
Computational Tutorial:
An introduction to LSTMs in Tensorflow

 Harini Suresh Nick Locascio

x0

s0 s1

x1 x2

s2 . . .

y0 y1 y2

Part 1: Neural Networks Overview

Part 2: Sequence Modeling with LSTMs

Part 3: TensorFlow Fundamentals

Part 4: LSTMs + Tensorflow Tutorial

Part 1: Neural Networks Overview

Neural Network

x0

x1

xn

h2

Input
layer

hidden
layers

output
layer

h1

hn

o0

on

h0

h2

h1

hn

h0

...

The Perceptron

x0

x1

x2 Σ

inputs weights

w
0

w2

wn

sum non-linearity

b

1

xn

w
1

bias

Perceptron Forward Pass

x0

x1

x2 Σ

inputs weights

w
0

w2

wn

sum non-linearity

b

1

xn

w
1

bias

output

Perceptron Forward Pass

x0

x1

x2 Σ

inputs weights

w
0

w2

wn

sum non-linearity

b

1

xn

w
1

bias

output

Perceptron Forward Pass

x0

x1

x2 Σ

inputs weights

w
0

w2

wn

sum non-linearity

b

1

xn

w
1

bias

output

Perceptron Forward Pass

x0

x1

x2 Σ

inputs weights

w
0

w2

wn

sum non-linearity

b

1

xn

w
1

bias

output

Perceptron Forward Pass

x0

x1

x2 Σ

inputs weights

w
0

w2

wn

sum non-linearity

b

1

xn

w
1

bias

output

Perceptron Forward Pass

x0

x1

x2 Σ

inputs weights

w
0

w2

wn

sum non-linearity

b

1

xn

w
1

bias

Activation Function

output

Sigmoid Activation

x0

x1

x2 Σ

inputs weights

w
0

w2

wn

sum non-linearity

b

1

xn

w
1

bias

output

Common Activation Functions

Importance of Activation Functions
● Activation functions add non-linearity to our network’s function
● Most real-world problems + data are non-linear

Perceptron Forward Pass

2

3

-1 Σ

inputs weights

0.1

2.5

0.2

sum non-linearity

3.0

1

5

0.5

bias

output

(2*0.1) +

(3*0.5) +

(-1*2.5) +

(5*0.2) +

(1*3.0)
)

Perceptron Forward Pass

2

3

-1 Σ

inputs weights

0.1

2.5

0.2

sum non-linearity

3.0

1

5

0.5

bias

output

Perceptron Forward Pass

2

3

-1 Σ

inputs weights

0.1

2.5

0.2

sum non-linearity

3.0

1

5

0.5

bias

output

How do we build neural networks
with perceptrons?

Perceptron Diagram Simplified

x0

x1

x2 Σ

inputs weights

w
0

w2

wn

sum non-linearity

b

1

xn

w
1

bias

output

Perceptron Diagram Simplified
output

o0

x0

x1

x2

xn

inputs

Multi-Output Perceptron
output layer

o0

x0

x1

x2

xn

o1

Input layer

Multi-Layer Perceptron (MLP)

x0

x1

xn

h2

input
layer

hidden
layer

output
layer

h1

hn

o0

on

h0

Multi-Layer Perceptron (MLP)

x0

x1

xn

h2

input
layer

hidden
layer

output
layer

h1

hn

o0

on

h0

Deep Neural Network

x0

x1

xn

h2

Input
layer

hidden
layers

output
layer

h1

hn

o0

on

h0

h2

h1

hn

h0

...

Training Neural Networks

Training Neural Networks: Loss function

ActualPredicted
N = # examples

Training Neural Networks: Objective

Loss is a function of the model’s parameters

Start at random point

+

How to minimize loss?

Compute:

+

How to minimize loss?

Move in direction opposite
of gradient to new point

+

How to minimize loss?

Move in direction opposite
of gradient to new point

+
+

How to minimize loss?

Repeat!

How to minimize loss?

This is called Stochastic Gradient Descent (SGD)

Repeat!

