your company’s competitors.

– companies that indirectly compete with
yours, ones that offer products or services
that are aiming for the same customer cap-
ital.

? Competitor product summaries:

– Analyse the competition’s products and
services in terms of features, value, and tar-
gets.

– How do your competitor’s sell their wares?
How do they market them?

– Customer satisfaction surveys conducted.
How do customers see your competition?

? Competitor strengths and weaknesses:

– be objective, no bias.

– What makes their products so great?

– If they are growing rapidly, what is it about
their product or service that’s promoting
that growth?

–

? The market outlook:
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– What is the market for your company’s
product like now?

– Is it growing? If so, then there are likely
quite a few customers left to go around.

– If it is flat, then the competition for cus-
tomers is likely to be fierce.

– Is the market splintering, is it breaking up
into niches?

What is the yearly standard deviation of a
stock given the monthly standard deviation?

SDy = SDm

√
12

Given a dataset, how do you determine its
sample distribution? Please provide at least
two methods.

? Plot them using histogram: it should give
you and idea as to what parametric fam-
ily(exponential, normal, log-normal...) might
provide you with a reasonable fit. If there is one,
you can proceed with estimating the parameters.

? If you use a large enough statistical sample size,
you can apply the Central Limit Theorem to a
sample proportion for categorical data to find its
sampling distribution.

? You may have 0/1 responses, so the distribution
is binomial, maybe conditional on some other
covariates, that’s a logistic regression.

? You may have counts, so the distribution is Pois-
son.

? Regression to fit, test chi-square to the goodness
of the fit.

? Also a small sample (say under 100) will be com-
patible with many possible distributions, there is
simply no way distinguishing between them on
the basis of the data only. On the other hand,
large samples (say more than 10000) won’t be
compatible with anything.

What’s the expectation of a uniform(a, b)
distribution? What’s its variance?

? The PDF:
f(x) =

1
b− a

for a ≤ x ≤ b and 0 otherwise.

? Mean: E(X) = a+b
2

? Variance: V (X) = (b−a)2
12

What’s the difference between the t-stat and
R2 in a regression? What does each measure?
When you get a very large value in one but a
very small value in the other, what does that
tell you about the regression?

? Correlation is a measure of association between
two variables, the variables are not designated
as dependent or independent. The significance
(probability) of the correlation coefficient is de-
termined from the t-statistic. The test indicates
whether the observed correlation coefficient oc-
curred by chance if the true correlation is zero.

? Regression is used to examine the relationship
between one dependent variable and one inde-
pendent variable. The regression statistics can
be used to predict the dependent variable when
the independent variables is known. Regression
goes beyond correlation by adding prediction ca-
pabilities.

? The significance of the slope of the regression
line is determined from the t-statistic. It is the
probability that the observed correlation coeffi-
cient occurred by chance if the true correlation
is zero. Some researchers prefer to report the
F-ratio instead of the t-statistic. The F-ratio is
equal to the t-statistic squared.

? The t-statistic for the significance of the slope is
essentially a test to determine if the regression
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model (equation) is usable. If the slope is signif-
icantly different than zero, then we can use the
regression model to predict the dependent vari-
able for any value of the independent variable.

? The coefficient of determination (r-squared) is
the square of the correlation coefficient. Its value
may vary from zero to one. It has the advantage
over the correlation coefficient in that it may be
interpreted directly as the proportion of variance
in the dependent variable that can be accounted
for by the regression equation. For example, an
r-squared value of .49 means that 49% of the
variance in the dependent variable can be ex-
plained by the regression equation.

? The R2 statistics is the amount of variance in
the dependent variable explained by your model.
The F statistics is whether your model is signif-
icant. The t statistics (if it’s a linear model of
more than one predictor) is a measure of whether
or not the individual predictors are significant
predictors of the dependent variable. The rejec-
tion of H0 depends on what it is. If it’s about
your overall model(s) you may look at the F
and/or R2 . If it is about the predictors you
look at the t statistics (but only if your overall
model is significant).

? The t-values and R2 are used to judge very dif-
ferent things. The t-values are used to judge
the accuracy of your estimate of the βi’s, but
R2 measures the amount of variation in your re-
sponse variable explained by your covariates.

? If you have a large enough dataset, you will
always have statistically significant (large) t-
values. This does not mean necessarily mean
your covariates explain much of the variation in
the response variable.

What is bigger, the mean or the median?

If the distribution shows a positive skew, the mean
is larger than the median. If it shows a negative skew,
the mean is smaller than the median.

