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Part 1: Neural Networks Overview
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The Perceptron
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Perceptron Forward Pass
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Perceptron Forward Pass

x0

x1

x2 Σ

inputs weights

w
0

w2

wn

sum non-linearity

b

1

xn

w
1

bias

Activation Function

output



Sigmoid Activation
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Common Activation Functions



Importance of Activation Functions
● Activation functions add non-linearity to our network’s function
● Most real-world problems + data are non-linear



Perceptron Forward Pass
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Perceptron Forward Pass
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How do we build neural networks
with perceptrons?



Perceptron Diagram Simplified
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Multi-Layer Perceptron (MLP)
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Deep Neural Network
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Training Neural Networks



Training Neural Networks: Loss function

ActualPredicted
N = # examples



Training Neural Networks: Objective



Loss is a function of the model’s parameters



Start at random point

+

How to minimize loss?



Compute:

+

How to minimize loss?



Move in direction opposite 
of gradient to new point

+

How to minimize loss?



Move in direction opposite 
of gradient to new point

+
+

How to minimize loss?



Repeat!

How to minimize loss?



This is called Stochastic Gradient Descent (SGD)

Repeat!



● Initialize θ randomly
● For N Epochs

○ For each training example (x, y):

■ Compute Loss Gradient: 

■ Update θ with update rule: 

Stochastic Gradient Descent (SGD)
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● Initialize θ randomly
● For N Epochs

○ For each training example (x, y):

■ Compute Loss Gradient: 

■ Update θ with update rule: 

● How to Compute Gradient?

Stochastic Gradient Descent (SGD)



Calculating the Gradient: Backpropagation
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Calculating the Gradient: Backpropagation

x0 o0h0 J(ᵐ)
W1 W2

Apply the chain rule Apply the chain rule



● Perceptron Classifier
● Stacking Perceptrons to form neural networks
● How to formulate problems with neural networks
● Train neural networks with backpropagation

Core Fundamentals Review



Part 2: Sequence Modeling 
with Neural Networks

Harini Suresh
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What is a sequence? 

● “I took the dog for a walk this morning.”

●

●

sentence

function

speech waveform



Successes of deep models 
Machine translation Question Answering

Left: 
https://research.googleblog.com/2016/09/a-
neural-network-for-machine.html
Right: 
https://rajpurkar.github.io/SQuAD-explorer/

https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/


how do we model sequences? 



idea: represent a sequence as a bag of words

“I dislike rain.” 

[ 0 1 0 1 0 0 0 1 ]

prediction



problem: bag of words does not preserve order



problem: bag of words does not preserve order

“The food was good, not bad at all.” 
vs

“The food was bad, not good at all.” 



idea: maintain an ordering within feature vector

[ 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ]

    On         Monday        it           was       snowing

prediction

One hot feature 
vector indicates 
what each word is



problem: hard to deal with different word orders

“On Monday, it was snowing.” 
vs

“It was snowing on Monday.” 



problem: hard to deal with different word orders

[ 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ]

    On         Monday        it           was      snowing

[ 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0  ]

        It         was      snowing      on        Monday

vs



problem: hard to deal with different word orders

“On Monday it was snowing.” 
vs

“It was snowing on Monday.” 

We would have to relearn the rules of language at 
each point in the sentence.



idea: markov models



problem: we can’t model long-term dependencies

markov assumption: each state depends only on the 
last state. 



problem: we can’t model long-term dependencies

“In France, I had a great time and I learnt some of the  _____ 
language.”

We need information from the far past and future to 
accurately guess the correct word.



let’s turn to recurrent neural networks! (RNNs)

 
1. to maintain word order
2. to share parameters across the sequence
3. to keep track of long-term dependencies
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example network:
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let’s take a look at 
this one hidden unit



RNNS remember their previous state: 
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RNNS remember their previous state: 
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“unfolding” the RNN across time: 
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“unfolding” the RNN across time: 

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . . 

time

notice that W and U stay 
the same!