● Initialize θ randomly
● For N Epochs

○ For each training example (x, y):

■ Compute Loss Gradient:

■ Update θ with update rule:

Stochastic Gradient Descent (SGD)

● Initialize θ randomly
● For N Epochs

○ For each training example (x, y):

■ Compute Loss Gradient:

■ Update θ with update rule:

Stochastic Gradient Descent (SGD)

● Initialize θ randomly
● For N Epochs

○ For each training example (x, y):

■ Compute Loss Gradient:

■ Update θ with update rule:

● How to Compute Gradient?

Stochastic Gradient Descent (SGD)

Calculating the Gradient: Backpropagation

x0 o0h0 J(ᵐ)
W1 W2

Calculating the Gradient: Backpropagation

x0 o0h0 J(ᵐ)
W1 W2

Calculating the Gradient: Backpropagation

x0 o0h0 J(ᵐ)
W1 W2

Apply the chain rule

Calculating the Gradient: Backpropagation

x0 o0h0 J(ᵐ)
W1 W2

Apply the chain rule

Calculating the Gradient: Backpropagation

x0 o0h0 J(ᵐ)
W1 W2

Apply the chain rule

Calculating the Gradient: Backpropagation

x0 o0h0 J(ᵐ)
W1 W2

Calculating the Gradient: Backpropagation

x0 o0h0 J(ᵐ)
W1 W2

Apply the chain rule

Calculating the Gradient: Backpropagation

x0 o0h0 J(ᵐ)
W1 W2

Apply the chain rule

Calculating the Gradient: Backpropagation

x0 o0h0 J(ᵐ)
W1 W2

Apply the chain rule Apply the chain rule

Calculating the Gradient: Backpropagation

x0 o0h0 J(ᵐ)
W1 W2

Apply the chain rule Apply the chain rule

● Perceptron Classifier
● Stacking Perceptrons to form neural networks
● How to formulate problems with neural networks
● Train neural networks with backpropagation

Core Fundamentals Review

Part 2: Sequence Modeling
with Neural Networks

Harini Suresh

x0

s0 s1

x1 x2

s2 . . .

y0 y1 y2

What is a sequence?

● “I took the dog for a walk this morning.”

●

●

sentence

function

speech waveform

Successes of deep models
Machine translation Question Answering

Left:
https://research.googleblog.com/2016/09/a-
neural-network-for-machine.html
Right:
https://rajpurkar.github.io/SQuAD-explorer/

https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/

how do we model sequences?

idea: represent a sequence as a bag of words

“I dislike rain.”

[0 1 0 1 0 0 0 1]

prediction

problem: bag of words does not preserve order

problem: bag of words does not preserve order

“The food was good, not bad at all.”
vs

“The food was bad, not good at all.”

idea: maintain an ordering within feature vector

[0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1]

 On Monday it was snowing

prediction

One hot feature
vector indicates
what each word is

problem: hard to deal with different word orders

“On Monday, it was snowing.”
vs

“It was snowing on Monday.”

problem: hard to deal with different word orders

[0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1]

 On Monday it was snowing

[1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0]

 It was snowing on Monday

vs

problem: hard to deal with different word orders

“On Monday it was snowing.”
vs

“It was snowing on Monday.”

We would have to relearn the rules of language at
each point in the sentence.

idea: markov models

problem: we can’t model long-term dependencies

markov assumption: each state depends only on the
last state.

problem: we can’t model long-term dependencies

“In France, I had a great time and I learnt some of the _____
language.”

We need information from the far past and future to
accurately guess the correct word.

let’s turn to recurrent neural networks! (RNNs)

1. to maintain word order
2. to share parameters across the sequence
3. to keep track of long-term dependencies

example network:

.

.

.

.

.

.

.

.

.

input hidden output

example network:

.

.

.

.

.

.

.

.

.

input hidden output

let’s take a look at
this one hidden unit

RNNS remember their previous state:

t = 0

x0 : “it” W

U

s0

s1

RNNS remember their previous state:

t = 1

x1 : “was” W

U

s1

s2
1
2

“unfolding” the RNN across time:

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

time

“unfolding” the RNN across time:

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

time

notice that W and U stay
the same!

