Computational Tutorial:
An introduction to LSTMs in Tensorflow

.

v L 2 ‘l.

| Tensor

Harini Suresh Nick Locascio

CSAIL

Part 1: Neural Networks Overview
Part 2: Sequence Modeling with LSTMs
Part 3: TensorFlow Fundamentals

Part 4: LSTMs + Tensorflow Tutorial

Part 1: Neural Networks Overview

Neural Network

Input
layer

The Perceptron

inputs weights sum non-linearity

bias

Perceptron Forward Pass

output =

Perceptron Forward Pass

weights sum

hY
output = E Tk W;
i=0

Perceptron Forward Pass

weights sum

N
output = (Z x; % w;) + b
i=0

Perceptron Forward Pass

N
output = g((z x; * w;) + b)
i=0

weights

sum

non-linearity

Perceptron Forward Pass

output = g(XW + b)

X =x0.21,...7,

W = wy,wy,...w,

weights

sum

non-linearity

Perceptron Forward Pass

e

output = g(XW + b)

X =x0.21,...7,

W = wy,wy,...w,

weights

sum

non-linearity

Sigmoid Activation

output = g(XW + b)

weights

sum

non-linearity

Common Activation Functions

Sigmoid TanH RelLU
12

1.0 1

0.8
0.6
04
0.2

0.0
-0.2 -15 -2

Importance of Activation Functions

e Activation functions add non-linearity to our network’s function
e Most real-world problems + data are non-linear

=
e © & . _J— @
__" I_f' "-\,._
-
e0® ® 0,00
) ‘a® a'
® 0. @
® @ ® -9 & ¢
® L

Perceptron Forward Pass

output = g(XW + b)

weights

sum

non-linearity

Perceptron Forward Pass

output = g(

weights sum non-linearity

(2*0.1) +

(3*0.5) + 05\‘
(1% 5) 2.5 L 0 output
-1*2. + —™

(5%0.2) +

(1%3.0)

Perceptron Forward Pass

Output — 9(32) — 5(32) weights sum non-linearity

1 %

= = 0.96

(14 €e32) "-5\‘
2.5

How do we build neural networks
with perceptrons?

Perceptron Diagram Simplified

weights

sum

non-linearity

Perceptron Diagram Simplified

Multi-Output Perceptron

output layer

Multi-Layer Perceptron (MLP)

input
layer

hidden
layer

Multi-Layer Perceptron (MLP)

Deep Neural Network

Input
layer

Training Neural Networks

Training Neural Networks: Loss function

N
1 < | .
loss == J(#) = FZZOSS(JC(SC(E)E 0), 'y(”))

Predicted
N = # examples redicte Actual

Training Neural Networks: Objective

argg mmh—r Z loss(f))

W
0 =W, Wr. W,
J (9)/ 1 2

Loss is a function of the model’'s parameters

How to minimize loss?

Start at random point

10"

0, O

How to minimize loss?

.J(0)

Compute: W

10

o,

How to minimize loss?

Move in direction opposite

of gradient to new point
—_.
J{(I 0,)

90 T 191

How to minimize loss?

Move in direction opposite

oint
5

16" ‘
A 6,

How to minimize loss?

Repeat!

This is called Stochastic Gradient Descent (SGD)

Repeat!

Stochastic Gradient Descent (SGD)

e Initialize ® randomly
e For N Epochs

o For each training example (x, y):

8. (0

m Compute Loss Gradient: _)

00
m Update 6 with update rule:

0.J (6
6 = 6‘—77—859)

Stochastic Gradient Descent (SGD)

e Initialize ® randomly
e For N Epochs

o For each training example (x, y):

8. (0

m Compute Loss Gradient: _)

00
m Update 6 with update rule:

0J (6
6‘::9—77—8‘(9)

Stochastic Gradient Descent (SGD)

e Initialize ® randomly
e For N Epochs

o For each training example (x, y):

m Compute Loss Gradient: _8,](9)
00
m Update 6 with update rule:
0.J(6)

e How to Compute Gradient?