“unfolding” the RNN across time: 
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possible task: language model 

all the works of 
shakespeare

KING LEAR:
O, if you were a feeble sight, the 
courtesy of your law,
Your sight and several breath, will 
wear the gods
With his heads, and my hands are 
wonder'd at the deeds,
So drop upon your lordship's head, 
and your opinion
Shall be against your honour.

language 
model



possible task: language model 
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possible task: language model 

King James Bible, 
Structure and Interpretation 
of Computer Programs

language 
model

37:29 The righteous shall inherit 
the land, and leave it for an 
inheritance unto the children of 
Gad according to the number of 
steps that is linear in b.

hath it not been for the singular 
taste of old Unix, “new Unix” 
would not exist.

http://kingjamesprogramming.tumblr.com/

http://kingjamesprogramming.tumblr.com/
http://kingjamesprogramming.tumblr.com/


possible task: classification (i.e. sentiment)

:(

:)



possible task: classification (i.e. sentiment)
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possible task: machine translation
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how do we train an RNN? 

 



how do we train an RNN?

backpropagation!
(through time) 

 



remember: backpropagation

1. take the derivative (gradient) of the loss with 
respect to each parameter

2. shift parameters in the opposite direction in order 
to minimize loss



we have a loss at each timestep:
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we have a loss at each timestep:
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loss at each 
timestep



we sum the losses across time:

loss at time t = Jt(ᵆ)

total loss = J(ᵆ) = Σt Jt(ᵆ)

ᵆ = our 
parameters, like 
weights



what are our gradients? 

we sum gradients across time for each 
parameter P:



let’s try it out for W with the chain rule: 
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let’s try it out for W with the chain rule: 
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so let’s take a single timestep t: 

but wait… 

s1 also depends on W so we can’t 
just treat        as a constant!



how does s2 depend on W? 
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backpropagation through time: 

Contributions of W in previous 
timesteps to the error at timestep t



backpropagation through time: 

Contributions of W in previous 
timesteps to the error at timestep t



why are RNNs hard to train? 



problem: vanishing gradient
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problem: vanishing gradient

at k = 0:
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problem: vanishing gradient
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problem: vanishing gradient
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as the gap between timesteps 
gets bigger, this product gets 
longer and longer!



problem: vanishing gradient
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problem: vanishing gradient
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W = sampled from 
standard normal 
distribution = mostly < 1

f = tanh or sigmoid so f’ < 1



problem: vanishing gradient

what are each of these terms? 

we’re multiplying a lot of small numbers together. 

W = sampled from 
standard normal 
distribution = mostly < 1

f = tanh or sigmoid so f’ < 1



so what? 

we’re multiplying a lot of small numbers together. 

errors due to further back timesteps have increasingly 
smaller gradients.

so what? 

parameters become biased to capture shorter-term 
dependencies.



“In France, I had a great time and I learnt some 
of the  _____ language.”

our parameters are not trained to capture long-term 
dependencies, so the word we predict will mostly depend on 
the previous few words, not much earlier ones



solution #1: activation functions

ReLU derivative

sigmoid derivative

tanh derivative

prevents f’ from shrinking 
the gradients



solution #2: initialization

weights initialized to identity matrix
biases initialized to zeros

prevents W from shrinking the gradients



solution #3: gated cells 

rather each node being just a simple RNN cell, make each node 
a more complex unit with gates controlling what information is 
passed through.

RNN LSTM, GRU, etc

vs



solution #3: more on LSTMs

sj sj+1
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solution #3: more on LSTMs
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solution #3: more on LSTMs

sj sj+1

output certain 
parts of cell 

state

selectively 
update cell 

state values

forget 
irrelevant parts 

of previous 
state



why do LSTMs help? 

1. forget gate allows information to pass through 

unchanged 
→ when taking the derivative, f’ is 1 for what we want to keep!

2. sj depends on sj-1 through addition!  
→ when taking the derivative, not lots of small W terms!



in practice: machine translation.



basic encoder-decoder model:
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add LSTM cells: 
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problem: a fixed-length encoding is limiting 
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all the decoder knows about the input 
sentence is in one fixed length vector, s2



solution: attend over all encoder states
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solution: attend over all encoder states
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now we can model sequences!