“unfolding” the RNN across time:

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

time

sn can contain
information from all
past timesteps

possible task: language model

all the works of
shakespeare

KING LEAR:
O, if you were a feeble sight, the
courtesy of your law,
Your sight and several breath, will
wear the gods
With his heads, and my hands are
wonder'd at the deeds,
So drop upon your lordship's head,
and your opinion
Shall be against your honour.

language
model

possible task: language model

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

V V V

alas my honor yi is actually a probability
distribution over possible
next words, aka a softmax

<start> alas my

y0
y1 y2

possible task: language model

King James Bible,
Structure and Interpretation
of Computer Programs

language
model

37:29 The righteous shall inherit
the land, and leave it for an
inheritance unto the children of
Gad according to the number of
steps that is linear in b.

hath it not been for the singular
taste of old Unix, “new Unix”
would not exist.

http://kingjamesprogramming.tumblr.com/

http://kingjamesprogramming.tumblr.com/
http://kingjamesprogramming.tumblr.com/

possible task: classification (i.e. sentiment)

:(

:)

possible task: classification (i.e. sentiment)

W

s0

U

s1

U

W W

sn. . .

V

y
negative

x0
x1 xn

don’t fly luggage

y is a probability
distribution over
possible classes (like
positive, negative,
neutral), aka a softmax

possible task: machine translation

the

W

s0

U

s1

U

dog

W

 s2 , <go>

J

c0

K

le

eats

W

s2

J

c1

K

chien

 s2 , le

L

J

c2

K

mange

 s2 , chien

L

J

c3

K

<end>

 s2 , mange

L

how do we train an RNN?

how do we train an RNN?

backpropagation!
(through time)

remember: backpropagation

1. take the derivative (gradient) of the loss with
respect to each parameter

2. shift parameters in the opposite direction in order
to minimize loss

we have a loss at each timestep:

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

V V V

y0 y1 y2

(since we’re making a prediction at each timestep)

J0 J1 J2

we have a loss at each timestep:

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

V V V

y0 y1 y2

(since we’re making a prediction at each timestep)

J0 J1 J2

loss at each
timestep

we sum the losses across time:

loss at time t = Jt(ᵆ)

total loss = J(ᵆ) = Σt Jt(ᵆ)

ᵆ = our
parameters, like
weights

what are our gradients?

we sum gradients across time for each
parameter P:

let’s try it out for W with the chain rule:

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

V V V

y0 y1 y2

J0 J1 J2

let’s try it out for W with the chain rule:

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

V V V

y0 y1 y2

J0 J1 J2

so let’s take a single timestep t:

let’s try it out for W with the chain rule:

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

V V V

y0 y1 y2

J0 J1 J2

so let’s take a single timestep t:

let’s try it out for W with the chain rule:

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

V V V

y0 y1 y2

J0 J1 J2

so let’s take a single timestep t:

let’s try it out for W with the chain rule:

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

V V V

y0 y1 y2

J0 J1 J2

so let’s take a single timestep t:

let’s try it out for W with the chain rule:

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

V V V

y0 y1 y2

J0 J1 J2

so let’s take a single timestep t:

let’s try it out for W with the chain rule:

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

V V V

y0 y1 y2

J0 J1 J2

so let’s take a single timestep t:

but wait…

let’s try it out for W with the chain rule:

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

V V V

y0 y1 y2

J0 J1 J2

so let’s take a single timestep t:

but wait…

let’s try it out for W with the chain rule:

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

V V V

y0 y1 y2

J0 J1 J2

so let’s take a single timestep t:

but wait…

s1 also depends on W so we can’t
just treat as a constant!

how does s2 depend on W?

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

V V V

y0 y1 y2

J0 J1 J2

. . .

how does s2 depend on W?

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

V V V

y0 y1 y2

J0 J1 J2

how does s2 depend on W?

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

V V V

y0 y1 y2

J0 J1 J2

how does s2 depend on W?

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . .

V V V

y0 y1 y2

J0 J1 J2

backpropagation through time:

Contributions of W in previous
timesteps to the error at timestep t

backpropagation through time:

Contributions of W in previous
timesteps to the error at timestep t

why are RNNs hard to train?

problem: vanishing gradient

problem: vanishing gradient

problem: vanishing gradient

at k = 0:

x0

s0 s1

x1 x2

s2

y0 y1 y2

problem: vanishing gradient

x0

s0 s1

x1 x2

s2

y0 y1 y2

x3

s3

y3

xn

sn

yn

. . .

problem: vanishing gradient

x0

s0 s1

x1 x2

s2

y0 y1 y2

x3

s3

y3

xn

sn

yn

. . .

as the gap between timesteps
gets bigger, this product gets
longer and longer!

problem: vanishing gradient

problem: vanishing gradient

what are each of these terms?

problem: vanishing gradient

what are each of these terms?

W = sampled from
standard normal
distribution = mostly < 1

f = tanh or sigmoid so f’ < 1

problem: vanishing gradient

what are each of these terms?

we’re multiplying a lot of small numbers together.

W = sampled from
standard normal
distribution = mostly < 1

f = tanh or sigmoid so f’ < 1

so what?

we’re multiplying a lot of small numbers together.

errors due to further back timesteps have increasingly
smaller gradients.

so what?

parameters become biased to capture shorter-term
dependencies.

“In France, I had a great time and I learnt some
of the _____ language.”

our parameters are not trained to capture long-term
dependencies, so the word we predict will mostly depend on
the previous few words, not much earlier ones

solution #1: activation functions

ReLU derivative

sigmoid derivative

tanh derivative

prevents f’ from shrinking
the gradients

solution #2: initialization

weights initialized to identity matrix
biases initialized to zeros

prevents W from shrinking the gradients

solution #3: gated cells

rather each node being just a simple RNN cell, make each node
a more complex unit with gates controlling what information is
passed through.

RNN LSTM, GRU, etc

vs

solution #3: more on LSTMs

sj sj+1

solution #3: more on LSTMs

sj sj+1

forget
irrelevant parts

of previous
state

solution #3: more on LSTMs

sj sj+1

selectively
update cell

state values

solution #3: more on LSTMs

sj sj+1

output certain
parts of cell

state

solution #3: more on LSTMs

sj sj+1

output certain
parts of cell

state

selectively
update cell

state values

forget
irrelevant parts

of previous
state

why do LSTMs help?

1. forget gate allows information to pass through

unchanged
→ when taking the derivative, f’ is 1 for what we want to keep!

2. sj depends on sj-1 through addition!
→ when taking the derivative, not lots of small W terms!

in practice: machine translation.

basic encoder-decoder model:

the

W

s0

U

s1

U

dog

W

 s2 , <go>

J

c0

K

le

eats

W

s2

J

c1

K

chien

 s2 , le

L

J

c2

K

mange

 s2 , chien

L

J

c3

K

<end>

 s2 , mange

L

add LSTM cells:

the

W

s0

U

s1

U

dog

W

 s2 , <go>

J

c0

K

le

eats

W

s2

J

c1

K

chien

 s2 , le

L

J

c2

K

mange

 s2 , chien

L

J

c3

K

<end>

 s2 , mange

L

problem: a fixed-length encoding is limiting

the

W

s0

U

s1

U

dog

W

 s2 , <go>

J

c0

K

le

eats

W

s2

J

c1

K

chien

 s2 , le

L

J

c2

K

mange

 s2 , chien

L

J

c3

K

<end>

 s2 , mange

L

all the decoder knows about the input
sentence is in one fixed length vector, s2

solution: attend over all encoder states

s0

U

s1

U

 s* , <go>

J

c0

K

le

s2

J

c1

K

chien

 s* , le

L

J

c2

K

mange

 s*
 , chien

L

J

c3

K

<end>

 s* , mange

L

solution: attend over all encoder states

s0

U

s1

U

c0

K

le

s2

J

c1

K

chien

 s* , le

L

J

c2

K

mange

 s*
 , chien

L

J

c3

K

<end>

 s* , mange

L

solution: attend over all encoder states

s0

U

s1

U

c0

K

le

s2 c1

K

chien

L

J

c2

K

mange

 s*
 , chien

L

J

c3

K

<end>

 s* , mange

L

now we can model sequences!