Calculating the Gradient: Backpropagation

Calculating the Gradient: Backpropagation

Calculating the Gradient: Backpropagation

Calculating the Gradient: Backpropagation

0

Apply the chain rule

J(©)

0. (6) 8](9)

8 Wg (30[}

Calculating the Gradient: Backpropagation

0

Apply the chain rule

J(©)

0.J(0) aJ(a) 9oy
an - 80[} 8W2

Calculating the Gradient: Backpropagation

Calculating the Gradient: Backpropagation

Apply the chain rule

~
0. (6)

oW,

Calculating the Gradient: Backpropagation

0

Apply the chain rule

J(©)

9. (6) aJ(a) oo

8W1 30[} i ah[}

Calculating the Gradient: Backpropagation

0

Apply the chain rule Apply the chain rule

o
0J(0) 8 J(0) Doy

8W1 30[} i ah[}

J(©)

Calculating the Gradient: Backpropagation

<
w, W,
g J(O)
N
Apply the chain rule Apply the chain rule

9J(6) _9J(6) oy

8W1 30[} ah[} i 8W1

Core Fundamentals Review

Perceptron Classifier

Stacking Perceptrons to form neural networks
How to formulate problems with neural networks
Train neural networks with backpropagation

X

hidden
layers

output
layer

0000
>
o0

Part 2: Sequence Modeling
with Neural Networks

Harini Suresh

What is a sequence?

e ‘|l took the dog for a walk this morning.”

Translation quality

Successes of deep models

Machine translation Question Answering

8 o ; : s e - : ’ ; perfect translation Super Bowl 50 was an American footbail_l gla.:-zjne to determine the champion of the

Mational Football League (NFL) for the 2015 season. The American Football

5 i op— _— Conference (AFC) champion Denver Broncos defeated the National Football

- b T Conference (NFC) champion Carolina Panthers 24-10 to earn their third Super
neural (GNM'[') Bowl title. The game was played on February 7, 2016, at Levi's Stadium in the

— San Francisco Bay Area at Santa Clara, California. As this was the 50th Super
phrase-based (PBMT) Bowl, the league emphasized the "golden anniversary” with various gold-themed

initiatives, as well as temporarily suspending the tradition of naming each Super

Bowl game with Roman numerals (under which the game would have been
known as "Super Bowl L'}, so that the logo could prominently feature the Arabic
numerals 50.

English English English Spanish French Chinese Super Bowl 50 decided the NFL champion for what season?

> > > > > B Ground Truth Answers: 2015 the 2015 season 2015
Spanish French Chinese English English English Prediction: 2015

Translation model

Left:

https://research.googleblog.com/2016/09/a-
neural-network-for-machine.html

Right:
https://rajpurkar.github.io/SQuAD-explorer/

https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/

how do we model sequences?

idea: represent a sequence as a bag of words

“I| dislike

|

[01070001]

prediction

problem: bag of words does not preserve order

problem: bag of words does not preserve order

“The food was good, not bad at all.”
VS

“The food was bad, not good at all.”

idea: maintain an ordering within feature vector

[000100010010000 00001]

On Monday it was showing

One hot feature
vector indicates
what each word is prediction

problem: hard to deal with different word orders

“On Monday, it was snowing.”
VS

“It was snowing on Monday.”

problem: hard to deal with different word orders

[000100010010000 00001]

On Monday it was snowing
VS

[10000 000010001000100]

It was showing on Monday

problem: hard to deal with different word orders

“On Monday it was snowing.”
VS

“It was snowing on Monday.”