● why recurrent neural networks?
● building models for language, classification, and machine translation
● training them with backpropagation through time
● solving the vanishing gradient problem with activation functions, 

initialization, and gated cells (like LSTMs)
● using attention mechanisms



and there’s lots more to do!

● extending our models to timeseries + waveforms
● complex language models to generate long text or books
● language models to generate code
● controlling cars + robots
● predicting stock market trends
● summarizing books + articles
● handwriting generation
● multilingual translation models
● … many more!



Using TensorFlow



Deep Learning Frameworks
● GPU Acceleration

● Automatic Differentiation

● Code Reusability + Extensibility

● Speed up Idea -> Implementation



Whats out there?



What is a Tensor?
● Tensorflow Tensors are very similar to numpy ndarrays

https://cs224d.stanford.edu/lectures/CS224d-Lecture7.pdf

https://cs224d.stanford.edu/lectures/CS224d-Lecture7.pdf
https://cs224d.stanford.edu/lectures/CS224d-Lecture7.pdf


TensorFlow Basics
● Create a session

● Define a computation Graph

● Feed your data in, get results out



import tensorflow as tf

session = tf.InteractiveSession()

or

session = tf.Session()

Sessions

● Encapsulates environment to run graph

● How to create the session



What is a graph
● Encapsulates the computation you want to perform



What are graphs made of?
● Placeholders (aka Graph Inputs)

a = tf.placeholder(tf.float32)

b = tf.placeholder(tf.float32)



What are graphs made of?
● Constants

a = tf.placeholder(tf.float32)

b = tf.placeholder(tf.float32)

k = tf.constant(1.0)



What are graphs made of?
● Operations

a = tf.placeholder(tf.float32)

b = tf.placeholder(tf.float32)

k = tf.constant(1.0)

c = tf.add(a, b)

d = tf.subtract(b, k)

e = tf.multiply(c, d)



How do we run the graph?
● Select nodes to evaluate

● Specify values for placeholders

session.run(e, feed_dict={a:2.0, b:0.5})

>>> -1.25

session.run(c, feed_dict={a:2.0, b:0.5})

>>> 2.5

session.run([e,c], feed_dict={a:2.0, b:0.5})

>>> [2.5, -1.25]



Building a Neural Network Graph
● The previous graph performed a constant computation

● Network weights need to mutable

● Enter: tf.Variable



tf.Variable: Initialization
● Can initialize to specific values

b1 = tf.Variable(tf.zeros((2,2)), name="bias")

● Can initialize to random values

w1 = tf.Variable(tf.random_normal((2,2)), name="w1")



Building a Neural Network Graph
n_input_nodes = 2

n_output_nodes = 1

x = tf.placeholder(tf.float32, (None, 2))

y = tf.placeholder(tf.float32, (None, 1))

W = tf.Variable(tf.random_normal((n_input_nodes, 

n_output_nodes)))

b = tf.Variable(tf.zeros(n_output_nodes))

z = tf.matmul(x, W) + b

out = tf.sigmoid(z)



Adding a loss function
n_input_nodes = 2

n_output_nodes = 1

x = tf.placeholder(tf.float32, (None, 2))

W = tf.Variable(tf.random_normal((n_input_nodes, 

n_output_nodes)))

b = tf.Variable(tf.zeros(n_output_nodes))

z = tf.matmul(x, W) + b

out = tf.sigmoid(z)

loss = tf.reduce_mean(

    tf.nn.sigmoid_cross_entropy_with_logits(

    logits=z, labels=y))



Add an optimizer: SGD

learning_rate = 0.02

loss = tf.reduce_mean(

    tf.nn.sigmoid_cross_entropy_with_logits(

    logits=output, labels=y))

optimizer = tf.train.GradientDescentOptimizer(

learning_rate).minimize(loss)

sess.run(optimizer, feed_dict={x: inputs, y:labels})