Pretend 1% of the population has a disease.
You have a test that determines if you have
that disease, but it’s only 80% accurate and
20% of the time you get a false positive, how
likely is it you have the disease.

? Fact: 0.01 of the population has the disease
(given).

? Data: Test is only 0.8 accurate (given):

? How likely is it that you have the disease?

? To identify that you have the disease you have
to test +ve and actually have the disease. Using
Bayes:

P (B|A) =
0.8 ∗ 0.01

0.01 ∗ 0.8 + 0.99 ∗ 0.2
= 0.04

SQL, what are the different types of table
joins? What’s the difference between a left
join and a right join?

Inner Join, Left Outer Join, Right Outer Join, Full
Outer Join, Cross Join.

? Simple Example: Lets say you have a Students
table, and a Lockers table.

? INNER JOIN is equivalent to ”show me all stu-
dents with lockers”.

? LEFT OUTER JOIN would be ”show me all
students, with their corresponding locker if they
have one”.

? RIGHT OUTER JOIN would be ”show me all
lockers, and the students assigned to them if
there are any”.

? FULL OUTER JOIN would be silly and prob-
ably not much use. Something like ”show me
all students and all lockers, and match them up
where you can”
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? CROSS JOIN is also fairly silly in this scenario.
It doesn’t use the linked ”locker number” field in
the students table, so you basically end up with
a big giant list of every possible student-to-locker
pairing, whether or not it actually exists.

How many gigabytes would you need to run
Google mail. How much do you think GMail
costs to Google?

? 16 000 gb is 800 dol/month, so 1 GB is 0.5 and
each user have 15 GB, so 7.5 dollar.

? Gmail has around 400 million user, so 3 billions
month.

? Marginal cost is the additional cost for adding a
user.

How much revenue does Youtube make in a
day?

? Youtube’s revenues at 4 billions for 2013 and
their operating income at 711 millions. This puts
their daily revenues at 11 millions and their daily
income at 1.9 millions.

? Average of 133 page views per month per user.

With a data set from normal distribution,
suppose you can’t get any observation greater
than 5, how to estimate the mean?

? Statistical analysis with small samples is like
making astronomical observations with binocu-
lars. You are limited to seeing big things: plan-
ets, stars, moons and the occasional comet. But
just because you don’t have access to a high-
powered telescope doesn’t mean you cannot con-
duct astronomy.

? Comparing Means: If your data is generally con-
tinuous (not binary), such as task time or rating
scales, use the two sample t-test. It’s been shown
to be accurate for small sample sizes.

? Comparing Two Proportions: If your data is bi-
nary (pass/fail, yes/no), then use the N-1 Two
Proportion Test. This is a variation on the bet-
ter known Chi-Square test.

? Confidence Intervals: While the confidence inter-
val width will be rather wide (usually 20 to 30
percentage points), the upper or lower boundary
of the intervals can be very helpful in establish-
ing how often something will occur in the total
user population.

? Confidence interval around a mean: If your data
is generally continuous (not binary) such as rat-
ing scales, order amounts in dollars, or the num-
ber of page views, the confidence interval is
based on the t-distribution (which takes into ac-
count sample size).

? Confidence interval around task-time: Task time
data is positively skewed. There is a lower
boundary of 0 seconds. It’s not uncommon for
some users to take 10 to 20 times longer than
other users to complete the same task. To han-
dle this skew, the time data needs to be log-
transformed and the confidence interval is com-
puted on the log-data, then transformed back
when reporting.
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? Confidence interval around a binary measure:
For an accurate confidence interval around bi-
nary measures like completion rate or yes/no
questions, the Adjusted Wald interval performs
well for all sample sizes.

? Completion Rate: For small-sample completion
rates, there are only a few possible values for
each task. For example, with five users at-
tempting a task, the only possible outcomes are
0%, 20%, 40%, 60%, 80% and 100% success. It’s
not uncommon to have 100% completion rates
with five users.

Derive the formula for the variance of OLS
from scratch.

? linear least squares is a method for estimating
the unknown parameters in a linear regression
model.

? this method minimizes the sum of squared verti-
cal distances between the observed responses in
the dataset and the responses predicted by the
linear approximation.

? The resulting estimator can be expressed by a
simple formula, especially in the case of a single
regressor on the right-hand side.

? Given a data set of n statistical units, a linear
regression model assumes that the relationship
between the dependent variable yi and the p-
vector of regressors xi is linear. This relationship
is modelled through a disturbance term or error
variable εi an unobserved random variable that
adds noise to the linear relationship between the
dependent variable and regressors.