We would have to relearn the rules of language at
each point in the sentence.

idea: markov models

problem: we can't model long-term dependencies

markov assumption: each state depends only on the
last state.

problem: we can't model long-term dependencies

“In , | had a great time and | learnt some of the

n

We need information from the far past and future to
accurately guess the correct word.

let’s turn to recurrent neural networks! (RNNs)

1. to maintain word order
2. to share parameters across the sequence
3. to keep track of long-term dependencies

example network:

hidden

example network:

let’s take a look at
this one hidden unit

RNNS remember their previous state:

0
\W‘ xo : vector representing first word

so : cell state at t = 0 (some initialization)
s1:cell stateatt =1

s1 = tanh(Wxg + Usg)

W, U : weight matrices

RNNS remember their previous state:

n

W :
x1 : vector representing second word

s1:cell stateatt =1
s9 : cell state at ¢t = 2

X, “was

so = tanh(Wzx1 + Usq)

W, U : weight matrices

“unfolding” the RNN across time:

time

“unfolding” the RNN across time:

time

o notice that W and U stay
U U U the same!

“unfolding” the RNN across time:

time

o s, can contain
U U U information from all
past timesteps

possible task: language model

KING LEAR:
0O, if you were a feeble sight, the
courtesy of your law,
all the works of language Your sight and several breath, will
shakespeare mode/ wear the gods
With his heads, and my hands are
wonder'd at the deeds,
So drop upon your lordship's head,
and your opinion
Shall be against your honour.

possible task: language model

yO y] y2
alas my honor Y, is actually a probability
distribution over possible
V V V next words, aka a softmax
U U U
W W W
<start> alas my

possible task: language model

37:29 The righteous shall inherit
the land, and leave it for an
inheritance unto the children of
King James Bible, . Gad according to the number of
: guage . \
Structure and Interpretation > ~ stepsthatislinearinb.
model
of Computer Programs

hath it not been for the singular
taste of old Unix, “new Unix”
would not exist.

http://kingjamesprogramming.tumblr.com/

http://kingjamesprogramming.tumblr.com/
http://kingjamesprogramming.tumblr.com/

possible task: classification (i.e. sentiment)

w4
@HVSVN

Don't fly with @ British_ Airways. " . (
They can't keep track of your
luggage.

m Kim Kardashian @ i~
LN

Happy Birthday to my best friend, the Wof >)
my life, my soul!!!! I love you beyond words!

possible task: classification (i.e. sentiment)

Y
negative y is a probability
distribution over
V possible classes (like
positive, negative,
neutral), aka a softmax
U U
W W W
don’t fly luggage

possible task: machine translation

how do we train an RNN?

how do we train an RNN?

backpropagation!

(through time)

remember: backpropagation

1. take the derivative (gradient) of the loss with
respect to each parameter

2. shift parameters in the opposite direction in order
to minimize loss

we have a loss at each timestep:

(since we're making a prediction at each timestep)

JO J] J2
yo yl y?
/ / /
U U
W W W

we have a loss at each timestep:

(since we're making a prediction at each timestep)

loss at each
J, — timestep

we sum the losses across time:

loss at time ¢ = J (©)

® = our
parameters, like
weights

total loss = J(®) = X, J (O)

what are our gradients?

we sum gradients across time for each
parameter P:

0] _ N~ 0
OP —~ OP

let’s try it out for W with the chain rule:

0] _~04
oW ~ L oW

let’s try it out for W with the chain rule:

J, J, 7, 9] 90
ow - ow
Yo Vi Yo so let’s take a single timestep t:
Vv Vv Vv
U u u
W W W
x x x

let’s try it out for W with the chain rule:

J, J, 7, 9] 90
ow - ow
Yo Vi Yo so let’s take a single timestep t:
y v v 0J2
oW
U u u
W W W
x x x

let’s try it out for W with the chain rule:

J, J, 7, 9] 90
OW — £ OW
Yo Vi so let’s take a single timestep t:
v ‘ 1 0Ty _ 07
oW Syg
U u u
W W W
x x x

let’s try it out for W with the chain rule:

J, J, 7, OJ N~ 0de
| OW — £ OW
Yo Vi so let’s take a single timestep t:
N Y \ an _ an 83}2
8W Syg 852
U u u
W W W
X x x

let’s try it out for W with the chain rule:

J, J, 7, 9] 90
OW — £ OW
Yo Vi Yo so let’s take a single timestep t:
V V V 0y _ 2 ya 02
oW Oys Oso OW
U u u
W W W
x x x

let’s try it out for W with the chain rule:

9] _ 0T
OW — = oW
so let’s take a single timestep &
0Jy 0J3 Oy 0s2
OW Oyz Oss OW

but wait...

let’s try it out for W with the chain rule:

I, J, J, 9 _ 0
OW — £~ oW
Yo Vi Yo so let’s take a single timestep t:
v N v % _ an 83}2 682
oW Oyg O0so AW
0 ¥ 0 but wait...
so = tanh(Us, + Wxs)
W W W
x x x

let’s try it out for W with the chain rule:

J, J, 7, OJ N~ 0de
OW ~ 4= oW
Yo Vi Yo so let’s take a single timestep t:
N Y Y an . an 83}2 382
oW Oys Oso OW
but wait...
U u u
so = tanh(Us, + Wzs)
W W W
s, also depends on W so we can't
z, x, x

? Just treat %2 as a constant!
oW

how does s, depend on W?

how does s, depend on W?

882
14

how does s, depend on W?

882
14

882 881

| 881 8W

how does s, depend on W?

882
14

| 882 881

| 881 8W
| 882 880

| 88[} 8W

backpropagation through time:

8J2 Z an ayg 882 Ssk

3y2 0sq 05, OW
\ }
|

Contributions of W in previous
timesteps to the error at timestep t

backpropagation through time:

aJt Z aJt ayt aSt aSk

¢ Oy Osy Osp OW

\ J
|

Contributions of W in previous
timesteps to the error at timestep t

why are RNNs hard to train?

problem: vanishing gradient

8J2 Z an ayg 882 Ssk
3y2 0sq 05, OW

problem: vanishing gradient

8J2 Z an ayg 682 Ssk
3y2 0sq 08, OW

problem: vanishing gradient

8J2 Z an ayg 682 Ssk
3y2 0sq 08, OW

|

332 882 881

atk=0: ge = Bs1 O3g

8
<
8—»

problem: vanishing gradient

Z aJ 83’”’ asn aSk: 08, 0spn_1 0s3 0sg 051
8W ayn 8Sn 683’5@2{/ 08,1 08,9 .. D5, O3, Do

problem: vanishing gradient

oJ,, 0y,, 08, Osi ds, 08,1 Ds3 Dso D51
i Z

ayn aSn, 68&:@4/ Osp—10s,—2 052 0s1 059

as the gap between timesteps
gets bigger, this product gets
longer and longer!

8 —»

problem: vanishing gradient

08, 08n_1 083 089 051

6sn_1 aSn_g - 682 681 680

problem: vanishing gradient

08, 08n_1 083 089 051

what are each of these terms? —

6sn_1 aSn_g - 682 681 680

problem: vanishing gradient

08, 08n_1 083 089 051

what are each of these terms? —

3sn_1 aSn_g - 682 381 350

Osn_ _ W diag|f' (Ws,_, + Uz;)]
8Sn/
W = sampled from f = tanh or sigmoid so f' < 1

standard normal
distribution = mostly < 1

problem: vanishing gradient

08, 08n_1 083 089 081

what are each of these terms? —

3sn_1 aSn_g - 682 381 380

aasn = T/V'Tdi{,z,g[f'(T/Vsj_1 + Ux;)]
Sn/
W = sampled from f = tanh or sigmoid so f' < 1

standard normal
distribution = mostly < 1

we're multiplying a lot of small numbers together.

we're multiplying a lot of small numbers together.
so what?

errors due to further back timesteps have increasingly
smaller gradients.

so what?

parameters become biased to capture shorter-term
dependencies.