● why recurrent neural networks?
● building models for language, classification, and machine translation
● training them with backpropagation through time
● solving the vanishing gradient problem with activation functions,

initialization, and gated cells (like LSTMs)
● using attention mechanisms

and there’s lots more to do!

● extending our models to timeseries + waveforms
● complex language models to generate long text or books
● language models to generate code
● controlling cars + robots
● predicting stock market trends
● summarizing books + articles
● handwriting generation
● multilingual translation models
● … many more!

Using TensorFlow

Deep Learning Frameworks
● GPU Acceleration

● Automatic Differentiation

● Code Reusability + Extensibility

● Speed up Idea -> Implementation

Whats out there?

What is a Tensor?
● Tensorflow Tensors are very similar to numpy ndarrays

https://cs224d.stanford.edu/lectures/CS224d-Lecture7.pdf

https://cs224d.stanford.edu/lectures/CS224d-Lecture7.pdf
https://cs224d.stanford.edu/lectures/CS224d-Lecture7.pdf

TensorFlow Basics
● Create a session

● Define a computation Graph

● Feed your data in, get results out

import tensorflow as tf

session = tf.InteractiveSession()

or

session = tf.Session()

Sessions

● Encapsulates environment to run graph

● How to create the session

What is a graph
● Encapsulates the computation you want to perform

What are graphs made of?
● Placeholders (aka Graph Inputs)

a = tf.placeholder(tf.float32)

b = tf.placeholder(tf.float32)

What are graphs made of?
● Constants

a = tf.placeholder(tf.float32)

b = tf.placeholder(tf.float32)

k = tf.constant(1.0)

What are graphs made of?
● Operations

a = tf.placeholder(tf.float32)

b = tf.placeholder(tf.float32)

k = tf.constant(1.0)

c = tf.add(a, b)

d = tf.subtract(b, k)

e = tf.multiply(c, d)

How do we run the graph?
● Select nodes to evaluate

● Specify values for placeholders

session.run(e, feed_dict={a:2.0, b:0.5})

>>> -1.25

session.run(c, feed_dict={a:2.0, b:0.5})

>>> 2.5

session.run([e,c], feed_dict={a:2.0, b:0.5})

>>> [2.5, -1.25]

Building a Neural Network Graph
● The previous graph performed a constant computation

● Network weights need to mutable

● Enter: tf.Variable

tf.Variable: Initialization
● Can initialize to specific values

b1 = tf.Variable(tf.zeros((2,2)), name="bias")

● Can initialize to random values

w1 = tf.Variable(tf.random_normal((2,2)), name="w1")

Building a Neural Network Graph
n_input_nodes = 2

n_output_nodes = 1

x = tf.placeholder(tf.float32, (None, 2))

y = tf.placeholder(tf.float32, (None, 1))

W = tf.Variable(tf.random_normal((n_input_nodes,

n_output_nodes)))

b = tf.Variable(tf.zeros(n_output_nodes))

z = tf.matmul(x, W) + b

out = tf.sigmoid(z)

Adding a loss function
n_input_nodes = 2

n_output_nodes = 1

x = tf.placeholder(tf.float32, (None, 2))

W = tf.Variable(tf.random_normal((n_input_nodes,

n_output_nodes)))

b = tf.Variable(tf.zeros(n_output_nodes))

z = tf.matmul(x, W) + b

out = tf.sigmoid(z)

loss = tf.reduce_mean(

 tf.nn.sigmoid_cross_entropy_with_logits(

 logits=z, labels=y))

Add an optimizer: SGD

learning_rate = 0.02

loss = tf.reduce_mean(

 tf.nn.sigmoid_cross_entropy_with_logits(

 logits=output, labels=y))

optimizer = tf.train.GradientDescentOptimizer(

learning_rate).minimize(loss)

sess.run(optimizer, feed_dict={x: inputs, y:labels})