? Thus the model takes the form

yi = β1xi1 + ..+ βpxip + εi = xTi β + ε1

where T denotes the transpose, so that xiT is
the inner product between vectors xi and .

Bayesian analysis of drug testing (determin-
ing false positive rate).

? Let say 0.5% of people are drug users and our
test is 99% accurate (it correctly identifies 99%
. What’s the probability of being a drug user if
you’ve tested positive?

? P (B|A) is 0.99, P (B)= 0.01*0.995+0.99*0.005,
P (A) = 0.005.

I have a coin, I tossed 10 times and I want
to test if the coin is fair.

? A fair coin is an idealized randomizing device
with two states (usually named ”heads” and
”tails”) which are equally likely to occur.

? In more rigorous terminology, the problem is of
determining the parameters of a Bernoulli pro-
cess, given only a limited sample of Bernoulli
trials.

? If a maximum error of 0.01 is desired, how many
times should the coin be tossed? At 68.27%,
level of confidence (Z=1), at 95.4% level of con-
fidence (Z=2), at 99.90% level of confidence
(Z=3.3).

? Hypothesis testing lets you to decide, with a cer-
tain level of significance, whether you have suf-
ficient evidence to reject the underlying (Null)
hypothesis or you have do not sufficient evidence
against the Null Hypothesis and hence you ac-
cept the Null Hypothesis.

? I am explaining the Hypothesis testing below
assuming that you want to determine if a coin
comes up heads more often than tails. If you
want to determine, if the coin is biased or unbi-
ased, the same procedure holds good. Just that
you need to do a two-sided hypothesis testing as
opposed to one-sided hypothesis testing.
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? your Null hypothesis is p ≤ 0.5 while your Al-
ternate hypothesis is p > 0.5, where p is the
probability that the coin shows up a head. Say
now you want to perform your hypothesis test-
ing at 10% level of significance. What you do
now is to do as follows:

? Let nH be the number of heads observed out of
a total of n tosses of the coin.

? Take p=0.5 (the extreme case of the Null Hy-
pothesis). Let x∼B(n,0.5).

? P (x ≥ ncH) = 0.1, ncH gives you the critical
value beyond which you have sufficient evidence
to reject the Null Hypothesis at 10% level of sig-
nificance. i.e. if you find nH≥ncH, then you have
sufficient evidence to reject the Null Hypothesis
at 10% level of significance and conclude that
the coin comes up heads more often than tails.

? If you want to determine if the coin is unbiased,
you need to do a two-sided hypothesis testing as
follows.

? Your Null hypothesis is p=0.5 while your Alter-
nate hypothesis is p6= %0.5, where p is the prob-
ability that the coin shows up a head. Say now
you want to perform your hypothesis testing at
10% level of significance. What you do now is to
do as follows:

? Let nH be the number of heads observed out of
a total of n tosses of the coin.

? Let x∼B(n,0.5).

? Compute nc1H and nc2H as follows. P (x ≤
nc1H)+P (x ≥ nc2H) = 0.1 (nc1H and nc2H are
symmetric about n2 i.e. nc1H+nc2H=n) nc1H
gives you the left critical value and nc2H gives
you the right critical value.

? If you find nH(nc1H,nc2H), then you have do not
have sufficient evidence against Null Hypothe-
sis and hence you accept the Null Hypothesis at
10% level of significance. Hence, you accept that
the coin is fair at 10% level of significance.

Why we can not use linear regression for
dependent variable with binary outcomes?

? the linear regression can produce predictions
that are not binary, and hence ”nonsense”: in-
teractions that are not accounted for in the re-
gression and non-linear relationships between a
predictor and the outcome

? inference based on the linear regression coeffi-
cients will be incorrect. The problem with a bi-
nary dependent variable is that the homoscedas-
ticity assumption (similar variation on the de-
pendent variable for units with different values
on the independent variable) is not satisfied. I
will add that another concern is that the normal-
ity assumption is violated: the residuals from a
regression model on a binary outcome will not
look very bell-shaped... Again, with a suffi-
ciently large sample, the distribution does not
make much difference, since the standard errors
are so small anyway.

How to estimating sample size required for
experiment?

Sample sizes may be chosen in several different
ways:

? expedience - For example, include those items
readily available or convenient to collect. A
choice of small sample sizes, though sometimes
necessary, can result in wide confidence intervals
or risks of errors in statistical hypothesis testing.

? using a target variance for an estimate to be de-
rived from the sample eventually obtained

? using a target for the power of a statistical test
to be applied once the sample is collected.

? How to determine the sample size?

– for a study for which the goal is to get a
significant result from at test:
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– set α to the residual power

– set HA, estimate σ
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