“In , | had a great time and | learnt some
of the _____

our parameters are not trained to capture long-term
dependencies, so the word we predict will mostly depend on
the previous few words, not much earlier ones

solution #1: activation functions

10 . = ReLU derivative
09 prevents f' from shrinking
o8 the gradients

0.7
0.6
0.5
04

03

0.2 /—\ sigmoid derivative

-4 -2 0 2 4

solution #2: initialization

1

/0

weights initialized to identity matrix I, =Y
biases initialized to zeros \E
0

prevents W from shrinking the gradients

[

—_— 0 O

- OO O

solution #3: gated cells

rather each node being just a simple RNN cell, make each node
a more complex unit with gates controlling what information is

passed through.

VS

RNN LSTM, GRU, etc

solution #3: more on LSTMs

Sj+1

solution #3: more on LSTMs

solution #3: more on LSTMs

solution #3: more on LSTMs

output certain
parts of cell
state

solution #3: more on LSTMs

why do LSTMs help?

1. forget gate allows information to pass through

unchanged

— when taking the derivative, f' is 1 for what we want to keep!

2. sjdepends ons through addition!

— when taking the derivative, not lots of small W terms!

in practice: machine translation.

basic encoder-decoder model:

add LSTM cells:

le chien mange <end>
|

. o Co ¢ C, Cs

; ; - .
Lo N

<go> i
the dog eats S,,<go s, ,le s, , chien s, ,mange

problem: a fixed-length encoding is limiting

le chien mange <end>

the dog eats , <go> ,le , Chien , mange

all the decoder knows about the input
sentence is in one fixed length vector, s,

solution: attend over all encoder states

, <go> s’ le s, chien s*, mange

solution: attend over all encoder states

, le s, chien s*, mange

solution: attend over all encoder states

le chien mange <end>

, chien s*, mange

now we can model sequences!

why recurrent neural networks?

building models for language, classification, and machine translation
training them with backpropagation through time

solving the vanishing gradient problem with activation functions,
initialization, and gated cells (like LSTMs)

e using attention mechanisms

and there’s lots more to do!

extending our models to timeseries + waveforms
complex language models to generate long text or books
language models to generate code

controlling cars + robots

predicting stock market trends

summarizing books + articles

handwriting generation

multilingual translation models

... many more!

L

TensorFlow

Using TensorFlow

Deep Learning Frameworks

e GPU Acceleration
e Automatic Differentiation
e Code Reusability + Extensibility

e Speed up ldea -> Implementation

Whats out there?

Caffe theano

o

TensorFlc

PYTbRCH

What is a Tensor?

e Tensorflow Tensors are very similar to numpy ndarrays

Numpy

TensorFlow

a = np.zeros((2,2)); b = np.ones((2,2))

a = tf.zeros((2,2)), b = tf.ones((2,2))

np.sum(b, axis=1)

tf.reduce_sum(a,reduction_indices=[1])

a.shape

a.get_shape()

np.reshape(a, (1,4))

tf.reshape(a, (1,4))

b*5 4+ 1

b*5 + 1

np.dot(a,b)

tf.matmul(a, b)

a[e,e], a[:,e], a[e,:]

a[e,e], a[:,e], afe,:]

https://cs224d.stanford.edu/lectures/CS224d-Lecture?.pdf

https://cs224d.stanford.edu/lectures/CS224d-Lecture7.pdf
https://cs224d.stanford.edu/lectures/CS224d-Lecture7.pdf

TensorFlow Basics

e Create a session

e Define a computation Graph

&

\
feslics

/

o Feed your data in, get results out

Sessions

e Encapsulates environment to run graph

e How to create the session

import tensorflow as tf

session = tf.InteractiveSession()
or
session = tf.Session()

What is a graph

e Encapsulates the computation you want to perform

D
el e
® @&

What are graphs made of?

e Placeholders (aka Graph Inputs)

Q
Il

tf.placeholder(tf.float32)
tf.placeholder(tf.float32)

o
!

D

D

What are graphs made of?

e Constants

Q
Il

tf.placeholder(tf.float32)
tf.placeholder(tf.float32)

~ o
I !

tf.constant(1.9)

What are graphs made of?

Operations

= tf
= tf.
= tf.
= tf.
= tf.
= tf.