Run the graph

● Feed in training data in batches

● Each run of the graph updates the variables

○ SGD applies an op to all variables

● Feed in dev/test data to evaluate

○ Do not fetch the train op 



Useful Features of TensorFlow



TensorBoard: Model Visualization



TensorBoard: Logging



How to use TensorBoard
● Write to Tensorboard using Summary Logs

Open your TensorBoard with the terminal command:

tensorboard --logdir=path/to/log-directory



● Summaries are operations! So just part of the graph:

loss_summary = tf.summary.scalar('loss', loss)

● Summary writers save summaries to a log file

summary_writer = tf.summary.FileWriter('logs/', session.graph)

● Summaries are operations - so just run them!

pred, summary = sess.run([out, loss_summary], feed_dict={

x: inputs, labels_placeholder:labels})

summary_writer.add_summary(summary, global_step)

Summary Logs



Summary Logs



Name Scoping

with tf.variable_scope("foo"):

    with tf.variable_scope("bar"):

        v = tf.Variable("v", [1])

v.name

>>> "foo/bar/v:0"



Sharing weights tf.get_variable()

with tf.variable_scope("foo"):

    with tf.variable_scope("bar"):

        v = tf.get_variable("v", [1])

v.name

>>> "foo/bar/v:0"



Why share weights?
● Imagine we want to learn a feature detector that we run over multiple inputs, 

and aggregate features and produce a prediction, all in 1 graph
● Need to share the weights to ensure:

○ A shared, single representation is learned
○ Gradients get propagated for all inputs



Attempt 1

def cnn_feature_extractor(image):

    ...

    with tf.variable_scope("feature_extractor"):

            v = tf.Variable("v", [1])

    ...

    features = tf.relu(h4)

    return features

feat_1 = cnn_feature_extractor(image_1)

feat_2 = cnn_feature_extractor(image_2)

pred = predict(feat_1, feat_2)



● Networks often re-use similar structures, gets tedious to write each of them

def make_layer(input, input_size, output_size, scope_name):

    tf.variable_scope(scope_name):

        W = tf.Variable("w", tf.random_normal((input_size, 

        output_size)))

        b = tf.Variable("b", tf.zeros(output_size))

        z = tf.matmul(input, W) + b

    return z

Name Scoping for cleaner code



● Networks often re-use similar structures, gets tedious to write each of them

...

input = ...

h0 = make_layer(input, 10, 20, "h0")

h1 = make_layer(h0, 20, 20, "h1")

...

tf.get_variable("h0/w") 

tf.get_variable("h1/b")

Name Scoping for cleaner code



Name Scoping Makes for Clean Graph Visualizations



Checkpointing + Saving Models
# Create a saver.

saver = tf.train.Saver(...variables...)

# Launch the graph and train, saving the model every 1,000 steps.

sess = tf.Session()

for step in xrange(1000000):

    sess.run(..training_op..)

    if step % 1000 == 0:

        # Append the step number to the checkpoint name:

        saver.save(sess, 'my-model', global_step=step)



Loading Models
# Add ops to save and restore all the variables.

saver = tf.train.Saver()

# Later, launch the model, use the saver to restore variables from disk, and

# do some work with the model.

with tf.Session() as sess:

  # Restore variables from disk.

  saver.restore(sess, "/tmp/model.ckpt")

  print("Model restored.")

  # Do some work with the model



TensorFlow as core of other Frameworks
● Keras, TFLearn, TF-slim, others all based on TensorFlow
● Research often means tinkering with inner workings - worthwhile to 

understand the core of any framework you are using



TensorFlow Tutorial:
- Pair up into pairs of 2
- Go to https://github.com/yala/introdeeplearning
- Follow install instructions
- If you need help, come down to the front

- Hint for Lab 2: Fix map(lambda...) to list(map(lambda...

https://github.com/nicholaslocascio/nlp-tensorflow-tutorial


TensorFlow Tutorial:
- Pair up into pairs of 2
- Go to https://github.com/yala/introdeeplearning
- Follow install instructions
- If you need help, hop on the HelpQ:

- HelpQ is here: http://deepqueue.herokuapp.com/
- Click “Log in with GitHub”
- (or just raise your hand)

https://github.com/nicholaslocascio/nlp-tensorflow-tutorial
http://deepqueue.herokuapp.com/