Run the graph

● Feed in training data in batches

● Each run of the graph updates the variables

○ SGD applies an op to all variables

● Feed in dev/test data to evaluate

○ Do not fetch the train op

Useful Features of TensorFlow

TensorBoard: Model Visualization

TensorBoard: Logging

How to use TensorBoard
● Write to Tensorboard using Summary Logs

Open your TensorBoard with the terminal command:

tensorboard --logdir=path/to/log-directory

● Summaries are operations! So just part of the graph:

loss_summary = tf.summary.scalar('loss', loss)

● Summary writers save summaries to a log file

summary_writer = tf.summary.FileWriter('logs/', session.graph)

● Summaries are operations - so just run them!

pred, summary = sess.run([out, loss_summary], feed_dict={

x: inputs, labels_placeholder:labels})

summary_writer.add_summary(summary, global_step)

Summary Logs

Summary Logs

Name Scoping

with tf.variable_scope("foo"):

 with tf.variable_scope("bar"):

 v = tf.Variable("v", [1])

v.name

>>> "foo/bar/v:0"

Sharing weights tf.get_variable()

with tf.variable_scope("foo"):

 with tf.variable_scope("bar"):

 v = tf.get_variable("v", [1])

v.name

>>> "foo/bar/v:0"

Why share weights?
● Imagine we want to learn a feature detector that we run over multiple inputs,

and aggregate features and produce a prediction, all in 1 graph
● Need to share the weights to ensure:

○ A shared, single representation is learned
○ Gradients get propagated for all inputs

Attempt 1

def cnn_feature_extractor(image):

 ...

 with tf.variable_scope("feature_extractor"):

 v = tf.Variable("v", [1])

 ...

 features = tf.relu(h4)

 return features

feat_1 = cnn_feature_extractor(image_1)

feat_2 = cnn_feature_extractor(image_2)

pred = predict(feat_1, feat_2)

● Networks often re-use similar structures, gets tedious to write each of them

def make_layer(input, input_size, output_size, scope_name):

 tf.variable_scope(scope_name):

 W = tf.Variable("w", tf.random_normal((input_size,

 output_size)))

 b = tf.Variable("b", tf.zeros(output_size))

 z = tf.matmul(input, W) + b

 return z

Name Scoping for cleaner code

● Networks often re-use similar structures, gets tedious to write each of them

...

input = ...

h0 = make_layer(input, 10, 20, "h0")

h1 = make_layer(h0, 20, 20, "h1")

...

tf.get_variable("h0/w")

tf.get_variable("h1/b")

Name Scoping for cleaner code

Name Scoping Makes for Clean Graph Visualizations

Checkpointing + Saving Models
Create a saver.

saver = tf.train.Saver(...variables...)

Launch the graph and train, saving the model every 1,000 steps.

sess = tf.Session()

for step in xrange(1000000):

 sess.run(..training_op..)

 if step % 1000 == 0:

 # Append the step number to the checkpoint name:

 saver.save(sess, 'my-model', global_step=step)

Loading Models
Add ops to save and restore all the variables.

saver = tf.train.Saver()

Later, launch the model, use the saver to restore variables from disk, and

do some work with the model.

with tf.Session() as sess:

 # Restore variables from disk.

 saver.restore(sess, "/tmp/model.ckpt")

 print("Model restored.")

 # Do some work with the model

TensorFlow as core of other Frameworks
● Keras, TFLearn, TF-slim, others all based on TensorFlow
● Research often means tinkering with inner workings - worthwhile to

understand the core of any framework you are using

TensorFlow Tutorial:
- Pair up into pairs of 2
- Go to https://github.com/yala/introdeeplearning
- Follow install instructions
- If you need help, come down to the front

- Hint for Lab 2: Fix map(lambda...) to list(map(lambda...

https://github.com/nicholaslocascio/nlp-tensorflow-tutorial

TensorFlow Tutorial:
- Pair up into pairs of 2
- Go to https://github.com/yala/introdeeplearning
- Follow install instructions
- If you need help, hop on the HelpQ:

- HelpQ is here: http://deepqueue.herokuapp.com/
- Click “Log in with GitHub”
- (or just raise your hand)

https://github.com/nicholaslocascio/nlp-tensorflow-tutorial
http://deepqueue.herokuapp.com/