.placeholder(tf.float32) ‘/’
placeholder(tf.float32)

D tf.placeholder
D math operation
D tf.constant

constant(1.0) /‘ \ \
add(a, b) @
subtract(b, k)

multiply(c, d)

How do we run the graph?

e Select nodes to evaluate womcono
.placenholder
D math operation

e Specify values for placeholders Y, [thconstant

session.run(e, feed dict={a:2.0, b:0.5})
>>> -1.25

session.run(c, feed dict={a:2.0, b:0.5})

>>> 2.5

session.run([e,c], feed dict={a:2.0, b:0.5})
>>> [2.5, -1.25]

Building a Neural Network Graph

e The previous graph performed a constant computation
e Network weights need to mutable

e Enter: tf.Variable

tf.Variable: Initialization

e Can initialize to specific values

bl = tf.Variable(tf.zeros((2,2)), name="bias")

e Can initialize to random values

wl = tf.Variable(tf.random_normal((2,2)), name="wl")

Building a Neural Network Graph

n_input_nodes = 2

n_output nodes =1 I tf.sigmoid

[] tf.matmul, tf.add
x = tf.placeholder(tf.float32, (None, 2)) B tvariable
y = tf.placeholder(tf.float32, (None, 1)) T B ttpiacshoider
W = tf.Variable(tf.random_normal((n_input_nodes,

n_output nodes))) d T ™~
b = tf.Variable(tf.zeros(n_output nodes)) <::::::> <::::::>
tf.matmul(x, W) + b <:::::j>

out = tf.sigmoid(z)

N
Il

Adding a loss function

loss = tf.reduce_mean(
tf.nn.sigmoid cross_entropy with_ logits(

logits=z, labels=y))

1 &

tf.sigmoid
tf.matmul, tf.add
tf.variable

tf.placeholder

Add an optimizer: SGD

learning rate = 0.02
loss = tf.reduce_mean(
tf.nn.sigmoid cross_entropy with logits(

logits=output, labels=y))

optimizer = tf.train.GradientDescentOptimizer(

learning_rate).minimize(loss)

sess.run(optimizer, feed dict={x: inputs, y:labels})

gradients

loss

model

o

cccccccc

aaaaaaaa

aaaaaaaa

Run the graph

e Feed in training data in batches

e Each run of the graph updates the variables
o SGD applies an op to all variables

e Feed in dev/test data to evaluate

o Do not fetch the train op

Useful Features of TensorFlow

TensorBoard: Model Visualization

.......

TensorBoard: Logging

- Accuracy

- Accuracy/

£3 0000 100Dk 20006 3000k 4000k

- Loss & var loss

~Loss & varloss/

i

o 0000 1000k 2000k 3000K 4000k

i

o 0000 1000k 2000k 3000k 4000k

T

o 0.000 1.000k 2.000K 3.000k 4,000k

140
100
0600

0200

-Loss

~Loss/

100
0600

020

convap
Conv2D/L2-Loss
00150
00130
00110

900063

- Accuracy/ (raw)

0950
050
0750
0650
0550
0.450
o 0000 1000k 2000k 3000k 4000k

i

~Loss & varloss/ (raw)

120
100
0800
0500
0400
0200
o 0000 1000k 2000k 3000k 4000k
~Loss/ (raw)
120
100
0s00
0500
0400
0200
000
o 0000 1000k 2000k 3000k 4000k
Conv2D/L2-Loss (raw)
00150
00130
00110
900003
o 0.000 1,000k 2.000K 3.000k 4,000k

- Accuracy/Validation

ogn0
060
0850
0840
0000 1000k 2000k 3000k 4000k

~Loss/Validation

0260
0200
0160
0120
00800
o 0000 1000k 2000k 3.000k 4000k

Conv2D/Relu/Sparsity/
0950

0900
0850

o 0000 1000k 2000k 3000k 4000k

How to use TensorBoard

e \Write to Tensorboard using Summary Logs

Open your TensorBoard with the terminal command:

tensorboard --logdir=path/to/log-directory

Summary Logs

Summaries are operations! So just part of the graph:

loss _summary = tf.summary.scalar('loss', loss)

Summary writers save summaries to a log file

summary_writer = tf.summary.FileWriter('logs/', session.graph)

Summaries are operations - so just run them!

pred, summary = sess.run([out, loss_summary], feed dict={
X: inputs, labels placeholder:labels})

summary_writer.add summary(summary, global step)

Summary Logs

TensorBoard EVENTS IMAGES GRAPH HISTOGRAMS
input new regex . T Xentropy (1)
Split On Underscores: . S e
X Type: 224 BN :
1.40 |
Selected Runs: 1.00 |
data 0.600 !
0.200 |
=g 0.000 400.0 BO0O.0 1.200k 1.600k

Name Scoping

with tf.variable scope("foo"):
with tf.variable_scope("bar"):

v = tf.Variable("v", [1])

V.name

>>> "foo/bar/v:0"

Sharing weights tf.get_variable()

with tf.variable scope("foo"):
with tf.variable scope("bar"):

v = tf.get_variable("v", [1])

V.name

>>> "foo/bar/v:0"

Why share weights?

e Imagine we want to learn a feature detector that we run over multiple inputs,
and aggregate features and produce a prediction, all in 1 graph

e Need to share the weights to ensure:

o A shared, single representation is learned
o Gradients get propagated for all inputs

Attempt 1

def cnn_feature_extractor(image):

with tf.variable_scope("feature extractor"):

v = tf.Variable("v", [1])

features = tf.relu(h4)

return features

feat 1

cnn_feature_extractor(image_1)

feat_2

cnn_feature_extractor(image_2)

pred = predict(feat 1, feat 2)

Name Scoping for cleaner code

e Networks often re-use similar structures, gets tedious to write each of them

def make_layer(input, input_size, output_size, scope_name):
tf.variable_scope(scope_name):
W = tf.Variable("w", tf.random_normal((input_size,
output_size)))
b = tf.variable("b", tf.zeros(output_size))
z = tf.matmul(input, W) + b

return z

Name Scoping for cleaner code

e Networks often re-use similar structures, gets tedious to write each of them

input = ...
he = make_layer(input, 10, 20, "ho")
hl = make_layer(ho, 20, 20, "h1")

tf.get_variable("ho/w")
tf.get_variable("hl/b")

Name Scoping Makes for Clean Graph Visualizations

Seadiernt

Cradiern

Checkpointing + Saving Models

Create a saver.
saver = tf.train.Saver(...variables...)
Launch the graph and train, saving the model every 1,000 steps.
sess = tf.Session()
for step in xrange(1000000):

sess.run(..training op..)

if step % 1000 == 0O:

Append the step number to the checkpoint name:

saver.save(sess, 'my-model', global step=step)

Loading Models

Add ops to save and restore all the variables.

saver = tf.train.Saver()

Later, launch the model, use the saver to restore variables from disk, and
do some work with the model.
with tf.Session() as sess:

Restore variables from disk.

saver.restore(sess, "/tmp/model.ckpt")

print("Model restored.™)

Do some work with the model

TensorFlow as core of other Frameworks

e Keras, TFLearn, TF-slim, others all based on TensorFlow
e Research often means tinkering with inner workings - worthwhile to
understand the core of any framework you are using

TensorFlow Tutorial:

- Pair up into pairs of 2

- Go to https://github.com/yala/introdeeplearning
- Follow install instructions

- If you need help, come down to the front

- Hint for Lab 2: Fix map(lambda...) to list(map(lambda...

https://github.com/nicholaslocascio/nlp-tensorflow-tutorial

TensorFlow Tutorial:

- Pair up into pairs of 2
- Go to https://github.com/yala/introdeeplearning

- Follow install instructions

- If you need help, hop on the HelpQ:

HelpQ is here: http://deepqueue.herokuapp.com/
Click “Log in with GitHub”

(or just raise your hand)

https://github.com/nicholaslocascio/nlp-tensorflow-tutorial
http://deepqueue.herokuapp.com/

